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ESTIMATING SPECIES NUMBERS BY EXTRAPOLATION II: 
ESTIMATING THE ADEQUATE SAMPLE SIZE 

ABSTRACT: On the basis of large model assemblages estimators are developed to predict the 
sample size necessary to sample a given fraction of the total species number. The classical method that 
takes the point of leveling off of the species accumulation curves proved to be less efficient than the use 
of the second order jackknife in determining the sample size necessary to collect exactly half of the 
species number (No.s). The present paper studies eight newly developed estimators for No.s and shows 
that estimators based on a Michaelis-Menten formula and a negative exponential model give even better 
results with minimal sampling effort. The quality of all estimators was not correlated with s imple 
measures of community structure. 
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1. INTRODUCTION 

Despite the fact that many authors 
have dealt with species richness esti­
mators the question of sample size has 
only seldom been a matter of study (M o­
ravec 1973, Efron and Thisted 1976, 
Soberon and Llorente 1993, 
K eating et al. 1998). Often, the sample 
size is described as or assumed to be "suf­
ficiently large" (e.g. Heck et al. 1975, 
Menkens and Anderson 1988, Bal­
tanas 1992, Colwell and Codding­
to n 1994). The fact is astonishing because 
exhaustive sampling is often time and en­
ergy consuming and it would be valuable 
to take only the minimum number of sam­
ples necessary for answering a given prob-

lem(Colwell andCoddington 1994). 
For many studies, for instance in atlas 
studies, it would also be welcome to have 
standardized sampling efforts that allow 
comparisons of different habitats to be 
made (Elphick 1996). 

An early approach to relate sampling 
effort and species numbers was made by 
Good and Toulmin (1956). They used 
a Bayes approach to estimate species rich­
ness and found this estimate to be related 
to sample size. South wood (1978)-fol­
lowing the earlier work ofWald (1948), 
Waters (1955), Kuno (1969), and 
Green (1970) summarized methods of 
adjusting the sampling effort if the distri-
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bution of a population can be fitted to a ne­
gative binomial. Southwood (1978) 
admits, however, that extensive prelimi­
nary work is necessary to establish the 
type and the parameters of the distribution. 
Heck et al. ( 197 5) gave an estimator of 
minimum sample size using rarefaction. 
However, for their method to work, the to­
tal number of species has already to be 
known, a fact that reverses the actual prob­
lem. De Caprariis et al. (1976) devel­
oped an estimator of optimal sample size 
based on species accumulation curves by 
using the equation y = ax/(1 +bx), a model 
similar to the Michaelis-Menten approach 
of enzyme kinetics. But they acknowl­
edged that the accuracy of this estimator 
heavily depends on the fit of the model and 
that no extrapolation beyond the sample 
interval can be made. This, however, is 
nearly always necessary in real samplings. 
Keating (1998) reviewed the use of the 
Michaelis-Mentcn forn1ula for estimating 
species numbers. 

B a 1 tan as ( 1992; see also M ingot i 
and Meeden 1992) mentioned that sam­
ple size and reliability of an estimator of 
species richness are directly related. Al­
though acknowledging that there is no 
direct measure of sufficient san1ple size he 
gave some features of representativeness : 
high density, low proportion of rare 
species and small numbers of species in an 
area that is not too large. Bung e and 
Fitzpatrick (1993), when reviewing 
several non-parametric richness estima­
tors noticed that for some estimators there 
is a threshold below which an estimator 
does not give reliable results. For the most 
common used estimators (e.g. jackknife 
estimators or the Chao estimator) this 
threshold is roughly the sample size neces­
sary to detect half of the total number of 
species (in this paper denoted as N0 5). 

The classical method to '~measure" 
sufficient sampling or sampling complete-

ness is to take the point when the species 
accumulation curve of a sampling pro­
gram levels off(Preston 1948, Balogh 
1958, Pielou 1977, Moravec 1973, 
Trojan 1992). However, this method has 
the severe drawbacks that both type and 
type II errors frequently occur. In hetero­
geneous and unevenly distributed assem­
blages there may be either no asymptotic 
behavior of the accumulation curve until 
all species are found or there are pseudo­
asymptots (hence underestimating N0 5, 

see below). In very evenly distributed 
communities the method frequently 
overestimates the real effort necessary by 
far (Heck et al. 1975, Pielou 1977, 
Miller and Wiegert 1989). 

