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Abstract 

This paper provides a comprehensive analysis of computational problems 
concerning calculation of Kendall's -r dependence ( association) measure for 
interval data. Exact algorithms solving this task have unacceptable com­
putational complexity for larger samples, therefore we concentrate on com­
putational problems arising in approximate algorithms. In particular, we 
propose a set of heuristics solutions for finding minimal and maxima! value 
of Kendall's -r for interval data. Extensive simulation experiments show that 
some of the heuristics yield very good starting points for optimization pro­
cedures based on random generation of linear extensions or evolutionary and 
direct-search algorithms. 
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1. Introduction 

The analysis of statistical dependence is one of the most important parts 
of statistics. First statistical procedures for the the analysis of dependent 
data were invented more than one hundred years ago. Since that time hun­
dreds of particular methods have been devised. The introduction of data 
mining techniques significantly extended the area of applications where the 
analysis of dependencies in data plays a crucial role. Despite the fact that 
the real statistical data are often imprecise, as the data are gathered from 
intrinsically imprecise measurements, the interest in the statistical analysis 
of imprecise data is relatively new. First statistical methods applicable in the 
analysis of imprecise data were proposed in papers published in the 1980s. 
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The most important publication from that times which established a new 
statistical methodology for coping with imprecise (fuzzy) data is the book by 
Kruse and Meyer (1987). Since that time many books and papers on fuzzy 
statistics have been published. Interesting overview of these methods can 
be found e.g. in the paper by Gil and Hryniewicz (2009) or in the book by 
Viertl (2007). The generał methodology for the statistical analysis of impre­
cise (fuzzy) data is stili under development, and some new techniques, see 
e.g. Couso and Sanchez (2011), have been proposed recently. 

First publications devoted to the problem of testing statistical hypotheses 
for dependent statistical data were published in the early 2000s. Testing sta­
tistical hypotheses for categorical data displayed in the form of contingency 
tables was considered in (Hryniewicz, 2004, 2006). The statistical analysis 
of dependence using the well known Kendall's -r statistics for imprecise data 
was considered for the first time in the paper by Hebert et al. (2003). The 
most important paper related to the problem of statistical testing of inde­
pendence with fuzzy data is written by Denreux et al. (2005), where this 
problem has been presented in a more generał framework of using rank tests 
for fuzzy data. In all these papers the authors have noticed important dif­
ficulties with the calculation of the values of fuzzy statistics. Hebert et al. 
(2003) proposed an algoritlun for the calculation of the exact interval value 
of Kendall's -r which, unfortunately, was computationally effective only for 
very small samples (less than 10 elements). Denreux et al. (2005) consid­
ered an algorithm for the calculation of the approximate interval value of 
Kendall's 7 which was effective also for relatively small samples (max. 30 
elements). These findings prompted Hryniewicz and Szediw (2008) to look 
for the approximate interval value of Kendall's -r that could be used as the 
starting point in the procedure for the calculation of more precise value of 
this statistic. In that paper the approximate interval value of Kendall's 7 

was calculated using a heuristic algorithm for autocorrelated imprecise data 
coming from statistical quality control. The results appeared promising, es­
pecially for highly correlated data. In the paper by Hryniewicz and Opara 
(2012a) an extended set of heuristic algorithms has been proposed to calcu­
late the approximate interval value of Kendall's 7 for usual bivariate interval 
data. Preliminary results presented in this paper have shown that further 
investigations are needed. One result of these investigations is described in 
the paper by Hryniewicz and Opara (2012b), who used a generał purpose 
genetic optimization algorithm for finding better approximations. 

In this paper we present a comprehensive analysis of severa! experiments 

2 



that significantly extend our knowledge about the efficiency of the algorithms 
described in these both papers. Moreover, we propose a new algorithm for 
the calculation of the starting point of the optimization procedure used for 
the calculation of the interval value of Kendall's r. The application of this 
algorithm significantly improves the accuracy of the calculation of the interval 
value of r. However, its practical applicability is stili restricted by the size 
of the analyzed sample. 

The paper is organized as follows. In its second section we recall some 
basie information about the measures of dependence used in the statistical 
analysis of imprecise (fuzzy) data with a special emphasis on Kendall's r. 
In the third section we describe in details heuristic algorithms used for the 
calculation of approximate interval values of Kendall's r. The fourth section 
of the paper is devoted to the presentation of simulation experiments that 
reveal the benefits from using the proposed heuristic solutions. In this section 
we present these benefits when heuristic solutions are used together with the 
algoritbm proposed by Denamx et al. (2005). Similar analysis in the case of 
the algorithm proposed in Hryniewicz and Opara (2012b) is also presented 
in the sixth section of the paper. In the fifth section we propose a new 
method for finding efficient starting points for optimization algorithms. This 
method is based on the interval-valued Pearson 's linear correlation coefficient. 
We also present results of simulation experiments that show advantages and 
limitations of the usage of a hybrid algorithm based on this new method. 
The sixth section provides an analysis of computing Kendall's r with an 
evolutionary algorithm. The paper is concluded with some proposals for the 
efficient calculation of fuzzy Kendall's r. 

2. Statistical measures of dependence for imprecise data 

Statistical dependence is modeled by multivariate probability distribu­
tions that describe multidimensional random data. Let X 1, X2 , ... , XP be a 
p-dimensional random vector. The full description of statistical dependencies 
between the components of this vector is implied by the knowledge of its p­
dimensional cumulative distribution function F(x 1 , x2, . .. , xp)- Sklar (1959) 
proved that for every two-dimensional cumulative probability distribution 
function H(x, y) with one-dimensional marginal cumulative probability func­
tions denoted by F(x) and G(y), respectively, there exists a unique function 
C, called a copula, such that H(x, y) = C(F(x), G(y)). The original result of 
Sklar has been later generalized for the case of any p-dimensional probability 
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distribution. The definition of the copula together with the exposition of its 
properties can be found in many sources, such as e.g. the monograph by 
Nelsen (1999). 

The most popular bivariate probability distribution, the bivariate norma! 
distribution, is defined by the following copula (usually called Gaussian): 

(1) 

where 4>N(u1, u2) is the cumulative probability distribution function of the 
bivariate norma! distribution, and 4>-1(u) is the inverse of the cumulative 
probability function of the univariate norma! distribution (the quantile func­
tion). Parameter pis equal to the well known Pearson's coefficient of linear 
correlation r only in the case of norma! marginal probability distributions. 
In the generał case, when marginals have probability distributions different 
then the norma!, the parameter p measures the strength of dependence, but 
adopts different values than the coefficient of linear correlation. 

As it can be derived from Sklar's theorem (and its multivariate general­
ization) any measure that fully describes the dependence between random 
variables must be a function of the respective copula. Therefore, Pearson's 
coefficient of linear correlation, whose definition cannot be reformulated in 
terms of copulas, cannot be used as an universal measure of dependence. 
However, it can be used as a measure of dependence in the case of the 
so-called elliptical multivariate probability distributions having symmetric 
marginal distributions with a finite second moment. For mare information 
on this problem see the work of Embrechts et al. (2003). 

Other measures of dependence, such as Spearman's Ps or Kendall's T, can 
be also defined in terms of copulas; see e.g. Nelsen (1999) . Therefore, they 
can be used as generał measures of dependence (association) between random 
variables. These both measures are mutually related, but the population 
versions of Kendall 's T are easier to calculate for the most popular copulas, 
and thus easier to use in simulation experiments. For this reason we will 
restrict our further investigations to this particular measure of dependence. 

The coefficient of association (dependence) T was introduced by Kendall 
in the 1930s. Its population version is interpreted as the difference between 
the probability of observing a concordant pair of observations, and probabil­
ity of observation of a disconcordant pair of observations. There also exists 
a definition of the population version of Kendall's T in terms of copulas. For 
a pair of random variables X, Y whose bivariate probability distribution is 
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defined by the copula C(F(x), G(y)), where F(x) and G(y) are the cdf's of 
X and Y, respectively, Kendall's r is defined as 

r(X, Y) = 41E(C(F(X), G(Y)) - 1, (2) 

where operator IE() denotes the expectation. An alternative version of (2) was 
proposed by Genest and MacKay (1986). Let for a given copula C(x, y), K(t) 
be the cumulative probability function of the random variable T = C(U1, U2), 

where U1 and U2 are random variables uniformly distributed on [O, l]. The 
following relation links a copula with Kendall's r: 

r = 3 - 411 
K(t)dt (3) 

The special cases of (2) for different specific copulas are given in many papers 
and textbooks, such as e.g. the book by Nelsen (1999). 

Better known is the sample version of r originally introduced by Kendall 
in the 1930s. Let (X,, Y;), i = 1, ... , n be a random sample representing 
n independent pairs of observations of dependent random variables X and 
Y. An alternative to Kendall's original version of rn sample statistic which 
measures the association between random variables X and Y is given by the 
following formula proposed by Genest and Rivest (1993). 

