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Abstract

In the paper, the multi-attribute objects with repeating qualitative values of
attributes are considered. Each object is represented by a collection of mul-
tisets drawn from sets of values of the attributes. Formalism of the theory of
multisets allows taking into account simultaneously all the combinations of
attribute values and various versions of the objects. The effective procedure
for comparing such objects as well as groups of such objects is developed.
The proposed concept of the perturbation of one object by another is consid-
ered as the difference of the multisets representing the objects. The measure
of perturbation describes remoteness between the considered objects, and, in
general, is asymmetrical. Next, we consider the measure of the perturbation
of one group of objects by another group of objects. Then, we generate the
description of each group in the form of the classification rules. A practical il-
lustration of the proposed approach is carried out for the task of classification
of text documents.

Keywords: Multi-attribute qualitative objects , Multisets , Measure of
perturbation , Asymmetry of objects’ proximity

1. Introduction

In data mining tasks there is a genuine problem of using a suitable mea-
sure of proximity between objects. Here, we consider a pair of objects A and
B indicating a distance measure and the similarity between these two ob-
jects. Generally, a distance represents a quantitative degree and shows how
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far apart two objects are. Meanwhile, similarity describes a degree which
indicates how close the objects are. It is important to notice that similari-
ties focus on matching of relations between non identical objects while the
differences focus on mismatching of objects. Usually, there is an additional
assumption about symmetry of objects’ proximity.

There are many types of data proximity which are non-symmetric, e.g. in
psychological literature, especially related to modeling of human similarity
judgments. It happens that considering two objects one can notice that the
object A is more associated with the object B than vice versa. Asymme-
try may have various meaning. Possible examples are like telephone calls
between cities, e.g. the number of telephone calls from the city A to the
city B can be different from the number of telephone calls from the city B
to the city A. The objects can be viewed either as similar or as different,
depending on the context and frame of reference [12]. Sometimes researchers
perform some preprocessing of data to get symmetry. According to Beals
at. al. [2], "if asymmetries arise they must be removed by averaging or by an
appropriate theoretical analysis that extracts a symmetric dissimilarity in-
dex". On the other hand, asymmetry may carry out important information,
e.g. [41, 42, 43, 44]. Thus, it seems that the assumption of symmetry should
not be established in advance, because often asymmetry of data should not
be neglected.

We can distinguish qualitative properties describing objects in subjective
terms as well as quantitative properties describing objects in objective terms.
The task of comparing of objects requires choosing proper methods of data
representation. In general, quantitative data represent numerical information
about objects, such information may be measured, i.e., length, time, cost,
etc. While, qualitative data represent descriptive information about objects.
Quality information is subjective and cannot be definitively measured. Thus,
qualitative data can be observed but not measured, for example beauty,
smell, taste, etc. In general, the qualitative data are described by sets of
attributes and the attributes are measured by nominal or ordinal scales.
Determination of similarities between qualitative objects by using common
distance measures cannot be directly applicable for qualitative data. The
problem of defining of proximity measures seems to be less trivial for nominal
than for real-valued attributes.

In the present paper, we consider a finite, non-empty set of objects, each
object is described by a set of attributes, and each attribute is described by
nominal values. Additionally it is assumed, that the values of the attributes



can be repeated in the object’s description. For example, the multi-attribute
object can be presented in several copies or versions. Such problems are
faced when, e.g. some object is evaluated by several independent experts
upon the multiple criteria, or the attributes of the object were measured in
different conditions, or by different methods. The multiple-valued attributes
can be processed using transformations like averaging or weighting, or so on.
However, in such a case, a collection of objects can have different structure.
Therefore, formalism of the multisets theory allows taking into account all
possible combinations of attributes’ values simultaneously and various ver-
sions of the objects can be compared. It seems to be obvious that the mul-
tisets theory gives a very convenient mathematical methodology to describe
and analyze collections of multi-attribute qualitative data with repeated val-
ues of objects’ attributes. More details of above considerations can be found
in the papers [30, 31, 32, 33, 34].

In the classical set theory, a set is a collection of distinct values. If
repeating of any value is allowed, then such a set is called a multiset (or a
bag). Thus, the multiset can be understood as a set of pairs, with additional
information about the multiplicity of occurring elements. For instance, an
exemplary description of the multiset {(1,a), (3,b), (2,c)} is understood that
the set of three pairs is considered wherein there is one occurrence of the
element a, three occurrences of the element b, and two occurrences of the
element c.

One of the first person, who actually used concept of multisets was
Richard Dedekind in 1888, in the paper "Was sind und was sollen die Zahlen?".
The term "multiset" was first coined by N. G. de Bruijn in a private discus-
sion with D. E. Knuth during the 1960s (see the monograph by Knuth [15],
p. 694). His suggestion is now the standard terminology. The general theory
of multisets can be found in the works of Blizard [3, 4]. More on relations
and functions can be found in the paper [10]. The theory of the multiset,
as a natural extension of the set theory, was introduced by Cerf at al. [6],
Peterson [29], and Yager [45]. Surveys of multisets theory can be found in
several papers wherein appropriate operations and their properties are inves-
tigated, e.g. [9, 11, 23, 24, 25, 30, 31, 32, 35, 36, 38]. The applications of the
multiset theory can be divided into two main groups: in mathematics (es-
pecially, combinatorial and computational aspects) and in computer science.
The paper [35] contains a comprehensive survey of various applications of
the multisets.

Our present work is motivated by the need to develop effective procedures
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for comparing objects with repeating qualitative values of the attributes. Ad-
ditionally, following Tversky’s suggestions about possible asymmetric nature
of similarities between objects we want just to verify symmetry of objects
proximity. The term "perturbation of one set by another set", introduced by
the authors, is used in the general sense and corresponds to Tversky’s con-
siderations about objects similarities [41, 42]. The considerations are based
on the theory of the multisets and their basic operations.

First, we define a novel concept of perturbation of one multiset by another
multiset which constitutes a new multiset. Then, it is shown that the pertur-
bation of one multiset by another multiset is described by a difference between
these two multisets, and therefore the direction of the perturbation of multi-
sets has significant meaning. Due to normalization of the cardinality of this
difference, the developed measure of the perturbation ranges between 0 and
1, wherein 0 indicates the lowest value of perturbation, while 1 indicates the
highest value of perturbation. We propose two types of the measure of mul-
tisets” perturbation. The first is called the measure of perturbation type 1,
where the perturbation is normalized by the arithmetic addition of these two
multisets [23, 24]. The second is called the measure of perturbation type 2,
where the perturbation is normalized by the union of these two multisets
[25]. Then, we developed a description of a group of objects as a collection
of multisets, and next the concept of perturbation of one group of objects by
another group of objects is defined. The perturbation represents the differ-
ence of the description of one group compared to the description of another
group.

The multisets approach to a comparison of multi-attribute objects is ap-
plicable in several areas, like the data mining techniques, the cluster analysis,
the pattern recognition, the decision making. It must be emphasized that
there are several approaches to describe distances or similarities between mul-
tisets and they are defined in different ways. The huge number of reported
definitions of metrics is caused by a need to compare objects considered in
many various applications. Thus, exemplary, the Manhattan distance is a
simplified version of the Penrose metric, as well as the Minkowski metric [7];
and the edit distance between words appears as the evolutionary distance
in biology, while similar the Levenshtein distance in Coding Theory, and so
on [7]. Developing the most adequate distance metrics in order to evaluate
proximity between objects, sufficient properly, seems to be very important
as well as a challenging task.

In general, we can distinguish two main groups of the distance metrics.
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Within the first group, each object is considered as a point in the prescribed
metric space. The magnificent review dedicated distances can be found,
e.g. in the papers [7], [1], [8]. In the second group, a cardinality (or a
counting measure) of multisets is considered. For instance, there is the bag
distance understood as a multiset metric based on the arithmetic subtraction
of two multisets (having regard to the order of subtraction) [7]. Several
new types of metric spaces of multisets proposed Petrovsky, e.g. in the
papers [30], [31], [32]. The developed metrics are based on the union and the
symmetric difference operations on multisets. These metrics are extension
of the symmelric dif ference metric and Steinhaus distance, known earlier.
Other metrics can be found in the paper by Kostera and Laros [19]. In the
paper by Hodgetts and Hahn [13] one can find an interesting proposition
of the asymmetrical transformational account of similarity of geometric
patterns.

Therefore, the concept of the perturbation of one object by another and
related measures of such perturbation seems to be a new and attractive
proposition to evaluate asymmetry of proximities between objects. In our
opinion the concept of perturbation can find a wide applications to solve
problems based on comparison of objects, when direction of comparing sets
have significant meaning. For example, the methodology allows generating
classifications rules distinguishing the considered groups (e.g., the text doc-
uments as shown in Section 4).

It seems to be important to emphasize, that this paper is the next one
within the series of the papers, written by the present authors, which are
dedicated to the perturbation of one set by another, wherein there were con-
sidered different kinds of "sets". Up till now, we have already developed the
perturbations of the ordinary sets [20], [22], the multisets [23, 24, 25], and the
fuzzy sets [16]. It seems, that it would be interesting to apply the concept of
the soft cardinality [14] in our approach. The proposed methodology can
find application in various data mining tasks, e.g. in clustering problem [21].

The paper is organized as follows: Section 2 presents the description of
the perturbation methodology for multisets and the mathematical properties
of the measure of perturbation type 1 and type 2. In Section 3 we present
the measures of interactions between objects, as well as the groups of such
objects, described by multisets. Section 4 presents the way of application of
the measures of perturbations for a classification problem.



