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ESTIMATING SPECIES NUMBERS BY EXTRAPOLATION 1: 
COMPARING THE PERFORMANCE OF VARIOUS 

ESTIMATORS USING LARGE MODEL COMMUNITIES 

ABSTRACT: A computer program \vas constructed that simulates large species assemblages (28 
to 997 species) with various species - rank order distributions and degrees of aggregation of the species. 
From these model assemblages random samples were taken to study the performance of 14 estimators of 
species diversity . For 6 of the estimators correction factors are developed. In sufficiently large samples 
(more than 2/3 of the true species number (TS) sampled) a corrected second order jackknife estimator 
gave the best results. 18o/o of the estimates ranged outside TS ± 10%. If fewer species are represented in 
the sample (but more than 1/3 TS) two newly developed data analytical estimators performed better. Be
t\veen 23 and 24%, respectively, of their estimates ranged outside TS ± 20o/o. Crucial to the performance 
of all of the estimators is the sample size. The minimum sample size for an estimator to work has to 
contain at least 1/3 of the total species number. 

KEY WORDS: model species assemblages. species diversity, jackknife-estimator. bootstrap-esti
rnator. distribution. estimation. sampling. parametric models. 

1. INTRODUCTION 

Estimating species numbers from a 

series of samples is one of the more impor

tant but also one of the most difficult tasks 

in ecological research. Despite the fact 

that the problem has recently gained grow

ing attention (Miller and Wiegert 

1989, Palmer, 1990, 1991, Baltanas 

1 9 92, C h a o et a I. 199 2, M i n g o t i and 

Mcedcn 1992, Bunge and Fitz

patrick, 1993, Hodkinson and 

Hodkinson 1993, Soberon and Llor
entc 1993, Col well and Coddington 

1994, Lee and Chao 1994, Solow 

1994, Coddington et al. 1996, N orris 
and Pollock 1996, Edwards 1997, 
Longino and Colwell 1997, Tack
aberry et al. 1997, Boulinier et al. 
1998, Keating 1998, Walther and 
Morand 1998) no systematic perform
ance study and comparison of the various 
methods proposed in the literature has up 
to now been undertaken. 

Palmer (1990, 1991) tested eight 
extrapolation methods using medium 
large plant assemblages. He found that of 
the non-parametric methods the first- and 
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second-order jackknife estimators 
(Smith and van Belle 1984) per
formed best. Of the parametric models a 
log-linear estimator was least biased but 
resulted in too high estimates. Bung e and 
Fi tzpatrick (1993) reviewed several es
timators from a sample theoretical point of 
view, but dealt only briefly with data ana
lytical methods. They did not compare es
timates and real values. The review of 
Col well and Coddington (1994) con
tains such comparisons for some non
parametric estimators and a small commu
nity. They largely confirn1ed the results of 
Palmer (1990). Keating (1998) tested 
the Michaelis-Menten approach and found 
it to be unsatisfactory in heterogeneous 
communities. The test of Tackaberry 
et al. (1997) again showed that uncor
rected data analytical models (log-log or 
log linear) result in too high estimates, 
thus supporting the findings of P a 1 mer 
(1990). Winklehner et al. (1997) ap
plied the first order jackknife estimator to 
epigeic Collembola and confirtned that it 
yields reliable results if a high fraction of 
species is already found. Walther and 
Morand (1998) tested 9 estimators with 
real data and computer simulations and 
found the first order jackknife and the 
CHAO 2 estimator to perforrn best. Their 
study however dealt only with a small as
semblage ( 40 species) and high fractions 
of species sampled (95%). 

In all of these reviews small to me
dium sized assemblages (< 150 species) 

were studied. Other studies used model 
communities constructed assuming cer
tain fixed distributions (e.g. He 1 ts he and 
Forrester 1983, Smith and van 
Belle 1984, Baltanas 1992, Chao and 
Lee 1992, Keating 1998). However, 
such an assumption is not met in reality. 
Good estimators have to deal with various 
kinds of communities and the perforrn
ance has to be studied under a wide range 
of conditions. Another aspect that up to 
now has only gained little attention is the 
perforn1ance of the estimators under the 
condition of small sample size, that means 
the degree of bias and possible threshold 
values. 