Recently, Keating et al. (1998) 
tested 11 estimators (mainly based on 
species- area relationship models) of ad­
ditional species expected in further n sam­
ples (a problem closely related to that of 
this paper) and found the negative bino­
tnial estimator of Efron and Thisted 
(1976) and the Michaelis-Menten model 
(De Caprariis et al. 1976) the best ones, 
although negatively biased and dependent 
on the underlying relative abundance dis­
tribution. 

The first part of this paper (U 1 rich 
1999) dealt with the question how to esti­
mate the total number of species of a cotn­
munity from a series of satnples. It was 
shown that the crucial point is the fraction 
of species already sampled. If more than 
33% of the total species number (TS) is al­
ready represented in the sample one of the 
corrected data analytical methods wi 11 
work sufficiently well, for more than 66° o 
sampled the jackknife estimators give rea­
sonably good estimates. In this second part 
model communities generated in the same 
way as in the first part will be used to de­
velop estimators for appropriate sample 
sizes. It will mainly deal with the question 
how large has the sample to be to get half 
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of total species number: No.s = f(TSo.s). or 2/3 ofTS) may then be inferred by inter­

Other sample sizes (for instance to get 1/3 polation. 

2. METHODS 

In this study the data set used in part I Again, a grid of 100 x 100 cells was used 

(78 model communities) will be used to taking samples from 1 to 50 cells. Maxi­

derive estimators for N0.5. The computation mum species density was set to 100 

process, the program used, and the pa­ ind./cell (total of 1 000 000 ind.), the mini­

rameters of these model species assem­ mum density ranged between 0.001 and 

blages are already described in part I. 0.0005 ind./cell (total of 5 to 10 ind.). 

The newly developed estimators will Testing the estimators 

then be tested using 50 new model com­ The estimators developed below 
munities ( 48 to 995 species) computed based on the Michaelis-Menten and the 
with the same program. Again power negative exponential model require an ini­
functions (in 30 cases), normal distribu­ tial rough estimate ofTS, the true number 
tions (1 0 cases), and log-notmal distribu­ of species in the community. Such a previ­
tions ( 1 0 cases) were used as underlying ous estimate is possible in many studies, 
density - weight distribution. The SO­ because generally there will be compari­
values (standard deviations of log2 densi­ sons possible with other studies or an up­
ties) of the samples of these communities per boundary is known. To develop the 
are given in Fig. 1. The mean aggregation estimators I used the true value of TS and 
(Lloyd index) of their species ranged be­ two times TS in the models. The models 
t\veen 0.96 (random distribution) and 6.94 were then tested with four different esti­
(highly aggregated) with a mean of 1. 92. mates of TS (random numbers in these 
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Fig. I. Standard deviations (SO) of log2 densities of 50 model assemblages \Vith species numbers 
bet\veen 48 and 995 . Given are also the theoretical values of 5 species - rank order distributions. 

The data for the po\ver fraction and the Sugihara model (log normal distribution) are redrav~· n from 
T o ke s hi (1996). 
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ranges): 0.67TS to 1.5TS, 0.5TS to 2TS 
and 0.67{2TS) to 1.5{2TS), 0.5{2TS) to 
2{2TS). 

These models used therefore a 
wide range from 0.5TS to 4TS. The 
higher the initial estimate of TS, the 
more conservative will be the estimate 
of N0 5, and the more exact the esti-

mate, the better wi 11 be the latter estimate 

ofNo.5· 

The upper and lower boundaries in 
Fig. 3 to 6 were computed using the re­
gression method of Blackburn et al. 
(1992) with 5 logarithmic classes. For the 

No.5lnarrow estimate {see below) 10 logarith­
mic classes were taken. 

3. RESULTS 

In principal there are four possible 
conditions under which a minimal sample 
size may be inferred. 

1. It may be possible to take a large 
number of samples and to construct a spe­
cies accumulation curve. 

2. It is possible only to take a limited 
number of samples. 

3. Only one sample was taken. 

4. There are not previous samples. 

In all four cases there may be or may 
not be a preliminary estimate of the total 
number of species S. 