4 n-1 

r. =-~½-1 
n n-lL...,' ' 

(4) 
i=l 

where 

,,: _ card{j: X 1 < X,, Y; < Y;} . _ 
v,:- n- 2 ,i-1, ... ,n. (5) 

When the vectors (X1, X2, ... , Xn) and (Y1 , Y2 , ... , Yn) are mutually inde-
pendent, the pairs of observations (X,, Y;), i= 1, ... , n are also independent, 
and the probability distribution of (4) is known. Its expected value is equal 
to E( rn) = O, and its variance is equal to Var( rn) = ;i~:~~l- For sufficiently 
large sample size n Kendall's rn has the norma! distribution with these pa­
rameters. It is easy to show that (4) is also a rank statistic. 

If we represent the observed values of X and Y in ascending order we get 
the respective vectors of ranks R1 , R2, . .. , Rn and S1, S2, ... , Sn, Then 

P-Q 2Q 2P 
1 =l-1 =1 -l -n(n - 1) 2n(n - 1) -n(n - 1) 

(6) 

5 



where 

i=l j=l i=l j=l 

i=l j=l i=l j=l 

Alternative formulation of the sample version of Kendall's r is presented 
in the paper by Denceux et al. (2005). Let Lx be a linear order on sample 
elements induced by the observed values of the random variable X, and 
expressed by the set of all pairs of observations (x;, xi) that belong to the 
whole set of observations (x1, x 2 , ... , Xn), and are such that x; < Xj for all 
i cf j. Similarly, Ly be a linear order on sample elements induced by the 
observed values of the random variable Y. The number of pairs ordered in 
the same way by Lx and Ly is the cardinality oftheir intersections ILxnLyj. 
Then, 

41Lx nLyj 
rn=rn(Lx,Ly)= ( ) -1. nn-1 

(9) 

Now, let us assume that instead of crisp values of (X,, Y;), i = 1, .. , n 
we observe imprecise values (X,, Y;), i= 1, ... , n where X;= [Xi,L, X,,u] and 
Y; = [Y;,L, Yi,u] • 

For such observed data the observed value of Kendall's r will be also 
imprecise, and given as the interval fn = [rn,L, rn,ul, where the values of rn,L 
and rn,u are obtained by inserting in (4) instead of V; the respective values 

,, . card{j : Xi < Xi, Y;- < Y;} 
vi L = m1n 

' X;E[X;.L,X;.u] n - 2 
(10) 

Y;E[Y;.L,Y;.u] 

,, card{j : Xi < Xi, 0 < Y;} 
v,u = max 

,, X;E[X;.L,X;.u] n - 2 
(11) 

Y;E[Y;.L,Y;.u] 
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The optimization tasks defined by (10)-(11) consist in finding such possi­
ble crisp observations, which yield minimal and maxima! value of Kendall's 
r, i.e. Tn,L and Tn,U· The search space contains all possible crisp observations 
([x1,L, X1,u] X ... X [xn,L, Xn,u]) X ([Y1,L, Y1,u] X ... X [Yn,L, Yn,u]) C lR'.2". This 
is a 2n-dimensional continuous optimization problem with box constraints, 
which can be solved with an optimization algorithm. 

Tn,L= min r(x1,••·,Xn,Yl,···,Yn) (12) 
x1 E [x1,L ,:z:1,U ], ... ,xnE [xn,L ,xn,U J 

Yl E [Yt,L,Yl,U j, .. ·,Yn E [Yn,L ,Yn ,U] 

Tn,u= max r(x1, ... ,Xn,Yl,···,Yn) (13) 
X J E [x1 ,L ,x1,U J, ... ,Xn EJxn,L,Xn,U J 

Yt E!Y1,L,Y1,U J, .. ,,yn E [Yn,L ,Yn,U] 

In the case of imprecise (interval) data sample elements are only partially 
ordered. Let Px be a partia! order of sample elements induced by imprecise 
observations of random variables .X;, i = 1, .. . , n. Similarly, Jet Py be a 
partia! order of sample elements induced by imprecise observations of random 
variables Y;, i= 1, ... , n. A linear order Lx (or Ly) is a linear extension of 
Px (or Py) if and only if Px <;; Lx (or Py <;; Ly ). Following Denceux et al. 
(2005) denote the sets of linear extensions of partia! orders Px and Py by 
A(Px) and A(Py), respectively. Then, the !ower and upper values defining 
the interval-valued fn are calculated from the following formulae proposed in 
Hebert et al. (2003) 

Tn L = min r(L„ Ly ), 
' LxeA(Px),LyEA(Py) 

(14) 

Tn,U = max r(L„Ly). 
LxEA(Px ),LyEA(Py) 

(15) 

Fig. 1 presents an three possible solutions to optimization problems (12)­
(13). Each rectangle represents one of n = 4 pairs of interval data (x,, fj;). 
Circles, diamonds and asterisks denote three possible 2n-dimensional solu­
tions resulting in Kendall's r equal respectively to O, -1/3 and 2/3. 

The optimization problem defined by (14)-(15) has the form of integer 
programming, exploiting the fact that Kendall's r is a rank statistic with a 
finite number of possible values. This allows for exact calculation of minimal 
and maxima! values of the correlation coefficient for small samples, as it was 
proposed by Hebert et al. (2003). This algorithm is effective only for small 
samples (less than 10 elements). For larger samples Denceux et al. (2005) 
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Figure 1: Interval data for n = 4 imprecise pairs of observations ( denoted by rectan­
gles) and three sets of 2n-dimensional solutions denoted by circles, diamonds and asterisk 
yielding respectively T equal to O, -1/3 and 2/3 

proposed to look for an approximate solution using a Monte Carlo simulation 
method based on the algorithm by Bubley and Dyer (1998) for generating 
uniformly distributed linear extensions of a partia! order. This algorithm, 
according to Denceux et al. (2005), is effective for moderate sample sizes 
(less than 30 elements). 

3. Heuristic solutions 

The results published in Hebert et al. (2003) and Denceux et al. (2005) 
show undoubtedly that the calculation of the interval value of Kendall's T ( or 
similar rank statistics) may by computationally extremely demanding even 
in the case of moderate samples of imprecise data. Therefore, there is a need 
either to propose easier to compute approximations or to propose methods for 
speeding-up computational procedures. These both tasks can be considered 
jointly, as good approximations can be used as starting points which speed-up 
optimization procedures that are necessary for the calculation of the interval 
values of the considered statistic. 

It is well-known that certain types of statistical dependence result in 
specific patterns in observed data. For example, strong positive dependence 
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means that large values of one variable are accompanied by large values of the 
second one, and small values of one variable are accompanied by small values 
of the second variable. Therefore, there exists a permutation i 1 , i 2 , ... , in of 
sample elements for which observed values Xi,, Xi,, ... , Xin and Yi,, Yi,, ... , Yin 
form simultaneously at least nearly decreasing (increasing) sequences. Note 
that in the case of perfect positive dependence ( r = 1) these sequences will 
be strictly decreasing (increasing). On the other hand, in the case of strong 
negative dependence large values of one variable are accompanied by small 
values of the second one, and small values of one va.riable a.re accompa.nied 
by large va.lues of the second varia.ble. Therefore, there exists a permuta.tion 
i 1, i 2 , ... , in of sample elements for which observed values X;" x;,, ... , xin form 
at least nearly decreasing (increasing) sequence, and simultaneously, values 
Yi,, Yi,, ... , Yin form at least nea.rly increasing ( decreasing) sequence. Simi­
la.rly to the previous case, for perfectly negatively dependent da.ta (r = -1) 
both sequences should be strictly decreasing or increasing. 

Hryniewicz and Szediw (2008) have found that specific pa.tterns described 
above tha.t depict strongly correlated observa.tions can be used for the con­
struction of heuristic algorithms that find minima.I and maxima.I va.lues of 
measures of dependence in presence of interva.l da.ta. If we look at ( 10 )- ( 11) 
we ca.n see tha.t we have to find sets of points x(I), ... , xf n) and Yfo, . .. , Y(n) 

fulfilling the constra.ints xfo E Xi = [x(i),L, X(i) ,u] and Yfo E fi;= [Y(i),L, Y(i),u] 

for all i = 1, ... , n, and forming at least nearly decreasing (increasing) se­
quences. There are many wa.ys to achieve this goa.l. One of these has been 
proposed in Hryniewicz and Opara (20126) in a form of an simple a.lgorithm 
presented below as Algorithm 1. 