In this and in the second part of this 
paper (U 1 rich 1999a) I will therefore 
take another approach to test species di
versity estimators with model assem
blages. In testing 14 different estimators a 
newly developed program will be used 
that - starting from a few basic features of 
natural assemblages - generates a wide 
range of large but realistic model commu
nities. Random samples from these com
munities will then be used to study the 
performance of each estimator. 

This first part deals largely with the 
dependence of the quality of the estimates 
on the fraction of species represented in 
the sample. The second part will then 
study the question how to adjust the sam
ple size to get a sufficient fraction for the 
estimators to work. 

2. METHODS 

Real populations are characterized by 1999b ). A second feature of most of the 
more or less distinct density - weight dis species of a community is that their spatial 
tributions (Law ton 1990, C urri e 1993, distribution is non-random but aggre
U 1 rich 1999b, c). These distributions gated. Thirdly, species have no indefi
also roughly define the ranges in which the nitely low densities; however, there is a 
densities of the species fluctuate (U 1 rich species specific lower density limit. Start-
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ing with these three basic features of ani
mal communities a FORTRAN-program 
was developed to generate model animal 
assemblages (Fig. 1). As a random genera
tor the commercial Dran1 module of 'Nu
merical Recipes Software' was used, 
giving uniformly distributed random num
bers. The program places individuals at 
random into the cells of a large grid (for 

this study a 100 x 100 grid was used), 
takes random samples of various size from 
this grid and analyses them. To mimic real 
assemblages the maximum density per 
species and per cell was set to 100, the 
minimum density to 0.001. One can com
pare this procedure with the insects in one 
ha area; the species then have densities be

2 tween 0.001 and 100 ind. m- . These den
sities and the density-range (5 magnitudes 
of order) resemble natural ones (S c ha e
fer 1991, 1996, Ulrich 1998). 

The individuals of up to 1000 species 
were placed at random inside the cells of 
the grid. The densities of the species were 
random variables inside the range given 
by log-notmal, normal, linear, power or 
random density-weight distributions and 
the minimum density. In reality density
weight distributions most often follow 
power functions (Currie 1993, Ulrich 
1999c ), and the upper boundary limits, de-
fined in most assemblages (Gas ton 
1993, Scharf et al. 1998, Ulrich 
1999c), have exponents between 0.5 and 
more than 2. The triangular form of many 
of the distributions may also be described 
by log-normal or not mal functions. Linear 
and random distributions gave in all of the 
runs too even distributions with nearly all 
species present in the first sample. There
fore, in the present study 53 power func
tions, 15 log-normal and 10 not mal 
distributions were tested. 

To simulate aggregation 1 to 50 indi
viduals (the number chosen at random) 
were placed together resulting in values of 

Density -weight distribution: 
Normal, log-normal, linear, 

power function, random 

Random setting of densities 
inside a range given by the 

density - weight distribution and 
the minimum allowed density 

Setting the degree of 
a re ation 

Random placement of indivi
duals into cells of a 

100 x 100 grid 

( Random samples from this grid I 

• 
Random rearrangement 

of sampling order (20 times) 

I Analyzing the pattern I 
Fig. 1. Flow diagram of the FORTRAN-program 

for constructing and analyzing the model 
communities used in the present study. Further 

explanations in the text. 

the Lloyd index between 1 and 10 which 
also equals natural values. With this pro
cedure I computed 78 different model as
semblages having 28 to 997 species. Fig. 2 
shows that these assemblages had distri
butions similar to natural ones. Following 
Sugihara (1980) and Tokeshi (1996) 
the standard deviations of log2 species 
densities (SD) of the assemblages are plot
ted against species numbers. All model 
communities range inside an area given by 
the most even rank order distribution (the 
broken stick) and uneven distributions 
(Power fraction models). Real large het-
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Fig. 2. Standard deviations (SD) of log2 densities of the samples of 78 model assemblages with species 
numbers between 28 and 997. Given are also the theoretical values of 5 species- rank order distributions. 

The data for the power fraction and the Sugihara model (log normal distribution) are redrawn from 
Toke shi (1996). 

erogeneous animal assemblages are often 
characterized by rather even distributions 
with SD values below 2 (Ulrich unpub
lished). 

From each of these 78 model commu
nities 8 and 48 random samples were taken 
resulting in 156 estimates. The program 
assumes quantitative sampling of species 
and homogeneity of the whole grid. 