Case 4 will not be dealt with because 
without a priori knowledge of the assem­
blage given it seems not to be possible to 
infer how large the sample has to be to es­
timate population parameters and species 
numbers. 

Case 1 

The most often used method to assess 
the necessary sample size is to take the 
point when the species accumulation 
curve becomes asymptotic (Heck et al. 
1975). This method generally overesti­
mates N0 5 by far. When testing the method 
with 50 model communities (see methods) 
the factor of overestimation was 17, rang­
ing from 2 times to 49 times . The factor of 
overestimation of the sample size to sam­
ple 2/3 ofTS (N067) was 7. In none of the 

cases did the method underestimate the 
true N0.5. It is therefore a very robust esti­
mate but results in a much too high sam­
pling effort. 

A better method to estimate N0.5 is to 
use one of the estimators of species num­
bers (see part I of this paper: U 1 r i c h 
1999). Most of these estimators are nega­
tively biased but become asymptotic if the 
sample size contains more than a certain 
fraction of the true species number. In this 
respect the second. order jackknife estima­
tor (E12) seems most useful because of the 
clear asymptotic behavior and the small 
variance. E12 becomes asymptotic if more 
than half ofTS was found. 

In a plot of sample size versus EJ2 -

estimate and using 50 model communities 
four types of curves were found (Fig. 2). 
Most often (73% of the model communi­
ties) occurred types A and C. These types 
are characterized by a clear leveling off 
and in the mean the point of leveling off 
overestimated N0 5 only by factor of 1.8. In 
18% of the communities the method 
slightly underestimated the true N0 5 The 
lowest estimate was 89% of N0.5 = 32 in­
stead of36 samples). 

In Type B the number of samples is 
yet too low to reach the point of leveling 
off. In most of these cases one or more 
pseudo-levels occurred. Care has there-
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fore to be taken when interpreting the plots 
and a sufficient number of additional sam­
ples (in my communities 10 proved to be 
enough) have to be considered. The most 
difficult situation occurs in type C. The 
communities have a very uneven distribu­
tion with many rare species and (often) a 
low fraction of species per sample unit. In 
this case, the curve is very flat without a 
distinct point ofleveling off even after N0 5 

is passed. In this case additional methods 
which are described below have to be 
used. 

Case 2 

Is it possible to estimate N0 5 if only a 
limited number of samples (for instance in 
a preliminary study) can be taken? There 
are two estimators of species richness, the 
Michaelis-Menten and the negative bino­
mial model, which contain TS in their 
equation and which allow an easy compu­
tation ofN0 5 . They have the further advan­
tage that their variation is comparably low 
(see part I: U 1 r i c h 1999). Therefore, both 
models were used to develop estimates of 
N0 5 taking only three samples (the mini­
tuum possible number) from the model as­
setnblages. 

In the case of the Michaelis-Menten 
approach, N0 5 equals the constant B 

Fig. 2. Estimates (E12) of the second order 
jackknife estimator dependent on sample size . 
Given are also the true species number (TS) 
and the sample size to collect exactly half of 
TS (N0.5). The four types (A-D) are typical 
examples of species accumulation curves frotn 
50 model communities and are discussed in 
the text. 

(in the following denoted as BMM) of the 
equation 
FS(n) = (TS n)/(B + n). (1) 
In the negative binomial model 
FS(n) = TS(l - e-Kn) (2) 
the estimate ofN0.5 is given by 
BNE= ln(0.5)/-K (3) 
where FS(n) is the cumulative number of 
species after n samples. B denotes the sample 
size to fmd exactly half of the total number of 
species (TS). K is a constant which detennine 
the shape of the function and which is derived 
from the fitting process. 

Both estimators require an initial esti­
mate ofTS (see the methods section). Be­
cause the model communities cover the 
whole range of real assemblages the lower 
boundary lines of the plots in Fig. 3 may 
be used to construct robust estimators of 
No 5: 
Michaelis-Mcnten, exact value of TS 
(MMTs): 
BMM = (B/0. 7948) l/0.?

466 
( 4) 

Michaelis-Menten, 2TS (MM2Ts): 
BMM = (B/2.5081) l/0.