In this algorithm at the first step we order pa.irs of interva.l data vectors 
(xi, ih), i = 1, ... , n in such a way that certa.in points of one varia.ble, e.g. 
xfo E Xi= [x(i),L, X(i),ul, i= 1, ... , n (or Y(i) E fj; = [Y(i),L, Y(i),u], i= 1, ... , n) 
form a non-increasing (non-decreasing) series. Then, at the second step, we 
find the respective va.lues of the second variable Yfo E fi; = [Y(i),L, Y(i),u], i = 
1, ... , n (or xfo E Xi = [x(i),L, X(i),u], i = 1, ... , n) which form a sequence 
tha.t looks, at least a.pproximately, as non-increasing (non-decreasing). The 
symbol O! in the the description of the algorithm denotes the set of n sam­
ple items ordered according to some chosen values that belong to observed 
interva.ls. The !ower index p ca.n take three values: u (if the upper limit of 
the da.ta interval is ta.ken for ordering observations), c (if the center of the 
da.ta interval is taken for ordering observations) , and ł (if the !ower limit of 
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Algorithm 1 Minimization (maximization) heuristic-finding Tn,L (rn,u) 

Step 1: order first interval variable to obtain o; 
x(,) f---- sort first variable x, = [x(i),L, X(i),u] decreasing for i= 1, ... , n 
Step 2: compute values for the second interval variable to obtain T' 

Y(i) f---- Y(l),U ( for maximization use yfo f---- Y(t),L) 
for k = 1,2, ... ,n- do 

y' f---- Y(k) - E ( for maximization use y' f---- Y(k) + E) 

y" f---- min (y'' Y(k+l),U) 

Y(k+I) f---- max (y"' Y(k+I),L) 
end for 
return pair of series ( xfo, vfo) for i= 1, .. , n as (o;, T' ) 

the data interval is taken for ordering observations). The upper index t can 
take two values: d (if points are ordered in a non-increasing series), and a (if 
points are ordered in a non-decreasing series). For example, Ot means that 
sample items are ordered in such a way that the centers of intervals for the 
considered variable, e.g X, form a non-increasing sequence x(I), x(2), ... , x(n)· 
The second variable whose values are computed at the second step of our 
algorithm is denoted by T', where the upper index indicates the direction of 
the trend (d or a). For example, T" means that the values of the second vari­
able, e.g. Y, calculated at the second step of our algorithm, form a sequence 
Y(t), Yc2) , ... , Y(n ) that is approximately non-decreasing. 

For finding the maxima! value of the interval-valued fn statistic we con­
sidered six types of heuristics described as: (o;,T') (where p = u ,c, l and 
t = d, a). The interpretation of this notation is the following: the set of 
crisp data points belonging to observed intervals of one variable (X or Y) is 
generated according to the procedure o;, and the set of crisp data points be­
longing to observed intervals of the second variable is generated according to 
the procedure T'. Because of symmetric usage of variables X and Y we have 
used altogether 12 heuristics of these types. Moreover, we used heuristics 
(T', T') (where t = d, a), described together as (T, T), for which the values 
of both variables have been calculated using only the second step of of our 
heuristic algorithm (i.e. without pre-ordering of sample items). 

For finding the minimal value of Kendall 's correlation coeffi.cient of Tn,L we 
considered the following heuristics: (O;, Td), (O;, T"), and (T", Td). Because 
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of symmetric us age of variables X and Y we have used al together 14 heuristics 
of these types. 

Generation of data points ( xfo, yfo), i = 1, ... , n using the heuristics de­
scribed above is very simple, and can be done even manually. Therefore, in 
practice one can use all of the considered heuristics in order to find approxi­
mate minimal and maxima! observed values of Kendall's Tn-

4. Efliciency of heuristics 

4- 1. Description of experiments 

The efficiency of computational procedures aimed at finding approxi­
mately optima! solutions can be evaluated in many ways. The simplest one, 
consisting in the calculation of approximation error, is not applicable in our 
problem, as we do not know (except for the cases of very small samples) the 
exact solutions to the considered optimization problems. Another possibility 
is to fix the amount of computational effort, and to look at the results of op­
timization. When comparing two computational procedures, the procedure 
which for a given computational effort yields on average a wider interval for 
Kendall's T is considered more efficient. The computational effort may be 
measured also in different ways. In our experiments we measured it either by 
the number of random generations of linear extensions (when we evaluated 
the algorithm proposed by Denceux et al. (2005)) or by the time required to 
find the approximately optima! interval of T. The first measure does not de­
pend upon the hardware used in simulation experiments. Thus, the results of 
simulations where this measure was applied are more informative. The sec­
ond measure strongly depends upon the performance of the computer used 
for simulations. Therefore, the results of simulations where this measure was 
used are less informative, and provide information which is more qualitative 
than quantitative. In our experiments we also evaluated the speed of conver­
gence of considered algorithms. In those experiments we investigated how 
the length of the approximately optima! intervals for T are increasing with 
increasing amount of computation. 

In our evaluation of computational procedures we used Monte Carlo ex­
periments. We generated samples of interval-valued observations, and for 
those samples we computed the interval values of Kendall 's T or the values 
of other interesting characteristics. The finał results have been found by the 
averaging of the results obtained for the generated samples. 
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The generation of interval data has been performed in two steps. At the 
first step the crisp data were simulated from the following copulas: 

• Gaussian - defined by (1) , 

• Clayton's - defined by 

C(u, v) = max ([u-"+ v-" - 1r11", O), a E [-1, oo) \ o, (16) 

• Frank's - defined by 

C(u,v)=--ln 1+~--~--~ ,aE(-00,00)\0,, 
1 ( (e-<>u - 1) (e-"" - 1)) 
a e-<> - l 

(17) 

• Gumbel's defined by 

C(u, v) = exp ( - [(-In u)I+" + (- In v)I+"] 1-i•) , a, E (O, oo). (18) 

with fixed values of the strength of dependence measured by Kendall's r. 
The marginal probability distribution functions of the simulated crisp data 
were norma!, uniform, exponential and Weibull. Then, the crisp data were 
replaced with intervals of random length and different location around crisp 
points. The level of imprecision was defined by setting the maximum width 
of an interval z, measured as the multiplicity of the standard deviation of 
the marginals which was assumed the same for both variables. The actual 
width of interval z. for each data point was generated from the uniform 
distribution on (O, z). The location of the interval around the generated 
crisp 'point was established by the generation of an anchoring point from the 
uniform distribution (O, z0 ), and placing it at the generated crisp value of 
considered random variable. Fig. 2 presents optimization tasks generated 
for different copulas and moderate dependence strength (note that Gumbel's 
copula describes only positive dependencies). 

When we evaluate computational procedures using Monte Carlo simula­
tion statistically significant results can be obtained if the number of simula­
tion runs is large enough. In our experiment it could be done only for small 
and moderate samples. In such cases we used at least 10000 simulation runs. 
Unfortunately, for some most interesting cases of large samples (200 elements 
and more) the time for the computation of one simulation run was too long, 
and the number of simulation runs was limited (usually to 100). In such 
cases the results of simulations were rather of qualitative character. 
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Figure 2: Optimization problems consisting of n = 100 pairs of intervals (x,, y,) gener­
ated using the crisp origins from various copulas with moderately negative and positive 
dependencies (T = ±0.5) 
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4.2. Evaluation of heuristics 

In Section 3 we introduced altogether 28 heuristic methods for the cal­
culation of crisp data points xfo E :i\,) = [x(i),L, X(i),u), i = 1, ... , n and 
Yfo E fi(i) = [Y(i),L, Y(,),u), i= 1, ... , n which may be used for the calculation 
of the approximate !ower and upper limits of the interval value of Kendall's 
T. One can ask a question whether this seemingly large number of heuristics 
is necessary. Moreover, it is not elear if all these heuristics are necessary for 
specific types of dependence between the observed data. To address these 
issues we conducted extensive simulation experiments. In each simulation 
run we have calculated all available heuristics and computed respective ap­
proximate values of Tn,L and Tn ,U · Then we have verified which heuristics 
gave the best result. The efficiency of each heuristic was evaluated as the 
percentage of cases (simulation runs) in which this heuristic yielded the best 
results. 

In the first experiment we considered the case of the Gaussian copula 
with norma! marginals (i .e. the case of the classical bivariate norma! distri­
bution) with moderate imprecision (maxima! value of the interval equal to 
one standard deviation of the generated crisp random variable) of generated 
interval data. The sample size in this case has been set to n = 20. The sam­
pies have been generated for six types of the strength of dependence: strong 
positive (r = 0.9) , moderate positive (r = 0.5), weak positive (r = 0.1), 
weak negative (r = -0.1), moderate negative (r = -0.5), and strong nega­
tive (r = -0.9). The results of the experiment are presented in Table 1 for 
the evaluation of the minimal value of the interval Kendall 's T ( Tn,L), and in 
Table 2 for the evaluation of the maxima! value of the interval Kendall's T 

(Tn,u)-

The results presented in Table 1 and Table 2 reveal that the efficiency 
of the considered heuristics strongly depends upon the strength and the di­
rection of dependence. The most interesting is the case of heuristics with 
unordered observations. The heuristic (T", Td) is the most efficient among 
the considered heuristics in finding the minimal value of Kendall's Tn in the 
case of strong positive dependence. The situation becomes just opposite in 
the case of strong negative dependence. When the maxima! value of Kendall's 
Tn is calculated a similar heuristic (T, T) is the best heuristic for finding this 
value in the case of strong negative dependence, and completely inefficient 
in the case of strong positive dependence. What is similar in these both 
cases it is the fact that these heuristics are the best heuristics in the cases 