Because the sampling order has a 
large influence on the resulting species ac
cumulation curves the sampling order was 
randomized 20 times and the mean values 
taken (following the procedure of C o 1-
well and Coddington 1994). Of each 
model community the SD-value and the 
mean aggregation (measured by the index 
of Lloyd, Pie 1 o u 1977) were computed. 
Because the Lloyd-index - as other indi
ces using the variance/mean ratio - is bi
ased at low densities (M cArd 1 e et al. 
1990), I computed the index only for those 
species which had more than 50 individu
als in the sample. 

Preliminary analyses showed that not 
the number of samples but the percentage 
of the true species number represented in 

the sample is the main factor determining 
the performance of an estimator of species 
diversity. Therefore, the following Figs 4 
to 8 do not plot the estimate (E) versus the 
true species number TS (the no1n1al proce
dure in the literature) but plot the quotients 
E/TS versus number of species found in 
the total sample (FS) I true number 
(FS/TS). Such a plot shows immediately 
the performance under various sample 

. 
sizes. 

To assess the quality of the estimators 
the data points of Figs 4 to 8 were fitted to 
a normal distribution and the skewness of 
the distributions was calculated. A good 
estimator should have a mean around 1 
(E/TS), a low variance and a low skew
ness. A lower mean and/or marked skew
ness indicate a negative bias and vice 
versa. 

The question what is a good estimate 
is largely a matter of choice. In small sta
ble communities a 5% error term may be 
desired. In large assemblages with a fairly 
degree of annual species turnover even a 
20% error term seems to be acceptable. 
The analysis showed that none of the esti
mators is able to catch the 5% goal (TS ± 
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5%). Therefore, Tables 2 and 3 show how 
many of the estimates ranged inside TS ± 
10% and TS ± 20%. The Tables do not 
give the variance of the estimates. Al
though for all non-parametric estimators 
such variance terms are available (Burn
ham and Overton 1978, Heltshe and 
Forrester 1983, Smith and van 
Belle 1984, Colwell and Codding
t on 1994) and the variance of the para-

metric estimators can easily be inferred 
from the estimation process, such values 
are misleading, because most estimaiors 
are biased and their distributions skewed 
(Tables 1 and 2). However, as an empiri
cally derived estimate of the true variance 
the variance of the normal fits in Tables 1 
and 2 can be taken. 

3. RESULTS AND DISCUSSION 

Methods for estimating species num
bers can be classified into two groups: 
non-parametric estimators derived from 
sample theoretic reasoning, and data ana
lytical parametric methods. In the latter 
case three different kinds of species-area 
relationships can be used to estimate spe
cies numbers (Fig. 3): asymptotic func
tions (Type 1) or non-asymptotic (Type 2) 
functions both using species accumulation 
curves, and functions using a plot of the 
newly found species versus sample size 
(Type 3). 

A third main group of methods uses 
the parameters of the log-normal distribu
tion (Preston 1962) to infer the total 
number of species (e.g. Miller and 
Wiegert 1989, Baltanas 1992, Ko
bayashi and Kimura 1994). However, 
because real populations seldom follow 
exactly theoretical distributions, and the 
mode has to be known (Hughes 1986), 
which is often not the case in real samples, 
such computations do not result in suffi
ciently exact estimates and will not be ana
lyzed in this paper. S 1 o comb et al. 
(1977) and Slocomb and Dickson 
( 1978) found that such an estimator re
quires at least 1000 individuals in the sam
ple and more than 80% of the true species 
number has to be represented. P a 1 mer 
( 1990) studied the method and found it not 

to be better than the simple measure of 
number of species detected. 

Pie 1 o u (1977) gave a method to in
fer the number of species if the community 
fits a negative binomial distribution with 
k > 0. This distribution is seldom used in 
the ecological literature (see Tokeshi 
1993 for a review) and probably not often 
applicable to real communities. The 
method has the further disadvantage that 
the necessary estimation parameters them
selves have to be estimated by the empiri
cal data set, thus enhancing the variance. 
I am not aware of any study using this 
method. 