2. Matching of multisets

Let us consider the multisets defined in so-called multiplicative form [28§],
[33], drawn from a non-empty and finite set V' of nominal-valued elements
with cardinality L, V = {vi, v, ..., v}, Vi1 # v, Vi € {1,2, ..., L — 1}.

Definition 1 (Multiset). The multiset S drawn from the ordinary set V
can be represented by a set of pairs:

S = {(ks(v),v)},Yv €V, (1)
where ks : V — {0,1,2,...}.

In (1) the function k4(.) is called a counting function or a multiplicity
function, and the value of V specifies the number of occurrences of the
element v € V in the multiset S. The element which is not included in the
multiset S has its counting function equal zero.

Let us assume, that V™ (L) denote the set of the multisets drawn from
the set V', such that no element occurs more than m times. The cardinality
of the set V' is L, and m is an integer number. Definition 1 can be written
in the following way

S = {(ks(v1),v1), (ks(v2),v2), ..., (ks(vr),vL)} (2)

understood, that the element v; € V appears ks(v;) times in the multiset
S, the element v, € V appears ks(ve) times, and so on. In the case where
ks(v;) = 0, then the element v; € V' can be omitted.
Let us consider two multisets S; and Sy, such that Si,S, € V™(L), as
follows
Sl - {(k81(vl)7 Ul)v (k52<v2)7 UQ)a ) (kSZ(UL)7 UL)}v (3)
Sy = {(k52(vl)’ Ul)v (k32 (?)2), 02)7 ooy (k82(UL)v UL)}'

The following basic operations and notions on the multisets are well
known :

e the union of multisets

S1USy = {(kslUsz(U)vv) I k81U82(v) = ma’x{kﬂ (U),k”(’l))}, v e V}7
e the intersection of multisets

S1N Sy = {(ksmsz(v)vv) | ksmw(”) = min{ksl(v)7 ksz(v)}7 CAS V}7
e the arithmetic addition of multisets
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Sl ® S2 = {(k51@82(v>’v) l k81®82(v) = ksl (U) + ksz(v)v CAS V}7
e the arithmetic subtraction of multisets

51085, = {(k"81982(v)av) | k81662('0) = maw{ks] (U) - k‘s2(’l)),0}7 vE V}7
e Lhe symmetric dif ference of mullisetls

Sl A S2 - {(kS1A52(U)7U) ‘ kslAsz(U) = | ksl (U) - ks?(v) |? v e V}

On the basis of the authors’ previous research, the new asymmetric mea-
sure of proximity between two multisets S; and S, is introduced. The details
of the proposed approach are presented below.

2.1. Concept of multisets’ perturbation

Comparison of the first multiset S; to the second multiset S, is meant
that the second multiset is perturbed by the first multiset, while comparison
of the second multiset S5 to the first multiset S; is meant that the first
multiset is perturbed by the second one. It is important to notice, that
the direction of the perturbation has significant meaning. In [23, 24, 25],
there was developed the definition of a novel concept of perturbation of
one multiset Sy by another multiset S;, denoted by (S; — Sz), which is
interpreted as a difference between one multiset and another multiset, S;0.55,
in the following way:

(81 = 82) = {(Ks1r52(v), V) | Bsyise (v) := maz{ks, (v) — Ksy(v),0}}. (4)
The counterpart definition is similar
(SZ = Sl) = {(k82H81 (U)’ U) I k82i—>31 (U) = mam{ksZ ('U) - ksl (1)), 0}} (5)

The interpretation of the perturbation of one multiset by another multiset
is presented in the following example.

Example 1. There is considered the following set V = {a,b,c,d, e} and
two exemplary multisets S; = {(1,a), (1,¢)} and Sy = {(1,a),(1,d), (3,¢)},
where S;, Sy € V3(5). The perturbation of the multiset Sy by the multiset
S; is the empty multiset, (S — Sz) = @. The perturbation of the multiset
S by the multiset S, is the following multiset (S, — S;) = {(1,d), (2,¢€)}.

Note, that each finite multiset drawn from the ordinary set of L elements
can be shown as a point in L-dimensional space. For example, assume that
L=2, then the multiset {b, a,b,b} can be written in a simplified form as



{(1,a),(3,b)} (since the order of elements is irrelevant) and by omitting the
names of the elements, we get the point (1,3) in 2-dimensional space.

The geometrical interpretation of the proposed concept of the perturba-
tion in 2D space is provided below.

2.2. Geometrical interpretation of multisets’ perturbation

Let us assume that card(V) = 2, i.e., V = {v;,v2}, and then consider
two multisets S;, S2 € V™(2), denoted by S; = {(ks, (v1),v1), (ks, (v2),v2)}
and Sy = {(ks,(v1),v1), (ks,(v2),v2)}. Each considered multiset can be rep-
resented as a point in 2-dimensional space, see Fig. 1, and these two points
have the following coordinates (ks, (v1), ks, (v2)) and (ks,(v1), ks,(ve)), re-
spectively. According to (4) and (5), the perturbation of an arbitrary multi-
set Sy by another multiset S; is interpreted as a new multiset described as
follows [23, 24, 25]:

(510 82) = {(Ksyss5 (1), V1), (K5 (v2), v2) } =
= {(max{km(vl) - k82 (U1>v 0}7 Ul)? (m’a'x{kﬁ(v’l) — ks, (U‘Z)? 0}’ U‘Z)}'

And, in the opposite case, the perturbation of the multiset S; by the
multiset S; has the similar definition [23, 24, 25]

(52 = Sl) = {(k82'—>31(7)1)7 U1)7 (k52'—>51(v2)7 U2)} -
= {(maz{ks,(v1) — ks, (v1), 0}, 1), (maz{ks, (v2) — ks, (v2), 0}, v2) }-

The two-dimensional graphical illustrations of non-zero values of counting
functions of the perturbations for the exemplary multisets S; and Sy are
presented in Fig. 1. Within the figure, there are indicated two perturbations,
i.e., the perturbation (S; — S) in the left figure, and (S — S;) in the right
figure. The arrows indicate the directions of the perturbation.

Analyzing Fig. 1, one may notice that for the exemplary multisets S7, S,
the perturbation of one multiset by another creates a new multiset, ob-
tained as the subtraction of these two multisets. The following conditions
ksis, (V1) = ksy (01) — ksy(v1) and ks s, (v2) = 0, as well as kgyys, (1) = 0
and ks,ys, (V2) = ks, (v2) — ks, (v9), are satisfied. The segments marked by
the thick lines indicate positive values of the counting functions ks, (v1)
and Ks,ys, (v2), respectively. In the case of the perturbation (S +— Sz), the
beginning of the segment is the point (ks,(v1), ks, (v2)), and the end of the
segment is the point (ks (v1), ks, (v2)). While, for the opposite perturbation
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Figure 1: The graphical illustration of the values of counting functions of the perturbations
for 51 and 52

(S2 — Si), the beginning of the segment is the point (ks,(v1), ks, (v2)), and
the end is the point (ks,(v1), ks, (v2)).

Thus, the first perturbation, depictured at left side of Fig. 1, can be
rewritten in the following form

(Sl = S2) - {(k81H82(’U1)a’Ul)7 (ksleZ(vz),vg)} =
- {( “1(7}1 Sz(vl)’vl)v (077}2)}

while the second perturbation, depictured at right side of Fig. 1, can be
rewritten as

(52 — Sl) - {(ksz'—)sl('”l)fvl)v (k32'—>31('“2)7'[}2)} -
= {(0,v1), (ksy (v2) — ks, (v2), v2) }-

Next, we will present details of the measure of the perturbation of one
multiset by another multiset.

2.83. Measure of multisets’ perturbation

Again, let us consider two multisets S;, Sy € V™(L), V = {v1,va,..., v}
The perturbation of one multiset by another constitutes a new multiset, and
there is a problem of estimating numerical values of the multisets’ pertur-
bations. For this purpose, we give two proposals of defining the measure
of the perturbation of the multisets, which values range between 0 and 1.
Value 0 indicates the lowest value of the perturbation measure while 1 is the
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highest value. The definitions are based on the cardinality of the multiset
as a function that assigns a non-negative real number to each finite multiset
S e V™(L), ie., card(S) = > ks(v). At the beginning the arithmetic sub-

veV
traction of two multisets is determined and its cardinality is described, and

then the result is normalized.

Here, we propose the measure of perturbation type 1 of one multiset
by another with normalization done by the use of the arithmetic addition of
these two multisets S; @ S,, and another measure of perturbation type 2
with normalization caused by the union of two considered multisets S; U Ss.

First, let us consider the measure of the multisets’ perturbation type 1 of
the multiset S, by the multiset S;. The way of calculation of the measure of
perturbation was shown in [23, 24].

Definition 2 (Measure of perturbation type 1). The measure of per-
turbation type 1 of the multiset Sy by the multiset Sy is defined by a mapping
Perl,s: V(L) x V™(L) — [0,1], in the following manner:

L

card(5108;) E ks, (vi) — ksins, (vi)

card(S; ® S;) i:f:l(]gsl (v;) + ks, (v;))

Pery,(S1 — Ss) = (6)

The intuitive meaning of the above definition can be given as follows.
The measure of perturbation of one multiset by another is understood as the
total number of elements appearing in the multiset which is created as the
arithmetic subtraction of these multisets. The measure is normalized by the
total number of elements within the multiset created by arithmetic addition
of these multisets. The normalization causes that the measure is not greater
than 1.