639 (5) 
Negative exponential, exact value of TS 
(NETs): 
BNE = ([ln(0.5)/K]/0.9608) 110 62

' (6) 
Negative exponential, 2TS (NE2Ts): 
BNE = ([ln(O.S)/K]/2.5553) 1 0 5316 (7) 
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Fig. 3. Estimated No.s (BMM and BNE) dependent on the true No.s. A, B : Michaelis-Menten model 
using the true TS (A) and two times TS (B). Given are the regression functions (belo\v) and the 
function of the lov;er boundary lines (upper equation). C, 0 : negative exponential model \vith TS 

(C) and two times TS (D). Abbreviations as in Fig. 2. 

These fottnulas were tested using 50 
assemblages with estimates ofTS ranging 
from 0.5TS to 4TS (see Methods). 

First, Fig. 3 and Table 1 compare the 
estimates BMMand BNE offormulas 1 and 3 
with real N0.5 . Both values are highly cor­
related. Table 2 shows that both methods 
are able to esti1nate N0.5 . If TS is roughly 
known - cases MMrs (4) and NErs (6) ­
the methods overestimate the true value by 
factors of 1.8 to 3.2 and 10 to 12% of the 
estimates are below the true value. IfTS is 
less known - cases MM2rs (5) and NE2rs 
(7) 6 to 10% of the estimates of N0.5 were 
below the true value and the mean factor 
of overestimation was 2.4 to 2.8. As ex-

pected, the more exact the estimate ofTS, 
the smaller the standard deviation of the 

estimate ofNo.s. 

Case 3 

The same type of reasoning was also 
used to develop estimators that are based 
only on the number of species per sam­
pling unit (SM 1) or on the relation between 
species numbers found in one (SM 1) and 
in two cells (SM2). These cases resemble 
situations in which only one or two sam­
ples were taken from the community un­
der study. Figures 4 and 5 show that again 
there is a correlation between N0.5 and 
SMtiTS and (SM2 - SM1)/TS. 
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Table I . Eight methods to assess the number of samples to collect at least 50% of the true species 
number of an animal assemblage. Data from 78 model assemblages with 28 to 997 species. Given 
is the percentage of estimates that is below the true sample size to detect half of the species (No.s). 

The factor of overestimation of No.s is the quotient of estimate and true value In the case of 
(SM2 - SM1 )ITS only communities were taken in which No.s > 1. 

Symbols are the same as used in formulae 1 to 11 in the text. TS: estimate using the true species 
number; 2TS: estimate sung two times TS SM 1 2: number of species found in I, 2, respectively, units of 
area (cells) 

' 

Methods using initial estimates of TS 

Percentage estimates Mean factor of 
Method SD of overestimation 

below N0.5 overestimation N0.5 

Michaelis-Menten (MMTs) 6.4 1.6 0.8 

Michaelis-Menten MM2TS 5.1 2.1 1.1 

Negative exponential NErrs 5.1 1.5 0.5 

Negative exponential NE2TS 5.1 2.0 0.7 

SM1/TS 3.8 2.5 1.1 

(SM2 - SM 1 )ITS 6.4 2.9 5.3 

Methods not using initial estimates of TS 

Percentage estimates Mean factor of SD of 
Method 

below N0.5 overestimation N0.5 overestimation 

10.3 7.4 12.8 N o.51narrow 

3.8 11.1 18.4 M o.51wide 

Table 2. Test of eight methods to assess the nu.2,ber of samples to collect at least 50% of the true 
total species number. Data from 50 model assemblages with 48 to 995 species. Given is the percentage 
of estimates that is below the true sample size to detect half of the species. The factor of overestimation 
of No.s is the quotient of estimate and true value. In the case of (SM2 - SMt)/TS only communities 

were taken in which No.s > 1 
Symbols are the same as in Table 1 and in formulas 1 to 11 in the text. 