A third species - rank order distribu
tion that easily allows species numbers to 
be calculated is the geometric series (Pie
lou 1977). This is the most uneven distri
bution and may be found in some small 
communities structured by a few severe 
ecological factors (To k e s hi 1993 ). This 
type of distribution is easy to recognize 
and needs no further methods for estimat
ing species richness. 

Uncorrected non-parametric estimators 

Bunge andFitzpatrick (1993 and 
literature therein) discussed various non
parametric estimators developed assum
ing different underlying distributions. In 
the present study the four most often used 



Table 1. Performance of estimators of species numbers. Fit of normal distribution, skewness and o/o estimates outside I 0 or 20% error range of true species 
number (TS ± 10% or 20%) The values are given for more than 1/3, more than 2/3 TS, and between 1/3 and 2/3 of TS represented in the sample. 
Model communities are the same as in the Figures. Normally distributed estimators Uudged by the Kolmogorov-Smirnov test) are marked in bold print 
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Fig. 3. Three types of species - area models 
that can be used to compute species numbers. 
Asymptotic species accumulation curve (Type 1 ), 
infinite species accumulation curve (Type 2), and 
a plot of the newly found species versus area 
(Type 3). 

estimators in the ecological literature were 
tested: the Chao estimator (Chao 1984), 
the first and the second order jackknife 
(Burnham and Overton 1978, 1979; 
Smith and van Belle 1984) and a 
boots trap estimator (Smith and van 
Belle 1984). For other non-parametric 
estimators see Chao (1987), Chao and 
Lee (1992), Lee and Chao ( 1994) and 
Nor r is and P o 11 o c k ( 1996). These lat
ter estimators depend on closed capture
recapture models and the tests given in the 
two latter works indicate that they do not 
perfortn better than the four estimators 
tested in this paper [but see Walther and 
Morand (1998) for the case of high frac
tions of species sampled] . 

Chao: 
(1) 

First order jackknife: 
E11 = FS + S 1 (n-1) I n (2) 

Second order jackknifu: 
E12 = FS + [S 1 (2n-3) I n] -
- [S2 (n-2)2 I n (n-1 )] (3) 

Bootstrap: 
_ ~ FE )n 

E Boot -FS + L...Ji= 1 
( 1-

P1 (4) 

where FS is the number of species found 
in the sample. St, S2 are numbers of spe
cies that occur in exactly 1 or 2 samples, 
respectively, n is the sample size, and Pi: 
the proportion of cells containing each 
species z. 

These estimators have the drawback 
that the sample has to contain at least 50% 
of TS (the total number of species). They 
also have a strong negative bias. Fig. 4 
shows that despite some claims in the lit
erature (Palmer 1990, Colwell and 
Coddington 1994) the bootstrap is not 
suited to predict species numbers, a fact 
that has already been noticed by M ingot i 
and Meeden (1992). The other estima
tors work reasonably well if already more 
than 213 of the true species number is rep
resented in the sample with the second or
der jackknife giving the best results. 
Around 20o/o of the E12 estimates ranged 
outside ± 10% of the true value (Table 1). 
Fig. 4 and Table 3 also show that the per
forrnance is independent of community 
structure (SD and degree of aggregation), 
a necessary prerequisite of a good estima
tor. If fewer species were found the bias of 
all four methods resulted frequently in too 
low estimates. Again E12 performed better 
than the other estimators (Table 1) and 
may still be used if the sample contains 
more than 50% ofTS (Fig. 4). 

Uncorrected asymptotic parametric esti
mators (Type 1) 

Theoretically there is an infinite 
number of estimators of this kind because 
every constantly rising function can be 
forced to become asymptotic (see B rain
er d 1972 for several such functions). 
However, only a few such functions have 
been applied to estimate species numbers . 
This paper examines five such functions , 
the Michaelis-Menten formula (de Ca-
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Fig. 4. Performance of non-parametric estimators for estimating species numbers. Each data point represents the estimate for one model community either with 8 
or with 48 samples taken, together 156 estimates. Plotted is the proportion of estimate I true species number (E/TS) against the proportion of species found in the 
sample against true species number (FS/TS). *: Unevenly distributed communities (n = 23) with SD > 3, +: moderately evenly distributed communities (n = 34). 

with SD between 2 and 3, 6 : evenly distributed communities (n = 21) with SD < 2. 