14 



Table 1: Percentages of best values; Minimum value of Tn; moderate imprecision; Gaussian 
copula norma! marginals n = 20 

T (O~, Td) (Og,Td) (Of, Td) (Ot,T•) (O1,T") (Of, T 0 ) (T•, Td) 

0.9 8.8 8.3 16.6 5.0 17.4 4.6 39.3 
0.5 11.8 12.4 14.2 7.0 14.2 7.0 33.4 
0.1 15.9 16.l 17.2 10.5 17.0 10.3 13.0 
-0.1 17.0 16.1 17.5 13.4 18.3 11.9 6.8 
-0.5 16.7 17.0 17.9 14.8 18.8 14.0 0.7 
-0.9 14.0 13.6 12.5 23.5 12.1 24.3 o.o 

Table 2: Percentages ofbest values; Maximum value ofrn; moderate imprecision; Gaussian 
copula, norma! marginals, n = 20 

T (Ot, Td) (O1,Td) (Of' Td) (O~, T 0 ) (Og, T 0 ) (O?, T 0 ) (T,T) 

0.9 12.1 24.2 13.9 13.7 12.2 23.9 o.o 
0.5 18.5 14.2 16.6 17.4 17.9 14.4 1.0 
0.1 17.9 11.6 16.7 16.8 18.7 12.0 6.3 
-0.l 17.8 10.7 15.6 15.7 16.6 10.1 13.5 
-0.5 14.3 7.1 11.6 12.5 14.2 6.5 33.8 
-0.9 16.8 6.6 8.9 8.6 16.7 4.6 39.8 

where they are not aimed at. This does not mean, however, that they are 
better than e.g. solutions obtained by Monte Carlo simulations. The series 
of observations calculated by the proposed heuristics mimie the real strongly 
positively data in the case of looking for the maxima! value of Tn, and the 
real strongly negatively dependent data in the case of looking for the minimal 
value of Tn . In such cases the heuristics based on unordered observations are 
practically useless. When the opposite cases are considered, i.e. the minimal 
value of Tn for strongly positively dependent data or the maxima! value of 
Tn for strongly negatively dependent data, the heuristics based on unordered 
observations are visibly the best. 

In all other cases neither of the considered heuristics is significantly bet ter, 
even in the case of strong dependence. In the case of weak dependence, 
both positive and negative , their behavior is similar. Therefore, when the 
!ower and upper approximate values of the interval-valued Kendall's Tn are 
calculated it is advised to calculate all pertaining heuristics , and to choose 
the best one. 
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Table 3: Percentages of best values; Minimum value of Tn; small imprecision; Gaussian 
copula, normal marginals, n = 20 

r (O~, Td) (O~,Td) (or, Td) (Ot, T") (01, T") (Of,T") (T", Td) 

0.9 12.9 12.6 14.2 10.0 14.2 10.3 25.8 
0.5 12.9 13.5 13.5 9.9 13.8 10.5 26.1 
0.1 15.0 14.8 15.6 11.4 14.8 11.3 17.1 
-0.1 11.8 15.7 16.0 11.2 15.7 12.3 13.3 
-0.5 16.7 16.6 16.7 13.2 16.4 12.9 7.5 
-0.9 16.6 17.2 17.6 14.3 17.3 14.5 2.5 

Table 4: Percentages of best values; Maximum value of Tn; small imprecision; Gaussian 
copula, norma} marginals, n = 20 

r (Ot, Td) (01, Td) (Of, Td) (O~, T") (O~, T") (or, T") (T,T) 

0.9 17.7 14.2 17.7 16.9 17.6 14.2 2.7 
0.5 16.5 13.l 16.0 16.5 16.8 12.8 8.3 
0.1 16.3 11.5 15.4 15.4 15.6 11.8 14.0 
-0.1 14.7 11.7 14.5 15.2 14.9 10.9 18.0 
-0.5 13.5 9.8 13.0 13.5 13.9 9.9 26.4 
-0.9 14.3 12.3 12.5 12.4 14.6 6.6 26.3 

A similar experiments have been performed for the case of small impre­
cision (maxima! value of the interval equal to one tenth of the standard 
deviation of the generated crisp random variable) of the generated interval 
data. The results of these experiments are shown in Table 3 for the case of 
the minimal value of rn, and in Table 4 for the case of the maxima! value of 

In generał, the results presented in Tables 3 and 4 are similar to those 
presented in Tables 1 and 2. One can notice however that for less imprecise 
data the percentage of cases where a given heuristic is the best are more 
evenly distributed than in the case of more imprecise data. This finding has 
been also confirmed by experiments whose results are not presented in this 
paper. For example, in the case of very large imprecision (maximal value of 
the interval equal to two or more standard deviations of the generated crisp 
random variable) the best results have been obtained mainly for those heuris­
tics whose performance looks better in the case of moderate imprecision. On 
the other hand, those heuristics whose performance is worse in the case of 
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Table 5: Percentages of best values; Minimum value of rn; moderate imprecision; Frank 
copula, exponential marginals, n = 20 

r (O~, Td) (O~, Td) (01,Td) (O~, T") (01, T") (Of, T 0 ) (T0 , Td) 

0.9 17.5 4.0 31.7 2.1 6.1 10.7 27.9 
0.5 16.7 8.7 26.4 3.8 8.0 10.6 25.8 
0.1 15.5 15.9 28.2 9.6 15.7 11.1 11.5 
-0.1 14.6 19.0 18.6 12.5 18.8 11.8 4.8 
-0.5 13.0 20.3 14.6 18.6 20.3 12.7 0.4 
-0.9 12.2 17.9 11.8 24.3 14.2 16.9 o.o 

Table 6: Percentages of best values; Maximum value of rn; moderate imprecision; Frank 
copula exponential marginals n = 20 , 

' 
r (0~,Td) (01,Td) (Of, Td) (O~,T0 ) (O~,T0 ) (01, T 0 ) (T,T) 

0.9 12.8 22.8 13.2 16.9 17.6 16.7 o.o 
0.5 13.7 19.4 13.7 19.3 21.2 12.2 0.5 
0.1 14.9 13.8 15.5 17.2 23.0 10.4 5.1 
-0.1 15.9 10.7 16.6 15.4 20.2 9.9 11.3 
-0.5 17.1 4.8 18.2 7.8 14.4 8.9 28.8 
-0.9 20.8 2.4 20.2 4.3 10.7 8.8 32.8 

moderate imprecision have been rarely indicated as the best heuristics in the 
case of large imprecision. 

In the experiments described above all data were imprecise to smaller or 
larger extent. We have also performed experiments when only part of data 
was imprecise. The results of those experiments have been similar to those 
presented above for the case of weakly imprecise data. 

In the experiments described above we assumed the Gaussian copula and 
the norma! marginal distributions of generated crisp random variables, i.e. 
the case of the bivariate norma! distribution. In the next set of experiments 
we have investigated cases of different copulas and different marginal distri­
butions (but the same for each copula). In Tables 5 and 6 we present these 
results for the case of Frank's copula defined by (17) and the exponential 
(with the parameter of scale equal to one) marginal distributions. 

The results presented in Tables 5 and 6 show that the type of a copula 
and the type of marginal distribution influence the efliciency of different 
heuristics. However, the differences between the considered case of Frank's 
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Table 7: Percentages of best values; Minimum value of T; moderate imprecision; Gaussian 
copula norma! marginals n = 200 

T (O~,Td) (O~, Td) (01, Td) (Ot, T") (01,T") (Of,T") (T", Td) 

0.9 o.o o.o o.o o.o o.o o.o 100 
0.5 0.1 0.1 o.o 0.1 O.O o.o 99.7 
0.1 13.l 14.1 ll.O 7.7 11.5 6.2 36.4 
-0.l 16.1 17.9 20.8 12.2 19.3 12.l 1.6 
-0.5 13.0 14.1 14.5 22.5 13.4 22.5 o.o 
-0.9 0.8 1.6 0.9 48.0 0.5 48.2 o.o 

Table 8: Percentages of best values; Maximum value of T; moderate imprecision; Gaussian 
copula norma! marginals n = 200 

T .I (Ot,Td) (01, Td) (Of, Td) (O~, T") (0~,T") (Of, T") (T,T) 

0.9 0.5 46.8 2.0 2.2 0.3 48.2 o.o 
0.5 13.1 24.1 11.3 15.1 14.4 22.0 o.o 
0.1 18.6 13.5 19.4 19.3 15.7 ll.2 2.2 
-0.1 11.6 7.1 14.1 12.9 12.1 5.9 36.3 
-0.5 0.2 o.o o.o 0.1 0.2 O.O 99.5 
-0.9 o.o o.o O.O O.O O.O O.O 100.0 

copula and the exponential marginals and the previous case of the bivariate 
norma! distribution is not very significant. Many heuristics behave in both 
cases qualitatively similarly. For example, their performance is the best for 
strong positive dependence, and the worst for strong negative dependence 
(or vice versa). One can notice, however, that in the case of Frank's copula 
and the exponential marginals these trends are more visible than in the case 
of the bivariate norma! distribution. 