Methods using initial estimates of TS 

Mean 
Percentage Mean factor of Percentage factor of SD of 

SD of estimates overestimation estimates Method overesti overesti 
below N0.5 

overestimation below N o.s 
N o .s -mation -mat1on 

No.s 
213TS < estimate of TS < 312TS 1/2TS < estimate of TS < 2TS 

MMTs 10. 1.9 1.1 12.0 3.2 2.5 

2.0 MM2TS 6.0 2.4 1.2 8.0 2.7 

NETs 12.0 1.8 1.2 12.0 3. 1 2.3 
6.0 2.5 NE2TS 1.3 10.0 2.8 2.0 

SM 1 I TS 8.0 2.8 1.8 8.0 4.4 3.2 
(SM2 - SM 1 )ITS 8.0 2.5 1.7 4.0 4.4 5.3 

Methods not using initial estimates of TS 

Percentage Mean factor of 
SD of Method estimates overestimation 

overestimation 
below N0.5 No.s 

8.0o/o 11.5 14.8 No.51narrow 

2.0% 16.3 20.6 M o.51wide 
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The equations of the upper boundary 
lines may therefore serve as estimators of 

No.s. 
SM1/TS: 
BsMt = 1.0108 (SMt/TS)- 1.74 

(SM2-SMt)/TS: 
BsMt , - 24.544(SM2- SMI)rrs 

2 
= 149.64 e 

(8) 

( 9) 

Is it possible to estimate N0.5 without 
any preliminary estimate of TS. Figure 6 
shows that in the model communities there 
was indeed a correlation between SM1 and 
N0_5 which can be used to construct esti­
mators. With the method of B 1 a c k burn 
et al. (1992) it is possible to construct two 
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100 • 

• 10 
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0.01 0.1 

S~ /TS 

1 

1000 -------------------, 
y = 149 .64e -24·544x 

100 
1.() y = 24.712e-19.438x 
z 0 ... 

10 • • • .. R2 = 0.2032 

• 
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Table 2 shows that indeed both estima­
tors are able to predict N0_5, but due to the 
more limited infotmation used, the results 
are not as good as in the case of the MM­
and NE-approaches. Between 4 and 8% of 
the estimates underestimate the true value 
and the mean factor of overestimation was 
2.5 to 4.4. The standard deviations also in­
dicate slightly worse results in comparison 
with the two above estimators. 

Fig. 4. versus the quotient of N0_5 
species number per sampling unit 
(cell) (SM 1) and TS. The upper 
equation gives the regression of the 
upper boundary line. Abbreviations 
as in Fig. 2. 

Fig. 5. N0_ versus the quotient of 5 
(SM2 - SM 1) and TS. The upper 
equation gives the regression of 
the upper boundary line. The 
regression was computed 
excluding the No.s = 1 values. 
SM 1, SM2 are the species numbers 
found in one and two samples, 
respectively. 

boundary lines, a wider and a more narrow 

one (see methods). 

No. 51 narrow 
4157 B = 5223.4 SM1 - 1. (10) 

N o.51wide 

B = 5492.5 SMI-1.))4 ( 11) 

As expected, both estimators are very 

robust and only 8 and 2%, respectively, of 

their estimates were below the true value 

https://SMt/TS)-1.74
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of N0.5 of the test communities. However, 
in the mean they overestimated the true 
No 5 by factors of 11.5 and 16.3 combined 
with a relatively high variance. These re­
sults are comparable to the first leveling 
off method of case 1 but with much less 
sampling effort. 

Interpolating other fractions of species 

With the Michaelis-Menten and the 
negative exponential approach it is easy to 
compute N0.33 , N0.67 or other sample num­
bers. The general formulas are (x denotes 
the proportion of species to be found): 
Michaelis-Menten (MM): 
Nx= xB/(1-x) (12) 
Negative exponential (NE): 
Nx = No.5ln(1- x)/ln(0.5) (13) 

In the MM-approach N0 33 is exactly 
0.5No.s and No.67 = 2No.s. The NE model 

Fig. 6. N0.5 versus the species 
number per sampling unit (cell). 
The upper equation on the left 
side gives the regression of the 
outer upper boundary line 

(No.51wide) (formula 11 in the 
text), the equation on the right 
side is the regression of the 

1000 inner upper boundary line 
(No.51narrow) (formula 10 in the 
text). 

gives slightly different results: 0.6N0.5 and 
1.6No.s. 