In the counterpart case, the measure of perturbation of the multiset S;
by the multiset Sy is defined in the similar way:

L
Z(ksz (Ui) - kszﬁsl (Ui))

card(S,0 5 i=
Perys(Sa = S1) = P = . (D

card(S ® S1) izzL:l(kSQ(vi) + ks, (vi))

The definitions of these two cases are similar, however the difference is
involved in the directional character of the arithmetic subtractions.
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The measure of multisets’ perturbation type 1 satisfies the following prop-
erties:

Corollary 1. The measure of perturbation type 1 of the multiset Sy by the
multiset Sy satisfies the following conditions, I= {1, 2, ...,L},

1) 0 < Perl, (S — S) <1

2) Perl;s(S1— S2) =0 if and only if ks, (vi) = ks,ns, (vi),Vi € T

3)If Vi€l ks,(v;) =0, and Jks, (v;) > 0,i € I, then Per},4(S1 — Sy) = 1.

Proof. See Definition 2.

Now, the measure of the perturbation type 2 is defined in the following
way [25].

Definition 3 (Measure of perturbation type 2). The measure of per-
turbation type 2 of the multiset Sy by the multiset Sy is defined by a mapping
Per?, s : V(L) x V™(L) — [0, 1], in the following manner:

(ksl ((“i) - kS] NSz (/Ui))

L
>
Perlys(S s Sy) = LUS510%) _ .®
card(S; U Sy) L
Z max{k&(vl) kSz (U'l)}
=1
The definition of the counterpart case is similar
L
card(S o8 ) Z(ks2(“’t) ks2ﬁ51 ((Ul')>
P@T]?WS(SQ — Sl) = 2 S — " (9)
card(S, U S;) L
> max{ks,(vi), ks, (vi)}

ﬂl

2

The measure of perturbation type 1 of multisets differs from the measure
of perturbation type 2 with respect to different form of the denominator.
Namely, in the Definition 2 there is the arithmetic addition S; & S5, while in
Definition 3 there is the union of multisets S; U S5.

The measure of perturbation type 2 of one multiset by another multiset
satisfies the following properties:

Corollary 2. The measure of perturbation type 2 of the multiset Sy by the
multiset Sy satisfies the following conditions, I= {1, 2, ...,L},
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1) 0 < Per?,4(S)— Sy) <1
2) Per?, s(S1+ S2) =0 if and only if ks, (vi) = ks,ns,(vi),Vi € I
3) If Vi€l ks,(v;) =0, and Jks, (v;) > 0,i € I, then Peri;s(S1 — Ss) = 1.

Proof. See Definition 3.

The idea of multisets’ perturbation will be now illustrated by the following
example.

Example 2. There is considered the following set V' = {a,b,d, e} and two
exemplary multisets S; = {(1, a), (1,e)} and S = {(1,a), (1,d), (3, ¢e)}, where
51,85 € V3(4). Due to Definition 2, the measures of perturbation type 1 is
calculated in the following way:

y (ksl (Ul) - kSlﬂsz (UZ))
Perjys(S1— Sy) = =4 =10,
_1(’%‘1 (vi) + ks, (vi))

4

2

M=

y (kS2 (Ul) - kS2051 (Ul)) 3
PCT‘IIMS(SQ — Sl) == ! = —7‘

4
> (ksy(vi) + ks, (vi))
i=1
In the subsequent subsection we provide the geometrical interpretations
of the proposed measure of the multisets’ perturbation in 2D and 3D space.

2.4. Graphical illustration of measure of multisets’ perturbation

In order to demonstrate the meaning of the measures of the perturbation
both type 1 and type 2, of multiset S, by multiset Sy, i.e., Peri;s(S1 — Sa)
and Per?,4(S; — Sy), as well as the counterpart cases, i.e., Perj,;(Ss — S)
and Per?, 4(S, — S;), we draw some possible graphical illustration of the
measures of the perturbations of the multisets in 2D and in 3D.

Case 2D

Let us assume that V = {a}, i.e., L = card(V) = 1, and consider two
multisets S; = {kg,(a),a} and S, = {ks,(a),a}, Si,Ss € V°(1). According
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to Eq. (6) and (7) the measures of perturbation type 1 have the following

forms:
kgl ((1) - k’slmgz (a)
ksl( ) + kSz(a) 7
ks,(a) — ks,nsy (a)
ks,(a) + ks, (a) ’
and according to Eq. (8) and (9) the measures of perturbation type 2 have
the following forms

Per,lws(Sl — Sp) =

PerMs(SQ = Sl)

ksl ((l) k51ﬁ5'2 (a’

)
maz{ks, (a), ks,(a)}’
(@)

ks,(a) — ksyns: (a
Per? (S S,) — > et :
erys(S2 = S1) max{ks,(a), ks, (a)}

Additionally, it is assumed, that the counting function for the multiset
S equals 2, i.e., kg (a) = 2; while the counting function for the multiset
Sy is changed from 0 to 5, i.e., ks,(a) = 0,1,2,3,4,5. In this way, we
consider the pairs of the multisets: S; and S;, where the multiset S; is
fixed, i.e., S1 = {(2,a)}, and the second multiset S is changed as follows:
Sy ={(0,a)}, S2 = {(L,a)}, S2 = {(2,a)}, S2 = {(3,a)}, S2 = {(4,a)},
Sy ={(5,a)}. Fig. 2 shows comparisons between the values of the measures
of the perturbations for such pairs of the multisets S; and S,.

In the left figure, there are displayed the measures of the perturbation
type 1, denoted by Perl,q(.), while in the right-hand figure there are dis-
played the values of the measures of the perturbation type 2, denoted by
Per?,4(.), for the multisets S; and Ss.

The figures display changes of the values of the perturbation measures
with respect to the values kg,(a) (which are changed from 0 to 5), for fixed
value of the function kg, (a) = 2. For the first case of the perturbation, i.e.,
(S1 > S3), the measures Per},;s(S1 — S2) and Per3,o(S; — Ss) (indicated
as the points on the blue lines in Fig. 2) are equal 0 for

PGT']QVIS(Sl — 82) =

kgl (a) =2 < ]{552(0,) < 5.

For the second case of the perturbation, i.e., (Sy — S;), the values of the
measures of the perturbation: Per},¢(S, — S;) and Peri (S, + S;) (indi-
cated as the points on the red lines) are equal 0 for

0 S k32(a) S kg] (a) = 2.
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Figure 2: The measures of perturbations Per},;s(.) and Per?,o(.): the perturbation
(S1+ S3) - the points on blue lines, the perturbation (S; + S7) - the points on red
lines. The value of kg, (a) is equal 2 and kg, (a) is changed from 0 to 5

It is interesting to note that the both curves are convex.

Case 3D

Now, let us consider a case characterized by V' = {a, b}, i.e., card(V)=2,
and two exemplary multisets S, S, € V4(2), S; = {(ks,(a),a), (ks,(b),0)}
and S, = {(ks,(a),a), (ks,(b),b)}. It is assumed additionally, that the value
of each counting function for S is equal 2, i.e., kg, (a) = 2, and ks, (b) = 2;
while the values of the counting function for Sy are ranged between 0 and
4, ie., ks,(a),ks,(a) € {0,1,2,3,4}. In this way, we consider two multisets
Sy and Ss, where the multiset S; is fixed, i.e., S; = {(2,a),(2,b)} and the
second multiset Sy is changed as follows

S2 = {(0,a),(0,0)}, Sz {(0,a),(1,0)}, S2={(0,a),(2,0)},
52 = {(0.0), (3,0)}, S = {(0,a), (4,)},

S2 = {(1,0),(0,0)}, 82 ={(1,a), (1,0)}, S2 = {(1,a),(2,b)},
Sz ={(1,a),(3,b)}, S2 ={(1,a),(4,b)},

SZ = {(47 a)7 (Ovb)}7 52 - {(47 a): (1ab)}: S2 - {(47 a)’ (256)}’
SQ - {(470’)7 (37b)}7 S2 - {(47 (1,), (47b)}

As an example of 3D case, let us consider the measure of perturbation
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type 2 for the multisets S} and S, , denoted by Per3,;¢(S. — S;), and de-
scribed by Eq.(9):

M[\J

; (kS2 (Ul) - k52ﬁ51 (Ul))
PerﬁA,S(SQ = Sl) ==L =
max{kgl (vi)v kSQ (UZ)}

e

Il
_

2

__ksy(a) + ks, (b) — Ksyns (@) — Ksyns, (D))
maz{ks, (a),ks,(a)} +maz{ks, (b), ks, (b)}

Pers (S, 5 S))

I

ks, (b)

Figure 3: The changes of the measure of the perturbations

Thus, each considered measure of perturbation type 2, for fixed multiset
S = {(2,a),(2,b)} and for changing multiset Sy = {(ks,(a),a), (ks,(b),b)}
(i.e., for changing values of kg,(a) and kg, (b) from 0 to 4), can be represented
as a point on a plane in Fig. 3. In a 3-dimensional space, each such point
has the following coordinates (ks,(a), ks,(b), Per;s(Sa — S1)).