Table 2. Performance of corrected estitnators of species numbers. Fit of normal distribution, skewness and % estimates outside 10 or 20o/o error range of true 
species number (TS + lOo/o or 20o/o) The values are given for more than 1/3, more than 2/3 TS, and between 1/3 and 2/3 of TS represented in the 
sample. Model communities are the same as in the Figures. Normally distributed estimators Uudged by the Kolmogorov-Smirnov test) are marked in bold print. 

Sytnbols as in Table 1, EaM: geometric mean of all corrected parametric estimators, EML: mean of corrected ELJ and EL2· 
m 
Vl ..... -· 

Corrected More than 1/3 TS found More than 2/3 TS found Between 1/3 and 2/3 
method TS found 

Normal distribution Skewness outside outside Normal distribution Skewness outside outside ± outside Outside -· 
Mean Variance Mean Variance 

Eu 1.14 0.05 0.55 68°/o 46o/o 1.14 0.04 -0.27 73o/o 46°/o 60°/o 55°/o 

EL2 0.95 0.03 -0.29 50°/o 24°/o 1.01 0.02 -0.52 36°/o 10°/o 80°/o 52°/o 

EML 1.05 0.03 0.13 62°/o 24°/o 1.08 0.02 -0.45 60°/o 23°/o 67°/o 26°/o 

EPnew 1.01 0.20 2.10 79°/o 52°/o 0.99 0.12 2.99 72°/o 34°/o 91°/o 80°/o 

ENE 0.97 0.06 0.06 72°/o 39°/o 1.04 0.04 0.46 67°/o 27°/o 83°/o 64°/o 

EAL 0.94 0.03 -0.46 50°/o 27°/o 1.01 0.02 -1.26 38o/o 11 °/o 81°/o 62°/o -~ ..... ...... 
EGM 0.99 0.03 -0.06 49°/o 23°/o 1.03 0.01 -0.46 34°/o 10°/o 76°/o 55°/o 0 

~ 

EJ1 0.86 0.02 -1.02 46°/o 25°/o 0.95 0.00 -0.34 21°/o Oo/o 92°/o 76°/o 
~ 

EJ2 0.93 0.02 -0.73 36°/o 19°/o 1.00 0.01 0.82 18°/o 1 °/o 71°/o 57°/o 

Esoot 1.05 0.07 0.67 64°/o 40°/o 0.99 0.06 0.88 57°/o 30°/o 76°/o 52°/o 
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Table 3. Multiple regression of performance (% of real species numbers predicted) as 
dependent and standard deviation of Iog2 densities (SD), degree of aggregation (mean value of 
Lloyd-index) and % of the real species numbers found in the sample as independent variables . 

Given are the P-weights of the multiple regression functions. Significant P-weights (P < 0.05) 
are marked in bold print. 

Method so Degree of 0/o species 
aggregation detected in the 

sample 

Chao (EcHAo) -0.07 -0.02 0.95 

1. order jackknife (EJ1) 0.07 -0.05 0.99 

2. order jackknife (EJ2) 0.08 -0.06 0.94 

Bootstrap ( Esoor) 0.03 -0.03 1 

LOGLOG (Ep) -0.43 0 0.21 

LOGLIN 1 (Eu) 0.22 -Q.37 0.29 

LOGLIN 2 (EL2) 0.14 -0.22 0.61 

Michaelis-Menten (EMM) 0.2 -0.2 0.89 

Negative exponential (ENE) 0.02 -0.09 1 

Hyperbola (EH) -0.09 0.1 0.85 

Asymptotic power (EAP) 0.05 0.1 0.17 

Asymptotic linear (EAL) -0.11 -0.19 0.88 

New species LOGLIN (EPnew) -0.07 0.02 0.88 

New species LOGLOG (ELnew) 0.28 -0.44 0.43 

prariis et al. 197 6), which was originally Asymptotic linear function (EAL): 
developed to describe the kinetics of en FS(n) = (a + bn)(l - FS(n)/TS) (10) 
zymes (Morris 1976) but - because of its 

which results in asymptotic shape - has also been applied 
FS(n) = (an+b)/(1+(an+b)/TS) to estimate species numbers (K eating 