Table 3 compares such interpolations 
(for x = 0.33 , 0.67, and 0.9) with the real 
values and shows that both estimators are 
indeed able to predict the true Nx in a rea­
sonable way. This is especially true for 
low fractions. In the case ofN0.33 nearly all 
estimates were above the true value. The 
results of the Michaelis-Menten model 
were slightly better than that of the nega­
tive exponential. At higher fractions the 
perfottnance reverses. The Michaelis­
Menten model overestimates the true sam­
pling effort more than the negative expo­
nential model. However, the negative 
exponential tends to underestimate the 
real sampling effort. Between 14 and 36°/o 
of the estimates (x = 0.67 and 0.9) ranged 
below the true value. 
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Table 3. Interpolation of estimates of N0 33, N0 67 . and N0 9 with the forn1ula5 given in the text. Methods, symbols and assemblages 
are the same as in Tables 1 and 2 

Method Percentage Mean factor of SD of Percentage Mean factor SD of Percentage Mean factor of SD of 
. 

estimates overesti­ overesti­ estimates of overesti­ overesti­ estimates overesti- overesti­
below N0.33 mation No.33 mation below No.67 mation No.67 mation below N0.9 mation N0.9 mation 

2/3TS < estimate of TS < 3/2TS 2/3TS < estimate of TS < 3/2TS 2/3TS < estimate of TS < 3/2TS 

MMTs 0.00% 1.8 0.8 17 .95o/o 1.9 1.1 I 9.05o/o 3.6 3.9 I~ 

MM2TS O.OOo/o 2.4 1.1 17.95% 2.5 2.0 7 .69o/o 3.4 2.5 I a 
(p 

(p 

..., 

NETs 2.00o/o 2.2 1.2 35.90o/o I .4 0.8 23.81 % 2.1 1.6 IS ..., 
(") -· 

I ::::r" NE2TS O.OOo/o 3.2 1.7 25.64% 2.1 1.6 23.8lo/o 2.5 1.8 

l/2TS < estimate of TS < 2TS l/2TS <estimate of TS < 2TS l/2TS < estimate of TS < 2TS 

MMTs 8.00o/o 2.9 2.0 15 .38o/o 3.2 2.3 14.29% 5.5 4.3 

MM2TS 4.00o/o 2.6 2.1 12.82o/o 2.7 2.0 19.05% 4.7 3.8 

NETs 4.00% 3.6 2.5 23.08o/o 2.6 1.9 14.29o/o 3.4 2.1 

NE2TS 0.00% 2.8 1.0 28.2lo/o 2.8 1.0 28.57o/o 2.8 1.0 
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4. DISCUSSION 

The above analysis showed that it is 
possible to estimate sample sizes to sam­
ple a given fraction of species of a commu­
nity having only minimal knowledge 
about this community. In a larger series of 
samplings, the use of the second order 
jackknife estimator proved to give better 
results than the classical method which de­
termines the point of leveling off of the 
species accumulation curve. 

If only a limited number of samplings 
is available (3 in this paper) the use of a 
negative exponential1nodel gave the best 
results to determine N0.5 or larger frac­
tions. For smaller fractions of the true spe­
cies number (TS) to be found the 
Michaelis-Menten approach was more ef­
ficient. Both methods overestimate the 
real Nx (a given proportion x ofTS) by fac­
tors between 1.8 and 5.5. For both meth­
ods to work an initial estimate of TS is 
necessary. If such an estimate is not avail-

able, the number of species per sampling 
unit leads to an estimate which is fre­
quently too high (factor 11.5 in the mean) 
but which is still better than the leveling 
off method. 

Which facto\s determine the quality 
of the estimate? From samplings of the 
model communities the SD-value, the 
mean aggregation of the species, the true 
species numbers, the number of species 
per sampling unit, and the underlying den­
sity - weight distribution with their pa­
rameters were known. Table 4 shows the 
results of a MANCOV A and a multiple re­
gression to study which factors influence 
the quality of the estimate (measured by 
the factor of overestimation). The surpris­
ing result appears that only in a few cases 
do the prcdicators correlate significantly 
with the estimates. Especially the underly­
ing distributions - measured by the SO­
value and the type of density- weight dis-

'fable 4. M1-\NCOV A and multiple regression to detect the influence of underlying distributions and 
SO values on the performance (estimate/true value) of eight methods to estimate Nos. The MA NCO VA 
tested the influence of the underlying density - \Neight distribution on the performance of the estin1ators 
(log-normaL nonnal or pov;er function). SD was used as a covariatc. The multiple regression used SO 

(the standard deviation of the mean aggregation (all species \vith more than 50 individuals in the 
san1ple. see part I : U I rich 1999). SM 1 and TS. 