Fig. 3 shows, that the measure of the perturbation type 2, denoted by
Per? s(S> — S1), is equal 0 if kg, (a) € {0,1,2} and kg, (b) € {0,1,2}. The
value of the measure of the perturbation is greater than zero if kg, (a) € {3,4}
or kg, (b) € {3,4}.
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2.5. Comparing selected prozimity measures

Let us consider two multisets S; and S,, such that S;,S, € V™(L),
drown from the set V' = {vq,vs,...,v.} of nominal elements. It is important
to mention, that there are several known measures which can be applied for
comparison of two multisets. Comparing proximity measures can be ana-
lyzed analytically, where two measures are considered equivalently or one
measure is expressed as a function of the other measure, or empirically, for
a given data set. Both cases are discussed below.

Empirical case
Let us compare the proposed perturbations of one multiset by another to
three commonly used distance measures, namely

dOhebyshev(Sly 52) = ie{llnzax L) | ksl (Uz') - kSg (’Uq:) |,
L
dManhattan(Slu S2) - Z I ksl (Uz) - kSQ (Uz) |7
i=1

L
dEuclidean(Sla SZ) - Z(ksl ('U7) - kSz (UZ))Z

i=1
Let us assume that L=2, and let us consider two exemplary multisets
S1 = {(ks,(a),a), (ks,(b),b)} and Sy = {(ks,(a),a), (ks,(b),b)} drown from
the set V = {a,b}, where 51,5, € V5(2). It is assumed additionally, that
ks,(a) = 2, kg, (b) = 3, and ks,(a) = 3, ks,(b) = 1. In this way, we consider
the pair of the multisets S; = {(2,a),(3,0)} and Sy = {(3,a),(1,b)}. The
multisets 57 and Sy can be represented as points in 2D space specified by the
coordinates k(a) and k(b), namely as points (2,3) and (3,1), respectively. And
then, there arises a problem of calculation of degrees of proximity between
these two multisets. According to (4) and (5), the perturbations for the
multisets S and S, are interpreted as the new multisets, described as follows:

(Sl = SQ) = {(max{kgl (a) - k52 (a)a O} a)v (max{k& (b) - kSz (b)7 O}> b) =
= {(07 CL), (kS1H52(b): b)} = {<Ov CL), (27 b)}7

(Sz > S1) = {(max{ksz (a) — ks, (CL), 0}7 a), (max{ksz(b) — ks, (), 0}’ b) =
= {(kS&HSl(a)v a)? (07 b)} = {(17 a’)7 (07 b)}
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The values of nonzero counting functions of perturbations are kg,,,s,(b) = 2,
and kg, s, (a) = 1. The graphic illustration of the selected measures and
non-zero values of the counting functions of proposed perturbations, for the
fixed multisets S; and S5, is shown in Fig. 4.

k(b)
L) EEE R R -
ArtantanakS1552)
S
TRTTTT ‘\
dChzh)whn(S) ,S5) k(&'—'M dguctideardS15S2) E
s,
T _1 ------------------ 1 ' 5
Ek(sﬁ;.,(a)i 5
0 2 3 5 5@

Figure 4: A graphical illustration of selected measures for fixed multisets S; and Ss

It is easy to confirm that the different criteria of evaluation of the dis-
tances between multisets will lead to different results. Obviously, the Cheby-
shev measure dopebyshen(S1,S2) = 2 (the purple segment) as well as Manhat-
tan dasanhattan(S1, S2) = 3 (the red path shows one of possible realization)
and Euclidean dpyeigean(S1, S2) = v/5 (green segment) are symmetric. How-
ever, if the direction of comparison of multisets cannot be neglected, then
non-zero values of the counting functions kg, ,g,(b) = 2 and kg,y5,(a) = 1
(two black segments) may be used. Thus, it is obvious that it is impossible
to indicate which measure is better in general. In other words, there does
not exist the best measure for evaluation of proximity between two arbitrary
multisets and the choice depends on the nature of data under consideration.

Analytic case
The different measures known in the literature can be expressed as some

functions of the measures of perturbations type 1 [23, 24], or the measures
of perturbations type 2 [25]. These measures can be spread into two compo-
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nents, which correspond to both directional perturbations. In the following
corollaries we present several important properties of the select measures, in
which there is involved our idea of the perturbation measures. For example,
Bray-Curtis (Soresen) dissimilarity [5], [19]

card(Sy A Ss)

dp-c(51,5:) = card(S; ® Sy)’

that is popular in the environmental sciences, can be obviously rewritten in
such a way that the equivalent definition contains the sum of the measures
of the perturbation type 1.

Corollary 3. The sum of the measures of the perturbation type 1 satisfies
the following condition

dB_C(S] . Sg) = PeT'jl\/IS(Sl — Sz) + P@T’II\IS(SZ — S1)
Proof. Obuvious.

Likewise, the equivalent definition of the Steinhaus distance [8]

card(S; A Ss)

de(51,5;) = ———————==
5(51, 52) card(S; U S,)

can be obtained as follows.

Corollary 4. The sum of the measures of the perturbation type 2 satisfies
the following condition

ds(Sl, Sz) = PET'JQ\,IS(Sl — SQ) + Perﬁ/[S(SQ — Sl)

Proof. Obuvious.

Thus, the introduced measures of perturbations of one multiset by another
multiset can be used to provide equivalent interpretations of the distances
between two multisets.

Equipped with the definitions of the perturbation of multisets, in the
forthcoming sections, we will define a description of the multi-attribute object
with repeating nominal values, as a collection of multisets. Next, the concept
of the measure of perturbation of one multiset by another multiset is adopted
to all multisets describing the considered object and the group of such objects.
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3. Multiset approach to multi-attribute objects

Let us consider a collection of the multi-attribute qualitative objects
U = {en}, indexed by n, n = 1,2,..., N. The objects are described by
K attributes A = {ai,as,...,ax}, indexed by j, j = 1,2,..., K. The set
Vo, = {v1, V25, .-, UL, 5} is the domain of the attribute a; € A, j = 1,2,..., K,
where L; denotes the number of nominal values of the attribute a;, L; > 2.
Then we assume, that the considered multi-attribute objects can be charac-
terized by repeated values of the attributes. We have additional information,
how many times each value v;; € V,,, for i =1,2,...,L; and j = 1,2, ..., K,
is repeated for the each object ¢ € U.

3.1. Description of multi-attribute object

Assuming, that the objects are represented by their descriptions, the
description of an object e is denoted by G., and can be represented by a
collection of the multisets, see the following definition.

Definition 4 (Description of object). Every object e, e € U, can be rep-
resented by a collection of K multisets Sjjey, j = 1,2,..., K, drawn from
the ordinary sets of nominal values V,; = {vy;,v2, ...,v1,;} of the attributes
a;, described as follows

Ge =< S14(1,e)5 S2,4(2,6)1 - Sk (K e) > (10)
where Sjue) € Var(Ly), i.e., 1 < card(Sjue)) < m, for j € {1,2,..., K}.

In Definition 4, the description of the prescribed object e is denoted by G,
while each consisting multiset S} (; ) represents respective attribute a;, where
j=1,2,..., K. This way the subscript j,(j,¢e), for j = 1,2, ..., K, specifies
the attribute a; of the object e, while the multiset Sj;(.) represents this
attribute description. Each j-th multiset S;;(;.) (the number of j specifies
that attribute a; is considered) can be represented by a set of L; pairs,

Sj7t(j7e) = {(ksj,t(j,e) (Uiyt(jae))7 vi7t(j7e)) | Z = 17 27 R LJ} = (11)

= {(ksj.t(j,e) (Ul»t(J}e))v Ulﬂf(j,ff))7 i) ij,f.(j,a) (vLj»t(jse))7 VL, at(j»e))}

where v;1(je) € Va,, = 1,2,..., K. The value ks, ., (Vit(ie))s © = 1,2, ..., Ly,
specifies the number of occurrences of the value v; ;) € V,; in the multiset
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Sj.i.e)- Another subscript ¢,¢(j, e) specifies which element v; (., from the
set Vo, = {v1,,v24,...,vL,,} for the attribute a;, and for object e, is con-
sidered. Thus, the applied notation states, that for the object e, and for
the attribute a;, the value vy () € Vi, appears ks, . (014j,¢)) times, and
the value vy ey € Vo, appears ks, (Va4(je)) times, and so on. Thus, in
this notation each multiset S} ;) represents the separate attribute a; which
takes the values v;(je) € Va,, 7 =1,2,..., K.

Example 3. Let us consider the object e described by two attributes {a;, as},
where the sets V,, = {vi1,v21,v31}, and Vo, = {v12,v22} are the do-
mains of these attributes, respectively. According to (10), the object e can
be described by a collection of two multisets G =< Si1,e), S2t(2,e) >-
Due to (11), the exemplary multisets Sji,.) and Spyo.) have the form
S],t(l,n) = {(2,7)171),(1,’()3’])} and SZ,t(Z,C) = {(2,1}]’2)}. ThUS, the descrip—
tion of an object e can be written in the following multisets form G, =

< {(2, Ul,l)a (]., ’l)3_’1)}, {(2, (”1,2)} -

Let us again consider two objects e; and eq, and their descriptions G, =
< Siter)s S2,42ier)s -+ SK (K er) s Ges =< Si(Lien)s S2,t(2ie2)s r K #(K,ez) >
The arithmetic addition of the multisets constitutes a new multiset, and can
be applied to all multisets in the descriptions G., and G,,. In this way, we
can introduce the definition of the join between the descriptions of objects.

Definition 5 (Join between descriptions of objects). The join between
the description of an object e; and the description of an object ey is described
as follows

Ge, © Ge, =< S1t(1,e1) D S1(1,e2)s -or OK t(Kre1) D Sk t(Kyea) > - (12)

The definition says, that the description of two joined objects is again
a collection of K multisets. Each such j-th multiset, j = {1,2,..., K}, is
constructed as the join of two multisets S e,) ® Sjt(j.e,) describing the at-
tribute a; for the objects e; and ey, respectively.