In the next set of experiments we have investigated if the size of imprecise 
data influences the efficiency of considered heuristics. In Tables 7 and 8 we 
present the results of experiments for the case of a relatively large sample 
(n= 200) of moderately imprecise data generated from the bivariate norma! 
distribution. 

The results presented in Table 7 and Table 7 show a similar behavior 
of the proposed heuristics. However, for strongly dependent data only few 
heuristics are really effective. 
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4,3. Analysis of the method based on the random generation of linear orders 
The heuristics described in Section 3 have been devised in order to im­

prove the search of the interval-valued Kendall's r described by the interval 
[rn,L, rn,ul, where rn,L and Tn,U are calculated as the solutions of optimiza­
tion problems defined in Section 2. In this section we present the results 
of investigations showing the potentia] benefits of using our heuristics when 
the methodology proposed by Denceux et al. (2005) is used for finding the 
approximate solutions of the pertaining optimization problems. 

Let z; where z; = [z;,L , z;,u], for all i = 1, ... , n be the elements of the 
set of interval-valued data points. For each sample item i of the variable Z 
we can define a set of its possible ranks Rz,, = [Rz,;,L, Rz,, ,u] of crisp values 
z; E [z;,L, z;,u] in the Cartesian product z1 x ... x Zn. The lowest rank Rz,,,L 
can be computed as card{j =I i : Zi,L > Zj,U }. Similarly, The greatest rank 
Rz,;,u can be computed as card{j =I i : z;,u < Zj,L}. 

The optimization algorithm for computing the minimal (maximal) value 
of rn begins with the determination of the sets of possible ranks: Rx,, 
for the observed imprecise values of the variable X, and .R.y,; for the ob­
served imprecise values of the variable Y. In the next step the set of points 
(x;, y:), i = 1, ... , n, such that x; E [x;,L, x;,u] and y; E [Yi,L, y;,u] is deter­
mined. These values, and their respective ranks R~l, and R~l, determine the 
starting point of the optimization algorithm. The~ the alg~rithm works as 
it was proposed by Bubley and Dyer (1998). 

Let ,fl = (R~\, ... , R~\) and ,il = (R~;1, ... , Yl'.~) be the sets of 
ranks assigned to vectors of of imprecise observation at the t-th step of the 
algorithm. Then with probability 0.5 we have ,f+I) = ,fl (or ,i+l) = ,il), 
and with probability 0.5 the following procedure is performed. An index 
i* is randomly chosen from the uniform probability distribution on the set 
{l, 2, ... , n - l}. Then it is verified if the ranks Rx,;• and Rx,;•+i (or Rv,;• 
and Rv,,•+1) can be interchanged. If it is possible, i.e if Rx,i• E Rx,i•+I 
and Rx,;•+1 E Rx,;• (or RY,i• E .R.Y,i•+1 and RY,i•+1 E .R.y,;•, the ranks are 
interchanged, and a new value of r is calculated. Then, it is verified if this 
value is smaller (greater) then the current optimal value of r. If it is true, 
the newly calculated value replaces the current value of Tn,L (or Tn,L)-

In the original version proposed by Bubley and Dyer (1998) the algorithm 
of the random generation of linear extensions of a partia! order the algori thm 
stops w hen a certain measure of the accuracy (related to the uniformity of the 
obtained distribution) has been reached. Such measure cannot be directly 
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Table 9· Optimization of the interval-valued T Different starting points 
Heuristic Middle Random 

T NGLE Tn,L Tn,U Tn,L Tn,U Tn,L Tn,U 

0.9 o 0.6927 0.9790 0.8227 0.8227 o. 7732 0.7732 
105 0.6619 0.9806 0.6874 0.8579 0.6673 0.8195 

0.5 o 0.3804 0.5653 0.4823 0.4823 0.4759 0.4759 
105 0.3509 0.6672 0.3728 0.5577 0.3821 0.5450 

0.1 o -0.0298 0.2422 0.0975 0.0975 0.0939 0.0939 
105 -0.0495 0.2581 -0.0007 0.1902 0.0054 0.1794 

-0.1 o -0.2424 0.0281 -0.0977 -0.0977 -0.0954 -0.0954 
105 -0.2588 0.0478 -0.1895 -0.0008 -0.1805 -0.0062 

-0.5 o -0.6568 -0.3817 -0.4834 -0.4834 -0.4675 -0.4675 
105 -0.6682 -0.3513 -0.5590 -0.3740 -0.5414 -0.3725 

-0.9 o -0.9792 -0.6927 -0.8231 -0.8231 -0.7740 -0.7740 
105 -0.9809 -0.6612 -0.8579 -0.6884 -0.8197 -0.6679 

applied in our case, as it is not known how this measure of accuracy is related 
to the accuracy of the optimization procedure. Denamx et al. (2005) propose 
to stop such algorithm w hen after a certain number of generations the optima! 
value remains the same. Another possibility, frequently used in the analysis 
of optimization procedures, is to set a finite number of performed steps, i.e. 
the number of generated linear extensions, denoted below as NGLE. 

In the first part of our experiments we analyzed how the method used 
for obtaining the starting point influences the optimization process. In Table 
9 we present the averaged over 10000 simulation runs values of (rn,L, Tn,U) 
calculated for NGLE = O (i.e. for the starting point), and for NGLE = 105 • 

For the same moderately imprecise samples of size n = 20, generated from 
a bivariate norma! distribution, we calculated optima! values using three 
methods for setting the starting point: heuristic (described in Section 3), 
using middle points of data intervals, and using points randomly selected 
from data intervals. For improved readability, the best results are typed in 
bold font. 

The results presented in Table 9 show without any doubts that the pro­
posed heuristics, used for the calculation of a starting point, significantly 
improve the optimization procedure based on random generation of linear 
extensions. It is worth noticing that 'natura! 'methods of the generation of 
starting points ( centers of intervals, randomly generated points in intervals) 
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do not guarantee good approximations of the minimal and maxima! values of 
T even for a relatively large number of generated linear extensions. The in­
tervals (Tn,L, Tn,u) obtained using such starting points are even visibly worse 
than the intervals calculated using proposed heuristics. What is also impor­
tant, when we use the same number of generated linear extensions in the case 
of starting points computed heuristically the improvement (measured by the 
width of the computed interval) is significant. 

The results presented in Table 9 show only that the proposed heuristics 
used as the starting points for further optimization are better than central 
points of intervals or randomly chosen points of intervals. It does not mean, 
however, that they are sufficiently accurate in all considered cases. For ex­
ample, it would not be unexpected if the heuristics for finding the minimal 
value of T had bad properties for positively dependent data. Similarly, the 
heuristics for finding the maxima! value of T should not perform well for 
negatively dependent data. Bath conjectures stem from the fact that they 
were devised to mimie strong positively dependent data (for the calculation 
of maximum) or strongly negatively dependent data (for the calculation of 
minimum). The advantage of the heuristics over other considered starting 
points might be due to the fact that the the heuristically chosen data points 
are taken from a set of 14 vectors of data. Thus, one might think that this 
advantage is due to this particular cause. In order to answer this question 
we performed simulation experiment in which the starting point for further 
optimization has been the best from among randomly generated sets of m 
data points. We have considered two values of m: m = 14 (i.e. exactly the 
number of considered heuristics), and m = 100. The results of this exper­
iment, for the sample size equal to 20 and moderately imprecise data, are 
presented in Table 10. 

The results presented in Table 10 fully confirm our conjecture. The heuris­
tics considered in this section outperform solutions based on sets of randomly 
simulated data points only for strongly dependent data. In presence of strong 
dependence the heuristics are the best for the calculation of the maximum 
of T when this dependence is positive, and for the calculation of the mini­
mum of T when this dependence is negative. This feature is preserved for 
the moderately dependent data, but only for small number of simulated data 
points (e.g. m = 14). In all remaining cases the random generation of the 
set of data points, and choosing the best one as the starting point in further 
optimization, seems to be a better strategy. 