Symbols are the same as in Table 1 and in formulae 1 to 11 in the text. P: P-weight of the multiple 
regression~ F: F - statistic of the MANCOVA. ***: P < 0.001, ****: P < 0.0001. 

MANCOVA Multiple regression 

Method All effects Covariate SD Aggregation SMI TS 

F SD p p p ~ 
0.33 -0. 18 -0.18 0.07 0.01 0.25 MMTs 
0.4 -0.1 -0.1 0.14 0.17 -0.05 MM,Ts 

0.37 -0.05 0.05 0.15 -0.24 0.4 NETs 
0.18 -0.06 0.04 0.19 -0.04 0.15 NE2TS 
0.48 -0. 15 0.01 0 -0.33 0.61*** SMlrrs 

(S M , - SM 1)ffS 11.1 **** 0.25 0.07 0.23 0.01 0.25 

1.05 -0.01 -0. 15 -0. 16 -0.08 -0.52*** No.51narrow 

1.15 -0.01 -0.16 -0.16 -0.05 -0.55*** M o 51wide 
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tribution (nottllal, log-normal or power) 
had only a minor influence on the outcome 
of the estimate. In the SM1/TS-method (8) 
the quotient of estimate and true value is 
correlated with TS. Therefore, the lower 
the number of species, the better the esti­
mate. The opposite is true for the No.Sinarrow 

and N o.Siwide estimators ( 10 and 11). In the 
case of the (SM2-SM1)/TS-estimator (9) a 
nortnal distribution gave worse results 
(factor of overestimation 5.5) than the two 
others (factor 2.1). This means that in the 
latter cases this estimator may serve as an 
alternative to the two parametric ones. 

The estimators are developed on the 
basis of model assemblages. Because 
these assemblages span a wide range of 
community types, they are surely also ap­
plicable to natural communities. However, 
the next step has to be to test the above de­
veloped fotmulas using real communities. 

Of course, the estimators are far from 
being perfect. A mean factor of overesti­
mation of 2 mesan that instead of for in­
stance the necessary 10 samples the 
estimators give 20. No.s1narrow (fottnula 1 0) 
gives 115 - a value that is hardly satisfac­
tory. However, under the wide range of 
community structures to be considered 
and the very limited amount of data used 
no better results seem to be possible. To 
obtain better estimates detailed knowledge 
of community structure and community 
specific sample theoretical modeling 
would be necessary, tasks for which the 
knowledge of the sufficient sample size is 
already required. It seems that this circle 
cannot be solved. 
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5. SUMMARY 

The present paper developed methods to esti­
mate the sample size to sample a given fraction to 
the total species number (TS) of large animal com­
munities (Table 1, Figs 1 to 6). It is shown that a 
Michaelis-Menten and a negative exponential mo­
del are able to predict sample size sufficiently well 
if there is an initially (rough) estimate of TS (Tab­
les 2 and 3) (B and K are the parameters of the 
Michaelis-Menten and the negative exponential 
model developed from the species accumulation 
curve: Bo 5 is the estimate of" TS): 
Michaelis-Menten, using the exact value of TS 
(MMTs): 

Bo 5 = (B/0. 7948) 1/0.7466 

Michaelis-Menten, using two times TS (MM2Ts): 
639 Bo.5 = (B/2.5081) 110 · 

Negative exponential, using exact value of TS 
(NETs): 

Bo.5 = ([ln(0.5)/K]/0.9608) 110 ·622 

Negative exponentiaL using t\vo times TS 
531 6 (NE2Ts): Bo.s = ([ln(0.5)/K]/2.5553) 110· 

In the mean these estimators overestimated 
the real value by factors of 1.8 to 3.2. 

If TS is not known the number of species per 
sampling unit can be used: 

1.4157 Bo.Sinarrow = 5223 .4 SMt-
- 1.314 Bo.51wide = 5492.5 SMt 

Due to the reduced amount of data used the 
latter estimators give less exact results and overe­
stimate the real values by factors of I 1.5 and 
16.3. 

It was not possible to predict the quality of 
the estimates from the parameters of the model as­
semblages (Table 4 ). 
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