Next, we will present details of the measure of the perturbation of one
object by another object.
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3.2. Measure of objects’ perturbation

There are considered two objects ey, ey € U, described by K attributes
A ={ay,a,...;ax} and the set V,, = {v1,v25,...,vr,;} is the domain of
the attribute a; € A, j = 1,2,..., K. According to (10), the respective
descriptions are following:

Ge, =< S1t(1,e1)1 S2,4(2,e1)) s SK (K e1)

Ge, =< Sl,t(l,eg)a SZ,t(2,52)7 vy SK,t(K,eg) >,

where Sje1), Sjtten) € Vay (L), J = 1,2,..., K. The novel concept of ob-
jects’ perturbation is defined as follows.

Definition 6 (Perturbation of objects). The perturbation of the object
es by the object e1, denoted by (G., — G.,), can be represented by a collection
of multisets Sj(j,.e1)OSjt(jes), 7 = 1,2,..., K, drawn from the ordinary sets of
nominal values V,, of the attributes a;, respectively,

(Gey = Gey) =< (Sia(r,e1) F* S1t(1,e0))s -5 (Skp(Kc,er) P SKt(K,en)) >=

=< S1,(1,e1)OO1t(1,e0)> 92,4(2,e1) O 52, (2,01 -++» Ok t(K,e)OSK t(Kea) > (13)

Thus, the perturbation of the object e, by the object ey, is represented
by the collection of the multisets constructed as difference of the multisets,
for each attribute a;, j =1,2,..., K.

The counterpart case is defined in a similar way.

In turn, the measure of the perturbation of one object by another object
is a number ranged between 0 and 1 and obtained via some aggregation oper-
ator. The aggregation is done on the set of the measures of the perturbations
associated with each attribute a;, j = 1,2, ..., K, see Definition 7.

Definition 7 (Measure of perturbation of objects). The measure of
perturbation of the object ey by the object ey, denoted by Pero(G., — G.,),
is defined in the following manner:

Pero(Ge, = Ge,) = (14)
= Agg(PerMS(Sl,t(l,el) = Sl,t(l,eg))a ey PeTMS(SK,t(K,el) = SK,t(K,eg)))

where Agg is an aggregation operator.
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In the opposite case, the measure of the perturbation of the object e; by
object e is defined in a similar way.

The aggregation operator used in (14) is defined as a mapping Agg :
[0,1]% — [0, 1], which assigns any K-tuple (pi, pa, ..., px) of real numbers to
a real number and satisfies the following conditions:

e idempotence: Agg(p,p,...,p) =D,
e monotonicity: if p; > q; for i = 1,2, ..., K, then
Agg(p17p27 "'apK) Z Agg(qh q2; -+ QK)7
e boundary conditions: Agg(0,0,...,0) =0 and Agg(1,1,...,1) =1,
L4 commutativity: Agg(plap% --~7PI() - Agg(pimpiw "'apiK)
for every permutation (i1, i, ..., ix) of (1, 2, ...,K).

In general, the result of the aggregation is lower than the highest element
aggregated (the maximum) and is higher than the lowest one (the minimum)
[17], i.e., the following inequalities

~ 1< A i) < :
i {lrg}{}’K}{z)J} < Agg(p1,p2; - Pr) < jeé%?fx}{pﬂ}

are satisfied. The aggregation operator Agg can be realized by various func-
tions, e.g.,
o minimum: Agg(p1,pe, ..., Prc) := min{p1, p2, ..., P },
e maximum : AQQ(Phpza ey PK) 1= mafc{PhPm DK}
K
e arithmetic average: Agg(p1,p2, ..., px) = Il—{ > (i),
j=1

e weighted average: Agg(p1, p2, .., PK) = % > (wj - pj),
j=1

=

e generalized arithmetic mean: Agg(py,p2, ...,px) == (% (pjo‘))i
j=1

Let us assume, that w; > 0 determines the importance of the element,
for 7 = 1,2,..., K. In the further considerations in this paper we assume,
that the aggregation operator Agg is realized by the function of the weighted

K
average of its arguments, i.e., Agg(p1, p2, .., PK) = 71(- > (wj-pj). Due to such
j=1

assumption, according to (14), the measure of the perturbation of the object
es by the object ey, is rewritten in the following manner for the measure of
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perturbation type 1:

Pero(Ge, = Ge,) = w] Peras(Sjtier) P Sjtlies))) =

HMA

Lj
Z(k"]f(] E'1)( ) kbﬂ(nﬂﬂbf (4, e’z)( ))
i=1

K
Z ) (15)
e izzl(ksj,uj,en (02) + K, 45 eq) (03)

The opposite case, the perturbation of the object ¢; by the object e, is
defined similarly.

For further considerations, let us assume, that w; = 1, for j = 1,2, ..., K.
Additionally, we can prove some properties of the measure of the objects’
perturbations which are described by the following corollaries: Corollary 5,
Corollary 6 and Corollary 7.

Corollary 5. The measure of perturbation of the object es by the object ey,
represented by respective descriptions G, and G.,, satisfies the following

inequality
0 S PGT'()(Gel —> Gez) S 1. (16)

Proof. See Appendiz.

Corollary 6. The sum of the measures of perturbation Pero(Ge, — Ge,)
and Pero(Ge, — G.,) satisfies the following inequality

0 < Perg(Ge, > Ge,) + Pero(Ge, — Ge,) < 1. (17)
Proof. See Appendiz.

Corollary 7. The sum of the measures of perturbation Pero(Ge, — Ge,)
and Perg(Ge, — Ge,) satisfies the following equality

fJGT'()(CTY(21 — Gcz) + ]'_)67'()(611(f2 — Gcl) =1- Sim()(Gel, Geg) (18)

where Simo(Ge,, Ge,) can be interpreted as similarity of the objects.

Proof. See Appendiz.
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Thus, the sum of the measure of perturbation of the object e; by the
object ey, and the measure of perturbation of the object es by the object e,
gives an equivalent interpretation of dissimilarity of two objects.

In order to make closer the idea, how to represent the objects using the
multisets, and how the perturbations are realized, let us discus the following
illustrative example.

3.8. Illustrative example - students described by several sets of semester grades

The example concerns on the question, how to describe the object which
exists in several versions, e.g. the student described by several sets of the
semester grades. The example was inspired by the paper [33], however, we
wanted to show a way of describing such object as a collection of the multisets.

Let us consider the high school student e; and his two sets of the semester
grades obtained within two groups of subjects, namely obligatory and op-
tional. Let us assume, that the first group contains four obligatory subjects
(attributes) {ai1,as,as,as}, and the second also four optional subject (at-
tributes) {as, ag, az,as}. All subjects have the same qualitative scale V =
{va, v3,v4,v5} = {2 = "unsatisfactory”,3 — 7 satis factory”,4 — " good” ,5 —
"excellent”}. Thus, the student e; (i.e., object) is already described by two
vectors of grades (i.e., values of attributes). For example, two versions of the

semester’s grades of the student e;, denoted by egl) and 652), are represented

as follows

el = {(a1 = 4), (a2 = 5), (a3 = 4), (a4 = 5), (a5 = 4), (ag = 5),
(a7 =4),(as = 4)},

e = {(a1 = 5), (a2 = 5), (a3 = 5), (a1 = 5), (a5 = 5), (a7 = 4), (as = 4)},

where a superscript (i), for i = 1,2, determines the number of the semester.
Applying the multisets, each version of the students’ grades can be de-
scribed in a form of one or two multisets. The use of one multiset can be
found in the paper [33]. We consider two multisets related to two sets of the
attributes, namely {a1, a2, as, a1} and {as, ag, az, as}. The numbers of the ele-
ments are equal to the proper number of qualitative scale V' = {vq, v3, v4, v5},
while each multiplicity is equal to the number of the assessments, as shown

below
G =< Sl,t(1,e§1>)7Sg,t(z,e§1>) >=

—< {(0,12), (0, v5), (2,04), (2,5}, {(0, v3), (0, vs), (3, va), (1, v5)} >,
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Ge@ =< S1,t(1,e§2))’ S2,t(2,e§2)) =
=< {(07 UZ)? (07 U3)7 (07 U4)a (47 'US)}v {(07 UZ); (0 U3)7 (27 1)4)7 (17 US)} =

This way, according to Eq. (12), the description of the semester grades
G., of the student e; is formed from two versions G’()(n and Ge(z), and now is
. it

represented by two multisets, as shown below
Ge, =G0 @G0 =< Sii1,e1), Sa(2,e1) >=
=< {(O’ ’02)7 (07 '“3)7 (27 'U4)7 (67 '05)}7 {(07 7}2)7 (07 1’3)7 (57 /04)7 (27 "15)} >

In a similar way we can determine the description of the semester grades
of other exemplary student e, as two another multisets, as shown below

Ge, =< {(1,v2), (6,v3), (1,v4), (0,v5) }, {(0,v2), (4, v3), (1,v4), (0,v5)} > .