In the experiments described above the time for the generation of one 
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Table 10· Optimization of the interval-valued -r Random starting points 
Heuristic 14 points 100 points 

T NGLE 'Tn,L Tn,U Tn,L Tn,U Tn,L Tn,U 

0.9 o 0.6927 0.9790 0.6946 0.8509 0.6569 0.8844 
105 0.6619 0.9806 0.6157 0.8763 0.5901 0.9035 

0.5 o 0.3804 0.5653 0.3869 0.5540 0.3475 0.5903 
105 0.3509 0.6672 0.3143 0.6069 0.2855 0.6359 

0.1 o -0.0298 0.2422 0.0155 0.1838 -0.0230 0.2229 
105 -0.0495 0.2581 -0.0512 0.2478 -0.0815 0.2770 

-0.1 o -0.2424 0.0281 -0.1738 -0.0052 -0.2136 -0.0337 
105 -0.2588 0.0478 -0.2378 -0.0622 -0.2686 0.0931 

-0.5 o -0.6568 -0.3817 -0.5516 -0.3835 -0.5889 -0.3442 
105 -0.6682 -0.3513 -0.6051 -0.3116 -0.6349 -0.2792 

-0.9 o -0.9792 -0.6927 -0.8519 -0.6951 -0.8844 -0.6567 
105 -0.9809 -0.6612 -0.8778 -0.6170 -0.9033 -0.5890 

linear extension is rather short, so we are able to generate very large num­
bers of linear extensions, and arrive at good solutions in acceptable time. 
Thus, for small sample sizes the findings of Denamx et al. (2005) seem to be 
correct. However, the situation changes dramatically if we have large sam­
pies of imprecise data. In Table 11 we present the results of investigations 
whose aim was to evaluate the convergence rate and the execution time of 
the optimization algorithm. We present the results obtained for the case of 
Gumbel's copula defined by (18) and the exponentially distributed marginals. 
We have chosen this bivariate probability distribution as it is very different 
from the well known bivariate norma! distribution (e.g. Gumbel's copula 
describes only positively dependent data). The sample size is n= 200, and 
the imprecision of data is moderate. Because of relatively long computation 
time we have been able to perform only a limited number of simulation runs 
(equal to 100). Thus, the results presented in Table 11 have rather qualitative 
than quantitative character. The times displayed in the rightmost column 
of the table represent the average times of execution (in seconds), and have 
been obtained in the experiment run on a relatively fast Intel Pentium PC 
machine. 

The results presented in Table 11 show very low convergence rate of the 
optimization algorithm based on the random generation of linear extensions. 
This is hardly unexpected as for the sample size of n = 200 imprecise in-
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Tnhle 11 · Optimization of the interval-valued r Convergence of optima! solutions 
Heuristic Middle 

T NGLE Tn,L Tn,U Tn,L 7n,U Time [sec] 
0.9 o 0.6812 0.8749 O. 7432 0.7432 o. 

103 0.6588 0.8749 0.6717 0.7473 1.13 
104 0.6450 0.8752 0.6502 0.7476 9.88 
105 0.6205 0.8764 0.6356 0.7478 100.0 

formation the number of possible linear extensions is much larger than the 
numbers of linear extensions generated in our experiment. However, even for 
these apparently too small numbers the computation time has grown very 
rapidly One can predict that for a larger number of linear extensions ( e.g. 
equal to 106 or more) the computation time will be prohibitively long for 
practitioners, and the obtainecl results stili far from the optima!. There­
fore , a good chcice of the starting point plays a crucial role. Looking at the 
results presentecl in Table 11 we see that the comparable times of computa­
tions much better results have been obtained when we use heuristics for the 
computation of the starting point for further optimization. 

5. Hybrid algorithm based on the optimization of Pearson's corre­
lation 

In Section 2 we recalled a well known fact that the popular statistics used 
for the analysis of dependent data, Pearson's coefficient of lineai· correlation, 
is not a proper measure of dependence. It can be used as a measure of depen­
dence only in the case of the elliptical multivariate probability distributions. 
Moreover, it is not difficult to show that one can construct a bivariate vec­
tor X, Y = 'l'(X), where 1' is a highly nonlinear function, such that for the 
increasing value of I<endall's coefficient of association between X and Y the 
respective value of Pearson's coefficient of linear correlation will be decreas­
ing. However, for many bivariate distributions, not only belonging to the 
class of the elliptical distributions, there exists a monotonie relation between 
values of r and p. 

The close formula that links the values of r and p is known for the case 
of the bivariate norma! distribution ( described by the Gaussian copula with 
norma! marginals), and is given by the following formula 

TNo,-,n = arcsin(p)/(1r/2). 
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Tahle 12: Values of A in the expansion of p(r) 
Copula: Gaussian Gaussian Clayton Clayton Frank 

Marginals: Exp. Weihull (c> = 0.5) Norma! Exp. Norma! 
A: -0.64515 -0.20719 -1 -0.64912 -1 

For the most popular copulas the function linking T and p does not exist. 
We have performed extensive simulation experiments in order to establish a 
similar relationship. We fitted an approximate function of the following form 

8 

Pa(T) "°" I>.J;(r). (20) 
i=l 

where as = 1, fi(r) = T - r9, fz(r) = T 2 - r8, h(r) = r 3 - r 9, f4(r) = 
T4 - r 8 , fs(r) = r 5 - r9, f5(T) = T6 - T 8 , h(r) = T7 - r 9, fs(r) = r 8 [1 + 
(1 - r)(A + 1)/2], and A = p(-1) is the value of Pearson's p in the case 
of full negative dependence, i.e. for T = -1 which is equal to -1 in the 
case of symmetric marginals or estimated from Monte Carlo experiments for 
asymmetric marginals . Exemplary values of A are given in Table 12. 

The coefficients a; for different combinations (copula, marginal distribu­
tions) have been evaluated using Monte Carlo simulations. They are given 
for some of those combinations in Table 13. The approximation given by 
(20) seems to be good enough for practical applications. The largest abso­
lute difference between the empirical values p(r) and the approximate values 
p0 (r) is smaller than O.Ol. 

Visual analysis the function Pa ( T) for the cases considered in Table 13 
shows that this function is monotonically increasing. Therefore, larger val­
ues of T correspond to larger values of p. Thus, the set of crisp data 
points xfo, ... , x(n) and Y(i), ... , Y(n) fulfilling the constraints xfo E X; = 
[xc;),L, X(i),u] and Y(i) E y; = [Y(i),L, Y(i),u] for all i = 1, ... , n that minimizes 
(maximizes) Pearson's coefficient of linear correlation should be close to a 
similar set that minimizes (maximizes) the value of T. This hypothesis is the 
base of an algorithm for the calculation of a new starting point for further 
computation of Tn,L and Tn,L· 

Formally, the optimization problem can be formulated as 

PL= min r(x1, ... , Xn, Y1, ... 1 Yn), 
XiE[xi,L,Xi,U] 

(21) 

y,EIY,,L,Yi,U] 
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Table 13: Coefficients of the function p(T) 
Copula a1 a2 a3 a4 as a6 a1 

Marginals 
Gaussian 

Exp. 0.4354 -0.2258 -0.4003 -0.1768 -0.3293 0.4129 1.2673 
Gaussian 
Weibull -5.5561 -2.0679 3.1017 0.4186 -0.5554 o. 7901 0.7633 
Clayton 
Norma! 7.4643 0.3090 -5.6402 -0.3099 0.9786 0.1325 1.3693 
Clayton 

Exp. -4.9277 3.5989 5.5548 -3.2707 -3.4342 1.2717 1.9262 
Frank 

Norma! 0.3373 -0.0055 -0.2050 -0.0040 -0.4111 -0.0010 1.4308 

Pu= 1nax r(x1,.,.,Xn,Yl,···1Yn), 
Xi€ [xi,L ,xi,U J 

(22) 

YiE[Yi,L,Yi,U] 

where r(x1 , ... , Xn, y1 , ..• , Yn) is Pearson's coefficient of lineru· correlation be­
tween vectors xI , ... , Xn and yI , . .. , y,,, described in every statistics textbook. 

For solving optimization problems (21)-(22) we used a generał purpose 
constrained optimization code developed by Powell in two versions: COBYLA 
and BOBYQA. The description of the algorithm used in these constrained 
optimization routines can be found in the paper Powell (1998). COBYLA 
minimizes an objective function F(x1, .. ,,xN), F : JRN -+ IR subject to NI 
inequality constraints of the form 9i(x1, ... , XN) 2'. O, i = 1, ... , NI. BOBYQA 
is based on the same algorithm, but for constraints in the form of intervals. 

We have performed numerical experiments comparing the performance of 
these both routines for solving the problems (21)-(22). In the case of small 
and moderate sample sizes the performance of both routines was similar. 
When the number of calls of the objective function was used as the measure 
of performance COBYLA was better. However, when the computation time 
was analyzed BOBYQA was slightly faster. Because the time of computation 
is very important in our analysis in further experiments we used that code. 

By computing the approximations given by (21)-(22) we do not escape 
from the problem of the sample size. One can notice that we have to salve 
constrained optimization problem in 2n dimensions. The time of computa-
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Tahle 14: Optimization of the interval-valued r. Hybrid algoritlun 
Hyhrid Heur+LinEx 

r NGLE Tn,L Tn,U NGLE Tn,L Tn,U 

0.9 o 0.5086 0.9925 o 0.6959 0.9788 
105 0.4715 0.9935 2 • 105 0.6653 0.9805 

0.5 o 0.1844 0.7416 o 0.3878 0.6608 
10s 0.1525 0.7600 2 · 105 0.3571 0.6716 

0.1 o -0.1905 0.3421 o -0.0181 0.2530 
105 -0.2116 0.3800 2 • 105 -0.0408 0.2691 

-0.1 o -0.3794 0.1893 o -0.2323 0.0385 
105 -0.4059 0.2174 2. lQS -0.2490 0.0582 

-0.5 o -0.7429 -0.1858 o -0.6562 -0.3808 
10s -0.7609 -0.1535 2. 105 -0.6680 -0.3495 

-0.9 o -0.9925 -0.5085 o -0.9805 -0.6976 
10s -0.9935 -0.4710 2 • 105 -0.9821 -0.6666 

tion of (21)-(22) grows rapidly, and is incomparably long in comparison to 
our heuristic solution. However, if we use the data points obtained by the 
minimization (maximization) of Pearson's pas the starting point for further 
optimization using the algorithm of random generation of linear extensions 
the results are astonishingly good. In Table 14 we present a comparison of 
the performance of two algorithms whose computation times are comparable. 
The data (n= 20) have been generated from the bivariate norma! distribu­
tion with a moderate level of imprecision. After performing the search of 
the starting point by solving (21)-(22) we tuned the results by applying 105 

random generations of linear extensions. We compared the results of this ex­
periment with the results when only random generations of linear extensions 
were used for the optimization purpose. In this second case we used 2 · 105 

random generations of linear extensions. These two values were chosen in 
order to have similar times of computation. 