1998), the negative exponential (So where FS(n) is the cumulative number of 
heron and Llorente 1993), an asymp- species after n samples. B denotes the 
totic power function (Stout and sample size to find exactly half of the to
Vandermeer 1975), and a simple hy tal number of species (TS). a, b, z, and K 
perbola (Lauga and Joachim 1987). are constants which detettnine the shape 
Additionally, an asymptotic linear model of the functions and which are derived 
was analyzed. from the fitting process. Other symbols 

as in Forn1ulas 1 to 4. 
Michaelis-Menten (EMM): 
FS(n) = (TSn)/(B + n) (5) 

Negative exponential (ENE): The parameters of these models were 
FS(n) = TS(l - e-Kn) (6) directly estimated with the nonlinear esti

mation procedure of the ST ATISTICA 
Simple Hyperbola (EH): packet (Quasi Newton method). Care has 
FS(n) = TS/n (7) to be taken on the initial data settings in the 

estimation procedure because "wrong" Asymptotic power function (EAp): 
settings may result in highly inaccurate esFS(n) = anz(l - FS(n)/TS) (8) 
timates. The best way proved to be to take 

this results after simple rearrangement in the estimates of the second order jackknife 
FS(n) = a/[nz + (a/TS)] (9) as the initial value ofTS. 
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Table 3 shows that (with the excep
tion of the asymptotic power) these esti
mators depend on aggregation and SD. 
Especially the Michaelis-Menten formula 
(EMM) is sensitive to both parameters, a 
fact that had already been noticed by 
Keating (1998). If more than 2/3 ofTS 
were represented in the sample the first 
four methods gave worse results than the 
jackknifes or the Chao estimator (Echao) 
(Figs 4 and 5, Table 1). However, the as
ymptotic linear function (EAL) performed 
nearly as well as Echao, E11 and E12 (the 
jackknife estimators), and this estimator 
has the advantage of being less biased. If 
fewer species are found (but more than 1/3 
ofTS) the estimates of the asymptotic lin
ear were even slightly better than that of 
E12 and than the other non-parametric esti
mators. The negative bias equals E12. 
However, the last column of Table 1 
shows that all estimators even failed the 
TS ± 20% criterion. 

In a recent paper E d wards (1997) 
developed an estimator based on an equi
librium of immigrations and extinctions. 
With immigration rates of dS/ dt = k1 

(TS-St) x area and extinction rates of 
-dSe/dt = ke S1 he got after simple rear
rangement the 

Reciprocal linear: 
1/ S1 = [kef(ki TS)] 1/area + trrs ( 11) 

with Si, Se: number of species which im
migrate and get extinct, Sr number of 
species in a given area, ki , ke: immigra
tion and extinction constants. 

The same function (under the name 
reciprocal linear) was independently used 
by Wink 1 ehn er et al. (1997) to estimate 
species numbers ofCollembola. However, 
- leaving the theoretical justification of an 
equilibrium of immigrations and extinc
tions aside - this forn1ula appears to be 
nothing more than the well known Li
neweaver-Burke plot of the Michaelis-

Menten model (Morris 1976, Palmer 
1990, Keating 1998) and it suffers the 
same drawback, the high variance of the 
intercept. The accuracy of the method is 
not better than the Michaelis-Menten 
method (but the derivation may serve as a 
theoretical justification of the latter). 

Uncorrected non-asymptotic parametric 
estimators (Type 2) 

Again, an infinite number of func
tions may serve for estimation. In the eco
logical literature only two types had been 
used, a double log function and an log
linear one (P a 1 mer 1990). Fig. 6 gives 
the performance of the double log and two 
forrns of log-linear models: 

LOGLOG: Ep = a(1/min)z (12) 

LOGLIN1: ELt = a[ln(l/min)]z +b (13) 
• 

LOGLIN2: EL2 = a[ln(1/min)]z (14) 

where min denotes the minimum allowed 
mean density, in our case 0.001 ind./cell. 
a, b and z are constants derived from the 
fitting process. 

The first two estimators are highly de
pendent on SD and aggregation, their dis
tributions are strongly skewed and they 
have a high variance. They are not suited 
to serve as estimators. The EL2 estimator 
performed better, but not as well as E1? and 
the asymptotic linear. This finding contra
dicts to a certain extent the claim of P a 1-
m er ( 1990) who found that estimator to 
perforrn only slightly worse than EJI and 
E12. The difference may stem from the 
smaller community size used in Palmer's 
study. 