To the above, we consider two exemplary students e;, e, with the descrip-
tions G, and Ge,. Each description is represented by two multisets drawn
from the ordinary set of values V' = {vs, vs, v4,v5}. According to (13), in the
considered example for K=2, the multisets’ perturbations have the following
form:

(Ge, = Ge,) =< (Sl,t(l,el) = S1,t(1,e2))7 (S2,t(2,e1) = Sz,t(z,eQ)) >=

=< {(07 1)2), (07 03)7 (17 U4)a (67 US)}a {(07 02)7 (07 7)3)7 (47 ’(}4), (2, US)} >,

(Gep = Ge,) =< (Sl,t(l,ez) = Sl,t(l,el))y (52,t(2,e2) = SZ,t(Z,el)) >=

=< {(1,v2), (6,v3), (0,v4), (0,v5)}, {(0, va), (4, v3), (0,v4), (0,v5)} > .
It is shown, that the multi-attribute objects described by a set of repeated
nominal-valued attributes can be represented by collections of two multisets.

Going further, the concept of the measuring of the perturbation of one
object by another can be extended to the groups of objects. Details of the
proposed approach are presented in the forthcoming subsection.
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3.4. Measure of perturbation of groups of objects

Now, let us assume, that every non-empty subset of a finite set U =
{en}, n = 1,2,..., N, is called a group. We assume, that the description
of a group g is denoted by G,. Let us consider a non-empty group of
the objects ¢ C U containing the objects {e, : n € J, C {1,2,..N}}.
According to (10), every object e, € g, can be represented by a collec-
tion of the multisets Sjy(je,), for j = 1,2,..., K, drawn from the ordinary
sets of values V,, = {vij,v2j,...,vr,;} of the attributes a;, i.e., G, =
< S1t(1en)r S2,4(2ien)s s SKt(Kyen) > 10T Sjt(jen) € Y/(l’;‘(Lj). Thus, the group
of objects g can be represented by a collection of multisets, while each
multiset is drawn from the ordinary sets of values V, , for j = 1,2,..., K,

and the description of such a group is defined as follows, G, = @ G,,,
nedyg

see Definition 8.

Definition 8 (Description of group of objects). A group of objects g,
can be represented by a collection of multisets S q), 7 = 1,2,..., K, drawn
from the ordinary sets of nominal values V,, of the attribute a;, and is de-
scribed as follows

Gy =< S14(1,9): S2,t(2,9) s SK t(K,g) > (19)
where the multiset Sj(j.q) € V7 (L) for j € {1,2,..., K'}.

This way, considering two groups of objects g1, 9o C U, described as fol-
lows: Gy, =< 511,01, S2.22,01) “'7SK¢(K,§1) > and Gg, =< Sl-,t(l»gz% 52775(2,92)’
So0r SK,t(K,gz) >, for Sj,t(j,g1)7 Sj,t(j,gz) € ‘/(:;I(Lj), JE {1, 2y ey K}, we can define
the groups’ perturbations as well as their measures. The considered group ¢,
contains the objects {e, : n € J,, C {1,2,...N}}, while the group g contains
the objects {e, : n € Jy, C {1,2,...N}}, where J,, N J, = @.

Definition 9 (Perturbation of group of objects). The perturbation of
one group of the objects g, by the another group g, denoted (G4, — G,),
can be represented by a collection of the multisets (Sji(jg1) = Sjt(igs) =
S}t6,900)©S)tGig2)s J = 1,2,.... K, drawn from the ordinary sets of nominal
values V,; of the attributes a;, respectively, and is written as follows

(Ggl = ng) = (20)

=< (S1t1,91) 7 S1t(1,00))s (S2,62.91) F* S2,4(2,92))5 -+ (SKa(K.g1) > S p(K.g2)) > -
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Thus, the perturbation of one group of objects by another group is defined
in an analogous way to the perturbation of one object by another object.
The counterpart case is defined in a similar way, i.e.,

(ng =¥ Ggl) = (21)

=< (S141,92) 7 S1t(1,91))s (S2,4(2,92) P S2,4(2.91))5 -0 (SK t(K,g2) — Sk t(K,91)) > -

The measure of the perturbation of one group of the objects by another
group of the objects is a number ranged between 0 and 1 and obtained
via using of some aggregation operator. The aggregation is done on a set
of the measures of the perturbations associated with each attribute a;, for
j=1,2,..., K, see Definition 10.

Definition 10 (Measure of perturbation of group). The measure of the
perturbation of the group of the objects go by the group of the objects g1, is
denoted by Perco(Gg, — Gy,), and is defined in the following manner:

Pe?"Go(Ggl —> Gg2) = (22)

= Agg(Perns(S1,4(1,6)051,41,92))s - Perms(Si (k.91 O Sk 1k 2))):
where Agg is the aggregation operator, defined as Agg : [0,1]% — [0, 1].

The considered developments can be applied in data mining tasks with re-
dundancy, like classification problems of multi-attribute qualitative objects,
wherein the values of the attributes can be repeated. The objects’ classifi-
cation is based on representing of each object by multisets, and on a set of
elementary rules, and allows to assign the objects into proper groups. Thus,
in the forthcoming section, the groups’ perturbations and their measures are
applied to generate the description of groups of objects in the form of the
classification rules.

4. Case study - classification problem

In order to support our investigations, let us analyze following interesting
problem. Let us consider the set of objects e,, € U, wherein the attributes val-
ues describing the objects are allowed to be repeated. The proposed method-
ology consists of two main steps: 1) The first step is to preprocess the data,
i.e. transforming the object into a proper data as the multisets represen-
tation. 2) In the next step, the descriptions of the distinguished groups of
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objects are generated in the form of the classification rules. Each such clas-
sification rule has the following form: "I'F' certain conditions are satis fied
THEN a given object is a member of a specific group”.

In this case, the conditional part of rules will contain the disjunction of
conditions related to the subset of the value of attributes. In this paper,
the generation of such rules is made on the basis of the perturbations of
the multisets, which allow to distinguish the considered group from the rest
of objects belonging to other groups. The classification rules are generated
separately for each group [18]. Finally, the generated classification rules
can be applied to classify the new objects. The classification is carried out
through verification of fulfillment of the conditions in the conditional parts
of the rules [39]. Thus, the basic steps of the methodology can be shown in

Fig. 5.

Objects
Objects Rules generator
Data ) )
rocessing | = Tepresented as = based on —, Classification
P g multisets perturbation idea rules

Figure 5: Scheme of our approach to create the classification rules

Details of the second step are presented in the forthcoming subsection.
The whole developed approach is illustrated by the example of classification
text documents in Section 4.2.

4.1. Generation of classification rules based on perturbation idea

Considering for example, text documents like articles, books, reports,
etc., and ignoring the context and the semantics, let us assume, that the
objects e, € U, indexed by n, n = 1,2,..., K, are described by the set of
repeated keywords, phrases, descriptors, etc., denoted by the set of values
V = {v1,vq,...,ur}, where v; # v;, Vi # j, for i,j € {1,2,...,L}. There
is available additional information about the multiplicity of each value v;,
i = 1,2,..., L, for each object e,. In this way, each object e, (i.e., a text
document) can be represented by the multiset S, drawn from the set of
values V. According to (12), the description of the object e, is denoted by
G, =< S, >, where the multiset S., € V™(L) is defined as follows: S, =
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{(ksen (Ul), ’Ul), (k)sen (Uz), Uz), ey (k‘sm (vL), ’UL)}, v, € V,i=12,.. L This
notation states, that the value v; appears kg, (v;) times in the multiset S, .

Let us consider two groups of objects. In the first group g¢;, there are
objects {e, : n € J,, C {1,2,...N}}, card(Jy,) = N1, while another objects
{en:n € Jy, € {1,2,...N}}, card(Jy,) = Ny, do not belong to the first but
belong to the second group g, where J;, N Jy,. Additionally, it is assumed
that the cardinality of each group is similar, i.e., Ny &~ N,. The classification
rule to distinguish the objects belonging to the group g; can be generated in
the following algorithmic way.

Step 1

The groups of objects g; and g» can be represented as multisets drawn
from the same set V', V' = {v;,vq,...,v,}. According to (19), the description
of the group ¢g; and g», denoted by G, =< S, > and Gy, =< S;, >,
respectively, can be written as follows

denoted

Sgl = {(kSgl (U1)7 Ul)v (kSgl ('UL)’ UL)} = {Sghvu Sgh”Z’ IR S.glvUL}
denoted

ng = {(kng (?)1), Ul)a se (kng (UL)v UL)} & {5927711 ) ngyvz’ ) 5903 Syzva}

which can be rewritten as Gy, = @© G, and Gg, = © G,.
ne€Jg, neJyg,
Step 2
Separately, for each keyword v; € V, fori = 1,2, ..., L, there is constructed
the i-th measure of the perturbation of one multiset by another multiset.
Such measures of the perturbations are defined according to Eq. (6), and are
called here as the elementary measures in the following form

ks, (vi) — ks, ns,, (vi))
Per(Spym = Sgpns) = -2 2l
er( g1 T Oga, ) kSgl (0:) + kSg2 (v)

In this way, there is considered the set of L pairs of the elementary mea-
sures of perturbation and the keywords v;, for ¢ = 1,2, ..., L. Such pairs are
denoted as PERg, s, and written as follows

PERsg, vs,, = {(Per(Sgu = Sgaw ) V1); ey (Per(Sgy vy, Sgawr )y VL) } =
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ksm (UL) B ksmmsgz (UL))
kSsn (UL) i kSQQ (UL>

kg, (1) — Ksyy sy, (v1))

ks, (v1) + ks, (v1) vp)}- (23)

V1) s (

= {(

Step 3

The set of L pairs PERs, s, of the i-th elementary measure of per-
turbation and the keywords v; for 1 = 1,2, ..., L, defined by (23), should
be rearranged by sorting with respect to their highest values of the elemen-
tary measure of perturbation. The rearrangement creates a new permutation
(11,72, ,...,31) of (1,2, ..., L) of the pairs; in result, one receives the following
set of pairs

PERSglr—)Sg2 = {(P@T'(Sghvi — ngyvi),’l)l) I 1= il,’i2, ...,’iL} (24)
where the conditions

P(zr(Sgl’vi1 S = Per(SgQ,vi2 > ng,viz) > > PGT(SQI,'UiL o ng,viL)

92,Viy

are fulfilled.