The results presented in Table 14 reveal a significant advantage of the 
newly proposed method over the methods described in the previous section. 
It is quite elear that it is beneficial to devote more time for finding a better 
starting point than to choose a starting point without special computational 
effort, and then to run optimization procedure for longer time. 

Other experiments with the hybricl optimization algorithm revealed that 
using heuristics for the calculation of the starting point in the first opti-
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mization step is not advantageous anymore, even when the heuristics give 
better approximation for the minimal and maxima! value of r. The reason of 
this somewhat unexpected feature stems from the characteristics of the op­
timization routine. A close look at the data points of the optima! solutions 
shows that these points are usually on constraints or close to them. In such 
a case a generał purpose constrained optimization routine, like BOBYQA 
or COBYLA, do not perform well (they spend most of the computational 
time for coping with the problem of constraints violation). For this reason 
apparently worse starting points, but situated far from the constraints, may 
be better than the points closer to the optima! ones. 

6. Computing interval-valued T using evolutionary algorithms 

As mentioned in section 2 optimization tasks defined by (10)-(11) consist 
in finding such possible crisp observations, which yield minimal and maxima! 
value of Kendall's T, i.e. Tn,L and Tn,U· One way to approach this problem 
using one of many available general-purpose optimizers. In this section we 
first try to characterize the properties of the optimization problem. Next, we 
evaluate in which cases and to what extend heuristics proposed in section 3 
may be helpful for problems (10)-(11). 

6.1. Optimization problem analysis 

Optimization problem of finding minimal and maxima! value of Kendall's 
T can be stated in two fonns: discrete (14)-(15) in the set of linear exten­
sions of partia! orders as well as continuous (12)-(13) in the 2n-dimensional 
space IR2" with box constraints. Discrete optimization problems are highly 
dependent on the representation of data and usually require using dedicated 
methods, such as algorithm by Bubley and Dyer (1998). Therefore, in this 
section we concentrate on the continuous variant, since a variety of elabo­
rated and reliable optimizers are available. Choosing among them is easier, 
when one is aware of the properties of optimized function r. 

Sample version of Kendall's T, which is optimized in problems (12) and 
(13) has some interesting characteristics. To visualize them we took a data 
set of n = 50 interval pairs generated using Clayton copula and moderate 
dependence and plotted the value of Kendall's T in a grid spanned over all 
feasible values of i-th observation (x;, y;). The remaining 49 crisp samples 
were chosen according to a uniform random distribution within their feasible 
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values. The upper and !ower pairs of plots in the Fig. 3 differ only by the 
choice of random seed for generating the remaining samples. 

Analysis of Fig. 3 and definition of the Kendall's r for a sample (6) 
leads to conclusions with important implications for the proper choice of 
optimization algorithm. First, Kendall's T takes only a finite number of 
values. The search space is hence partitioned into many 2n-dimensional 
subintervals each having a constant value of T. This prevents the use of 
gradient- and Hessian-based optimization methods, since all derivatives are 
nea.rly everywhere equal to zero. Next, boundary of each subinterval consists 
of hyperplanes parallel to the coordinates of the search space. Such property 
is exploited by some optimization procedures, for instance by evolutionary 
algorithms using binomial crossover. This also suggests that the taxi-cab 
metric may be more appropriate then Euclidean one to measure distances 
between points in the search space. Moreover, Kendall's r is non-convex 
and usually multimodal. Consequently, to obtain good results one should 
choose some derivate-free global optimizer such as (multistart) direct search 
procedure or an evolutionary algorithm. Special care should be also given to 
the constraint handling technique, as subintervals having minimal or maxima! 
values on r are often adjacent to constraints, specially for large values of 
search space dimension d = 2n. Finally, the global optimum is not unique 
and the set of points with minimal or maxima! value of T may be non-convex 
or even not connected. 

6. 2. Simulation results with Diff erential Evolution 

To compute minimal and maxima! values of Kendall's r we chose Differ­
entia! Evolution algorithm (DE) introduced by Storn and Price (1997). Th.is 
is a simple, yet effective real-parameter global optimization procedure, which 
has been applied and further developed over the last decade, see (Price et 
al., 2005) and (Nerri and Tirronen, 2010) for overview. 

Differentia! Evolution is a population-based search procedure, as in each 
iteration a population (set) consisting of Np individuals (vectors in !Rd) is 
processed. In our case dimensionality of the search space d equals 2n. The 
population-based character of optimization algorithm allows for straightfor­
ward application of heuristic solutions, as each of them may be used as one 
point in the initial population. 

In this paper we use a variant of DE called DE/rand/oo/bin, whose de­
scription and discussion can be found in (Opara and Arabas, 2010). In 
this algorithm, first population is initialized, either randomly or with use of 
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Figure 3: Kendall's r plotted in a grid spanned over possible values of i-th observation 
(x;, yi) for randomly chosen values of other observations (different for upper and !ower 

pair of figures) 
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Figure 4: Set of points genernted cluring a single run of DE/rand/oo/bin nlgorithm for 
three-modal test function; arrows inclicate artifacts introduced by binomial crossover 

heuristics. Then in a loop a new population is created from the current one 
until the stopping condition is not met. New vectors are created by with use 
of multivariate norma! distribution and binomial crossover, while succession 
is based on a binary tournament. 

The DE/rand/oo/bin algoritlun uses binomial crossover. This is a clas­
sical genetic operator, which out of two vectors (x1, ... , xd) and (y1, ... , Yd) 
creates another one (z1, ... , zd), whose j-th element is with probability Cr 
set to the value Yi and with probability 1 - Cr to the xi for j = 1, ... , d. 
Binomial crossover influences the dynamics of the optimization procedure by 
decorrelating the distribution of newly created vectors and thus promoting 
search along directions parallel to the axis of the coordinate system. Fig. 4 
examplifies this phenomenon by showing distribution of all points generated 
during a single run of DE/rand/oo/bin for a three-modal objective function. 
Vertical and horizontal arrows align with the search directions introduced by 
binomial crossover. 

Arabas et al. (2010) show that in case of box constraints the choice of 
constraint handling technique significantly affects overall performance of the 
Differentia! Evolution algorithm. In problem analyzed in this paper both 
heuristic values and solutions often Jie near the boundaries. We decided 
to use reflection as a constraint handling technique. The stopping crite-
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rion was set to exceeding the maxima! number of function evaluations or 
reaching a situation when all points in a population have the same value of 
Kendall's r. In the latter case algorithm was reinitialized with appropriately 
decreased number of maxima! function evaluations and restarted. We chose 
the following setting of parameters: population size Np= 4n, where n is the 
number of observations (x;, fi;), scaling factor F = 0.9 and crossover proba­
bility Cr = 0.9. In case of initialization with use of heuristics, first 16 points 
in the population were replaced with the heuristic values. It is noteworthy 
that the number of iterations of the algorithm is equal to FEs/2n where, 
F Es denotes the number of function evaluations. This measure corresponds 
to the previously discussed number of generated linear extensions (NGLE), 
since for each extension one needs to compute one r value. 

6.3. Introducing problem-specific knowledge 

Using general-purpose optimization algorithms for finding minimal and 
maxima! value of Kendall's r is very easy to implement, as computations 
are performed using natura! representation of a problem (12)-(13). Using 
global optimization methods also Jeads to improvement over pure Monte 
Carlo sampling, see (Hryniewicz and Opara, 2012a) for comparison of CMA­
ES (Covariance Matrix Adaptation Evolutionary Strategy), SA (Simmulated 
Annealing) and GA (Genetic Algorithm), the last two taken from Matlab 
Optimization Toolbox. 

To further improve performance of optimization procedures one may in­
trocluce problem-specific knowledge into the optimization task. Such trans­
formations are effort-consuming, as they require implementing specialized 
subroutines. Hryniewicz and Opara (2012a) show that they can improve 
performance of both optimization method and pure Monte Carlo sampling. 
The generał idea behind this approach is to use highly elaborated, general­
purpose optimizers encode the problem-specific knowledge into the definition 
of the search space or objective function. 