Step 4

We can consider any real number as a parameter o € [0,1] treated
as the a-threshold. The parameter is applied to the set of sorted pairs
PERs, .s,,, defined by (24), to construct a new reduced set of pairs, de-
noted by PERG g, . The reduction is done via consideration of only those
pairs which values of the elementary measures are greater than or equal to
the value of the threshold parameter ce. The new set of the pairs is written
in the following way

PERE, s, = {(Per(Spu, = Spw)ov1) | i =inin,oin,}  (25)

for which Per(Sy, v, — Sgow;) = @, Vi € {i1, 12, ..., 01, }.

Step 5
Then, the set of pairs PERG g, ~described by (25) can be used to create

the set of the one-condition elementary rules describing the group g;. Each
such one-condition elementary rule for the group gi, denoted by R ., for
1 =1y,12,...,7r,, is defined in the following manner

Ry, .+ IF|considered value = vi]; q(Ry, ,,)

91,V
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THEN a given object is a member of a group ¢ (26)

where g(Rg ), for i € {i1,i2,...,7L, }, is called the strength coef ficient of
the rule R ,,, and is described by the elementary measure of perturbation
(25), i.e., (R, ,,) = Per(Sg, v+ Sgy;)- It is evident that 0 < q(R, ) <1,
Vi € {iy, iz, ..., 1L, }-

Now, we consider the classification rule for the group g; , denoted by

Ry, as disjunctions (V) of the one-condition elementary rules for this group,
denoted by R, ., Vi € {i1,d2,...,ir,}. Thus, the classification rule for the

group g¢; is described in the following way:

Ry : IF RS, VRS, V.. VRS

91, 91,Viy 9g1svig,

THEN the given object is a member of the group g (27)

According to (26) the classification rule for the group g; (27) has the
following form

Ry IF[considered value = vy ]; q(Rghvil) V...

... V [considered value = v, ]; q(Ry, iy, 2
[e3

THEN the given object is a member of the group g, (28)

where q(Rj, ) is the strength coefficient of the one-condition elementary rule
R2 0 € {i1, 2y ey irg }-

The above procedure shows the way, how to create the classification rule
for one group, taking into account two existing groups. When we consider
more than two groups, the procedure is run in a very similar way. Namely,
generating the classification rule for the selected group g, all other groups are
considered as one group containing the objects do not belong to the group
g. Then, e.g. considering the classification rule for the group g», the objects
from the rest groups (i.e., g1 and g3, g4, and so on) are considered as one
group. The classification rules are formed for each group sequentially.

The already generated classification rules (28), (i.e., Ry, Rj,, and so on)
can be applied to classification of a new object e. The classification is carried
out through verification of fulfillment of conditions in the conditional parts
of the rules. The classification is unequivocal where the only one classifi-
cation rule is fulfilled. In the case of equivocal situations, when more than
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one of the classification rule is fulfilled, a matching degree to the group is
calculated [39]. For example, for a new object e and the group g¢;, described
by the classification rule 1§ (28), the matching degree M D(e, 25, ) can be
calculated as follows

MD(e, Ry,) = MD(e, Ry, Y R;*h% V..V ng%) =

g1,V

= Agg(MD(e, R% ,. ),MD(e, R;%),...,MD(e, R;"LUL_L&)) (29)

91,V4
where

RS ) if rule Ry

o J a(R ., v 18 ful filled by object e
MDlg, By, o) = { 0 otherwise

where Agg is the aggregation operator, e.g. the maximum function. The
value q(R, ) € [0,1], for i = iy, s, ..., iL,, is the strength coefficient of the
one-condition elementary rule Ry, ,,, according to (26).

The developed approach to generate the group’s description in the form
of the classification rules will be illustrated by the following example.

4.2. Illustrative example - classification of text documents

Practical presentation of the proposed approach was carried out for a task
of classification of the text documents, assuming that the context and the se-
mantics are neglected. Here, a textual document S is modeled as a multiset,
drawn from the ordinary set of unique keywords or phrases appearing in the
text. The document S can be represented by a set of L pairs, according to
(1), i.e., S={(the number of occurrence of the keyword or phrase in the text
document, the keyword or phrase)}, where L is the number of distinguished
unique keywords and phrases. Usually, the appearing keywords and phrases
can be weighted in various ways, but here for simplicity, we assume the same
importance for all keywords.

Data processing
Now, let us assume, that there are objects as text documents e, € U,
n=1,2,...,10, which are described by the set of repeated keywords from the

set V, described as follows:

dﬂgted {Uly V2, ..oy U6}7

V = {"keyword#1”,” keyword#2”, ...,” keyword+6” }
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and the affiliation of the documents to the specific group, g; or g, is also
known.

The multiplicity of each keyword is equal to a number of repetitions of the
keyword appearing within the text document e,, n = 1,2,...,10 . This way,
each the text document e, can be represented by the multiset S,, drawn from
the set of values V. Thus, the descriptions of the text documents ey, es, ..., €19
can be written in the form of multisets G., =< S,, >, ..., G,y =< Seyy >,
as the following objects:

Ser = {(3,v1), (1,v2), (2, v3), (0, v4), (0, v5), (0, vg) }
Sep = {(0,v1), (0,v2), (0, v3), (1, v4), (1,v5), (3, v6) }
Ses = {(0,v1), (1,v2), (0,v3), (0,v4), (0,v5), (4,v6) }
Seq = {(2,v1), (0,v2), (3,v3), (1, va), (0, v5), (1, v6) }
Ses = {(0,v1), (0,v2), (0, v3), (1, va), (1, v5), (2, v6) }
See = {(1,v1), (1,2), (2,v3), (0,v4), (0, v5), (0, v) }
Se, = {(3,v1), (0,02), (3, v3), (0,v4), (0,vs5), (0, v6) }
Ses = {(0,v1), (1,2), (0,v3), (1, va), (1, v5), (4, v6) }
Seg = {(3,v1), (1, v2), (4,v3), (0,v4), (0, v5), (0, v6) }

Let us assume, that the considered text documents can be divided into two
separated groups, namely g; = {e1, €4, €5, €7, €9} and g2 = {e2, €3, €5, €35, €10}

Next, the aim is to generate a set of elementary rules for classification of
considered text documents into one of separated groups: g; or g,. Details of
the applied approach can be described in the following way.

Generation of classification rules

First, the data set is split into the learning set (i.e., the first three text
documents from each group) and the testing set (i.e., other text documents).
Next, based on the learning set, the classification rules are generated. The
testing set contains other text documents which do not participate in the
generation of the rules and is used to check the accuracy of the classification.

Now, let us consider the learning set, i.e., the group of the objects g1 =
{e1,e4,e6} and go = {e2,e3,e5}. The aim is to construct the classification
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rule for the group g¢;, as disjunctions of the one-condition elementary rules.
The proper algorithm is described in the following steps.

Step 1

Let us form the description of the group g; and g» (denoted by G,, and
G,, respectively). Such descriptions are obtained by applying a simple text
documents’ aggregation. Because, each object is represented by the proper
multiset, then each group is also represented by the aggregated correspond-
ing multiset. This way, the descriptions of the groups g; and g» are also
represented as multisets drawn from the same set V, in the following way:

Ggl = & Gen =< Sgl >= {(677)1)7 (27U2)7 (77 1}3), (177)4)7 (0’05)7 (177}6)}7

n=1,4,6

ng = & Gﬁn =< Sgl == {(07 Ul)? (17 UQ)? (07 U3)7 (27 7}4)7 (27 US)v (97 Uﬁ)}'

n=2,3,5

Step 2
Next, using the i-th elementary measures of perturbation described as

kSQl (vi) — kSm NSgy (v3)
ks, (vi) + ks, (vi)

PGT(Sgl,vi > Sg,, w) =

for i = 1,2,...,6, let us consider the set of six following pairs, denoted by
PERs, s,,, due to Eq. (23),

PERSQ]HSQQ = {(PeT(Sgl,'Ul = ng,vl)avl)v wuh (Per(sgl,vﬁ = ngvs))vﬁ)} =

. {(ksm (vl) - kngﬂng (1)1)) v ) (kSsn (UG) - ksglﬂsya (v6))
ksg1 (v1) + ksg2 (v1) 7 P ksgl (ve) + k592 (ve)

6—0 2—1 7—0 1-1 O 0
= {(6+—O’w1)’(2+1’U2)’(7+O’v3)’( 3 71)4) ( Us) ( ’1’6)}—

= {(1.0,v1), (0.3, v2), (1.0, v3), (0.0, v4), (0.0, v5), (0.0, vs)}.