Kendall's r takes only finite number of values, which are, moreover, in­
variant to order-preserving transformations of the input vectors. This means, 
that bounds of every interval can be substituted with bouncls defined by mini­
mal and maxima! ranks, which a point within this interval can take. Consider 
a vector (x;, y;) E (x;, jj;) = [x;,L, x;,u] x [Y;,L, Y;,u] from interval i. Its mini­
mal rank Rx,,L along axis x is equal to the number of intervals, whose upper 
bounds are !ower than !ower bounds of the i-th interval, while its maxima! 
rank Rx,,U is equal to the number of intervals, whose !ower bounds are !ower 
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than the upper bound of i-th interval. 

Rx,,L = card {j fi : x;,u < x,,L} 

Rx,,U = card {j f i : Xj,L < x,,u} 

(23) 

(24) 

Analogous equations can be written for ranks with respect to values of y. To 
obtain continuous optimization problem we use the following transformation. 

x: = r xt, Rx,,~ + 1] (25) 

y'. = [ru,,L, Ry,,u + l] 
' n n 

(26) 

Division by n ensures that both axes x and y range from O to 1. Fig. 5 
presents an example of transforming real-valued problem (x,, y,), i = 1, ... n 
to its rank representation (x;, y;), i = 1, ... n together with points obtained 
through heuristics. In the transformed problem the area of intersections of 
two rectangles relatively increases. Sizes of rectangles are set onto a compa­
rable scale. It may also happen that all vectors in a given rectangle can take 
only one value of the rank, i.e. Rx,,L = Rx,,u . This means that the minimal 
and maxima! value of r do not depend on the choice of this vector. Conse­
quently, such intervals can be removed from the search procedure, which in 
tum decreases the dimension of the search space. 

Hryniewicz and Opara (2012a) show that use of transformations (23)-(26) 
improves performance of different optimization algorithms. Finally, is should 
also be noted, that for each transformation obtained applying formulas (23)­
(26) there exist a unique reverse transformation. 

6.4. Convergence curves 

Ideally, optimization algorithm should provide good sohitions in short 
time. Those two characteristics can be visualized in convergence curves, 
which present value of the best solution achieved within a given computa­
tional time (typically measured in the number of function evaluations FEs). 
In an example shown in Fig. 6 each curve describes one run of an algo­
rithm. Horizontal distance between two curves presents the difference in 
time required to achieve certain accuracy, while vertical distance describes a 
difference in quality between best solutions obtained within a certain compu­
tational budget. The most common approach to compare algorithms consists 
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Figure 5: Example of trnnsformation between original interval data and its rnnk-basecl 
representation 

in fixing maxima! computational budget and comparing finał optimization er­
rors. On the other hand Hansen et al. (2009) argue that it is not elear how 
much more difficult is it to reach !ower error and suggests comparing ex­
pected running times of optimizers as a more interpretable measure. They 
also propose an aggregation methods for results obtained through many runs 
over many optimization problems. These methods require, however, knowl­
edge of the globally best value of objective function and yield some problems 
with estimation of expected runtime, as discussed in (Opara and Arabas, 
2011). In this section, we constrain to qualitative analysis of convergence 
curves only. 

Fig. 7 presents convergence curves obtained for finding minimal and max­
ima! value of Kendall's T for Frank copula and different dependence strengths: 
strong (crisp origins of interval data have T = ±0.9), moderate (T = ±0.5) 
and weak (T = ±0.1). The thick lines in the plot depict the median value 
out of convergence curves obtained within 15 independent runs of the op­
timization algorithm. Similarly, the shaded area behind it represents the 
interquartile range between convergence curves, which provides information 
about the variability of best results between independent runs. 

Graphs presented in Fig. 7 show typical properties of the convergence 
curves. We used n = 100 pairs of intervals, whose origins were generated 
with Frank copula. Nevertheless, our observations show that characteristics 
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Figure 6: Example of analysis of convergence curves 

depicted in this example hold for all investigated copulas and other sample 
sizes as well. For weak dependencies (ITI < 0.4) there is practically no differ­
ence between optimization algorithm initialized with and without heuristics. 
For moderate dependenci es (0.4 < T < O. 7) starting with heuristic gives 
some improvement compared to random initialization, however on a longer 
run randomly initialized algorithm often yields better solution. For strong 
dependencies (0.7 < ITI) the initial heuristic solution is very good and op­
timization algorithm is usually not able to improve it at all, therefore , the 
respective convergence curve is a horizontal line. 

Initializing population of evolutionary algorithms with heuristic solutions 
nrny, however binder its global optimization properties. In Fig. 8, in case 
of minimization we observe, that randomly initialized algorithm at first gets 
poorer results than the one initialized with use of heuristics. After a few 
thousand function evaluations this situation reverses, since the algorithm 
initialized with heuristic solutions starts improving value of the best found 
result on average only between 10 and 20 thousand function evaluations. It 
is supposedly a result of premature convergence of the optimization proce­
dure. Heuristics initialize algoritlun in a !ocal minimum, which becomes a 
strong attractor to the whole population of an evolutionary algorithm, which 
relatively increases selection pressure. To leave such minimum evolutionary 
algorithm must randomly create a vector witch has better value of objective 
function than the value already optimized by means of heuristics. This may 
take considerable amount of time, in which there is no improvement of the 
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objective function and convergence curve is constant. The same phenomenon 
is visible for strong dependencies , however in this case the heuristic guess 
seems to be much better than random one. This also means that it is very 
difficult for an evolutionary algorithm to leave such (potentially loca!) op­
timum in search for more promising areas and running it gives little or no 
improvement. On the other hand, randomly initialized evolutionary algo­
rithm needs high computational budget to get similar or better results than 
the heuristic solutions. 

In case of negative (positive) dependence heuristics for finding maxima! 
(minimal) value of r gives quite poor results. This does not affect the per­
formance of optimization procedure, as those poor vectors are rejected by 
evolutionary algorithm within a few first iterations. Nevertheless, devising 
appropriate heuristics to handle this case is an important open problem. To 
sum up, heuristics proposed in section 3 prove to be useful for fining minimal 
value of r for strong and moderate negative dependencies and for finding 
maxima! value of r for strong and moderate positive dependencies, which is 
summarized in Table 15. 
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Table 15: Guide for using heuristics (Heur.) or rnndomly initiated global optimization 
algorithm (Opt.) for finding minimal and tn/\lCimitl value of Kendall's r for interval data 

Negative dependence Positive dependence 
weak moderate strong weak moderate strong 

Tn,L Heur. Heur. and Opt. Opt. Opt. Opt. Opt. 
Tn,U Opt. Opt. Opt. Opt. Heur. and Opt. Heur. 

7. Conclusions 

In this paper we have presented a comprehensive analysis of computa­
tional problems related to the computation of the interval-valued Kendall 's 
r dependence (association) measure when statistical data are imprecise and 
given in the form of intervals. First, we have showu that some heuristics, 
originally proposed in (Hryniewicz and Opara, 2012a,b) can be efficiently 
used for the generation of a starting point of the optimization procedure 
based on the random generation of linear extensions described in the paper 
by Den·oeux et al. (2005). It appears that the heuristic solutions yield very 
good approximations of the maximum value of r in the case of strong positive 
dependence, and of the minimum value of r in the case of strong negative 
dependence. In the similar cases of moderate dependence the approximations 
are not so accurate, but stili can be used as starting points for further search 
of the minimal and maxima] values of r. 

When multivariate statistical data are described by the most popular 
copulas such as Gaussian (Norma!), Clayton, Frank and Gumbel, much better 
approximations can be proposed. They are computed by the routine for 
the constrained optimization of Pearson 's linear correlation coefficient. The 
hybrid algorithm consisted of minimization (maximization) of Pearson's p, 
and then the application of the algorithm based on the random generation 
of linear extensions yields extremely good approximations which seem to be 
close to the exact ones even in the case of weak dependence. 

Finally, the usage of the randomly initialized general-purpose optimiza­
tion procedure has been considered. The performance of such algorithms has 
been considered when it is possible to introduce problem-specific knowledge 
into the search space definition. The problem of finding heuristics useful 
for maxima] values of r for negative dependencies and minimal values of 7 

for positive dependencies unfortunately stili remains an open question. Be­
cause of the properties of the considered algorithms it is not advised to use 
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heuristics in order to initialize optimization algorithm, since this bears risk of 
premature convergence. Consequently the algorithm initialized with heuris­
tics performs worse than the same algorithm that is initialized randomly. 

In the paper we have considered only the case of imprecise data of the 
interval character. One can easily extend the obtained results for fuzzy data, 
as fuzzy numbers representing such imprecise data points can be expressed 
as nested sets of intervals. For instance, one can start the optimization 
procedure with the shortest intervals, and then to use the data points for 
which minimal (maxima!) values of r have been obtained as the starting 
points for the optimization needed for the computation of the next ( wider) 
interval of r. Approach and algorithms proposed in this contribution can 
be also directly used for the calculation of other rank-based measures of 
monotonie dependence in presence of imprecise data. 
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