,Us)} =

Step 3
The above six pairs were rearranged with respect to the descending values

of the elementary measures of perturbations, according to (24). In result, the
following set of rearranged pairs is obtained:

PERSgl'—*Sgg — {(10, ’1)1), (10, Ug), (03, Ug), (007 ’1)4), (00, 1)5), (00, ’UG)}.
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Step 4

The value of the threshold was assumed to be, e.g. o = 0.7. The reduced
set of pairs, according to (19), for which the values of elementary measures
of perturbation are greater than or equal to 0.7, has the following form:

PERS s, = {(1.0,01), (1.0, v3)}.

Step 5
At the final step, according to (28), the classification rule for the group
g1 is described as the disjunction of two one-condition elementary rules:

RY7: IF|considered value = v1];1.0 V [considered value = vs]; 1.0

THEN the given objecl is a member of the group g

In this way the classification rule for the group g; was constructed.
Next, let us construct the classification rule for the group g,. The corre-
sponding algorithm is described below.

Step 1
Again, let us consider the descriptions of the group g, and g;, denoted by
Gy, and G, respectively, in the following way:

G92 - {(0> Ul)7 (17 U2)> (0 1’3)7 (27 ,U4)a (27 105)7 (9 '“6)}

Ggl = {(67 'Ul)’ (2’ UZ): (77 U3)7 (17 U4)v (07 05)7 (17 UG)}

Step 2
Next, using the i-th elementary measures of perturbation described as

ks, (vi) — ks, ns,. (vi))
P S, 4 vi) = 7 b (
er(Sgam F Suvs) ks,, (vi) + ks,, (vi)

fori=1,2,...,6, let us consider the set of six following pairs
PERSg2HSg1 - {(Per(sgz,vl = Sgl,v1)7“1)7 (Per(ngvs = Sgl,vs)vvfi)} .

ks,, (V1) — ks, ns,, (V1)) ks, (Ve) — ksy,ns,, (Us))
= ks,, (v1) + ks, (v1) 1), o ks,, (ve) + ks,, (ve) vo)} =

0—0 1-1 0—0 91 2-0 9-1
= g6 v (gm0 (G ve) GG s (G ve) (G wed} =
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== {(00, ‘Nl), (00, ’UQ)7 (00, ’03), (03, ’l74), (10, ’l)5), (08, ’U(;)},

Step 3
These six pairs were rearranged with respect to the descending values of

the elementary measures of perturbations, and the following set of rearranged
pairs is considered:

PERs, s, = {(1.0,vs),(0.8,v5), (0.3, v4), (0.0, v1), (0.0, v2), (0.0, v3) }.

Step 4
Again, the value of the threshold was assumed to be o« = 0.7, and the

reduced set of pairs has the following form:
PERGT 5 = {(1.0,v5),(0.8,v6)}.

Step 5
At the end, the classification rule for the group g¢» is described as the

following disjunctions of two one-condition elementary rules:

Ry . IF[considered value = v5]; 1.0 V [considered value = vgl; 0.8

THEN the given object is a member of the group gs.

In this way the classification rule for the group g, was constructed.

Brief analysis of the classification rules

Now, let us consider the generated classification rules R).” and RY.', for
the group g; and go, respectively. Both rules are shown in Table 1. The
number associated with each keyword is regarded to the strength coefficient
of the proper elementary rule, according to (28).

The classification of the documents to the appropriate group is carried
out through verification of fulfillment of conditions in the conditional parts of
the rules. The classification is unequivocal where the only one classification
rule is fulfilled. In the case of equivocal situation, when more than one of
the classification rule is fulfilled, the matching degrees of such documents to

the groups have been counted [39].
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Table 1: The classification rules for the group g; and gs

Keyword : keyword#1 keyword#3 keyword#5 keyword#6
ROT q(RO7,) =1.0 | ¢(RY7,) =10 = .
R° 7 - - q(RYY,.)=1.0 | q(R2T,) =038

Classification accuracy in our example is verified by applying the rules
from Table 2 for the learning and the testing sets. Detailed calculations are
presented below.

Again, let us consider the learning set, i.e., the texts documents ¢g; =
{e1,e4,66} and g = {e2,e3,e5}. The text documents e; and eg were un-
equivocally classified to the appropriate group ¢;, and the text documents
es, ez and es were unequivocally classified to the appropriate group go, while
the text document e, was equivocally classified to both group. According
to Eq.(29), for the text document ey, applying the function maximum as
the aggregation operator, we received the following values of the matching
degrees to the groups ¢g; and ¢

MD(es, R)") = Agg(MD(e4, R

‘g1, ’Ul) ]\[D(e4 R217U3)) = Agg(l)o) - 1
MD(eq, R%T)

= Agg(MD(es, Ry,.), MD(eq, RS, )) = Agg(0.0,0.8) = 0.8.

92,5
Due to the fulfillment of the inequality M D(eq, R),") > MD(es, R))7), the

text document e4 was correctly classified to the group g;.

Next, let us consider the testing set, i.e., the texts documents which did
not participate in the generation of the rules, g; = {e7,e9} and g, = {eg, €10}-
In this case, the rules also correctly classified all these texts documents.

It is worth to notice, that all the considered text documents were cor-

rectly classified to the appropriate groups.

The aim of the above described example was to illustrate the way of gen-
erating the classification rules based on the developed multisets’ perturbation

methodology.

5. Conclusions

In the paper we propose the new measure describing remoteness between
the multi-attribute objects, as well as the groups of such objects, with re-
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peating qualitative values of attributes. The concept is based on multisets
operations. In our opinion the approach can be considered as a new as well
as alternative measure of remoteness between qualitative data, particularly
where repetitions of values of attributes are permitted and the direction of
comparison has significant meaning.

There are several important problems described by nominal values as
well as by multisets, like: evaluation of research projects by experts using
predefined criteria with qualitative scale, comparison of textual documents
described by qualitative attributes, proximity of graphic symbols and stan-
dard symbols. Therefore, applications of the developed approach for dealing
with objects within large, real databases (e.g., grouping of similar objects,
retrieval of textual documents, documents classification, etc.), seems to be
an interesting topic for the future research.

Actually, there are important problems in data management, like the de-
tection of duplicate objects (called coreferent objects) [40], and the adjusting
of direction of relation between objects in SimRank [46], in which concept of
symmetry /asymmetry of objects is crucial. It seems, that application of the
perturbation of objects in such problems is natural, however the challenging

task.

Appendix A. Proofs of corollaries

Proof of Corollary 5. 1) First, we prove the left hand side inequality
Pero(Ge, — G.,) > 0. It should be noticed, that Vi € {1,2,...,L;}, the
inequality ks, ,,,, > ks; t(j’e])mgjyt(jﬁ)(vi), for j =1,2,..., K, is satisfied, and
then kgj,t(].&l) — kgm]’cl (S} 44,000 v;) > 0. Due to Definition 7 and Eq. (15)
the following inequality can be written

&

J
1 _1( Ssatrien) (V8) = K 5,00)08 5019 (V0))
Pero(Ge, — Ge,) = Z = > 0.

K L
= Z( 5.2, 51)(Ui) + ij.t(j-e2>(v‘i))

2) Then, we prove the second inequality. It should be noticed, that the

inequality k‘sj’t(j’t,_l) - ksj t(G,e1)NS; t(] ,,2)( v;) < kS tGeny T ksj,t(j e1)NS5,60, 62)( Vi),
Vi € {1,2,...,L;}, for j = {1,2,..,K} is satisfied. Thus, the following
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inequality can be obtained

Lj
1 il 7;:1(ks t(d E1)(’01) Jt(J e1)NS; t(]ﬁﬁz)(vi))
Perg(Ge, = Ge,) = 174 Z I <
T 3K (40 0 (90
i=
L;

1 Ki: it G i
kLT, o

Proof of Corollary 6. 1) First, we prove the left hand side inequality.
According to Eq. (16), (i.e., the inequality 0 < Pero(Ge, + Ge,) and
0 < Pero(Ge, — G,) are satisfied), we obtain the following inequality
Pero(Gey = Gey) + Pero(Ge, — Ge,) > 0.

2) The second inequality can be proved in the following way. One can
notice, that each inequality ks, . s, .., (v;) >0,Vie{1,2,...,L;}, where
j=1,2,..., K, is satisfied. Due to Eq. (15) one can obtain the right hand
side inequality in the following way

I)BT'O(Gel = Gez) + PerO(GCZ = Gel) -

1« rl(ks] en (V8) K 500y (V) = 2 Ky 50190185 41 (V3)
S = <
K Zl L; -
. (K 500y (V) + K55 (V3)

1 KL: : LG,
SELE oL

Proof of Corollary 7. Due to Definition 7 and Eq. (15), the following
equality can be obtained

Pero(Ge, = Ge,) + Pero(Ge, — Ge,) =
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1 K zzl(kSJ (4, 51)( ) kS t(J:El)mSj,t(j,Q)(Ui))
K Z L; +

=1
' izl(ksj.t(j,en(”i) + K8, 405,00 (v3))
LJ
1 K _l(ij t(ds e2)( ) k'S] tGren)NS)tG, el)(v ))
+? Z - L] =
j=1 Z=1(ks t(d, pz)( ) + ks’ i(j,el)('v’i))

(ks 40, 51)(01') + kS (e )( vi) —2- ks L(Jael)nsjyt(j:e2)(vi))

] =i
53 _

L
e Z(ksa t(j.e1) (U’) + ks] t(j,e2) (U"))

=1

1 K 2. Z kS] t(j,e1)NS; t(j=e2)(wi)) denoted ;
8 Z LJ = 1— SZmO(GeUGCZ)'

321 Z (k‘S] t(j.eq) (111) + ij,t(J'acz) (’UZ))

=]

s
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