A drawback of this and some follow
ing estimators is the fact that they depend 
on the minimum population density (using 
area instead of min always results in too 
high estimates and is a rather artificial 
measure). The minimum density has at 
least roughly to be known. On the other 
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hand, it allows one to select which species 
have to be included in the computation. 
However, the behavior of this estimator 
under varying minimum densities gives 
room for further study. 

Uncorrected asymptotic parametric esti
mators of type 3 

This estimation technique is seldom 
used (e.g. Hi I pert 1989) and requires 
more computational effort. I tested a dou
ble log and a log-linear function for pre
dicting: 

LOGLOG: S(n) = anz (15) 

LOGLIN: S(n) = aln(n) + b (16) 

where S(n) is the number of new species 
found in sample number and n, a, b, and 
z are constants derived from the fitting 
process. 

Because species do not have infinitely 
low densities it is impossible to take the in
tegral from 0.5 to oo as an estimate (as did 
Hilpert 1989). However, one has to 
compute the values numerically. For S(n) 
- values less than 1 one also has to multi
ply the values with the probability of find
ing a species (it is not possible to find 0.3 
species). This probability pis exactly S(n). 
For S(n) > 1 pis 1. Therefore, the estima
tor takes the form: 

E = ~1 / mm S(n) 
Pnew L..Jn = 1 P (17) 

ELnew = L~' m;n S(n)p (18) 

where min again denotes the minimal al
lowed density. 

Fig. 7 and Table 1 show that both es
timators did not give satisfactory results. 
More than 50% of all estimates ranged 
outside TS ± 20% and EPnew was strongly 
dependent on SD and aggregation. 

Corrected estimation methods 

The dependence of some ofthe meth
ods on the community structure (Table 3) 
gives the opportunity to introduce struc
tural parameters as correctors into the esti
mator. EL 1, EL2 (formulas 13 and 14) and 
EPnew (18) and the asymptotic linear (10) 
were negatively correlated with aggrega
tion and positively with SD. Because the 
aggregation cannot be computed exactly 
for all species (see Methods) I used results 
of the multiple correlation between E/TS 
(dependent) and SD and FS/TS (independ
ent) to construct a correction factor. E/TS 
turned out to be inversely dependent on 
SD. High values of SD lowered the esti
mate, low values gave too high estimates 
(Table 3). This fact led to a simple correc
tion factor using the median value of SD 
(nearly 2): 

Corr. EAL = 
EAL + [EAL (log2(SD) - 1 )/SD] ( 19) 

For ELt, EL2 and EPnew the median SD 
value proved to be the best quotient. After 
introducing the factor 0.8 to adjust the 
mean ofE/TS to values near 1, the new es
timators took the form: 

Corr. EL1 = 
0.8 [ELl + ELl (log2(SD) - 1 )/2] 

(20) 

Corr. EL2 = 
0.8 [EL2 + EL2 (log2(SD) - 1 )/2] 

(21) 

Corr. EPnew = 
0.8 [EPnew + EPnew (log2(SD) - 1 )/2] 

(22) 

The low variance of the Boots trap ( 4) 
and the negative exponential ( 6) also al
lowed correctors to be constructed. The 
plots in Figs 4 and 5 can be described by 
power functions of the fotn1 y = axz. 
Therefore 
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Errs = a(FSffS)z. (23) 

This leads after simple rearrangement 
to the corrected form: 

TS = (E/a)l/(1-z)psCI-z)/z (24) 

where a and z are constants derived from 
the fitting process, E denotes the estimate 
of the Bootstrap and the negative expo
nential method. Because both new esti
mators are dependent on SD the 
introduction of the above corrector gives 
the new estimators 

Corr. Esoot = (Esooll.05)8.45 FSO.l34 

(log2(SD) - 1)/2 (25) 

39 0 185 Corr. ENE = (ENE /1.03)6
· FS · 

(log2(SD) - 1 )/2 (26) 

The constants are taken from Figs 4 
and 5. 

Both, Esoot and ENE were also tested 
by fitting a second order polynomial in
stead of a power function. The results, 
however, were worse than the above cor
rections and the data are therefore not 
shown. 

For the non-parametric estimators the 
small sample bias correction factor of 
Hurvich and Tsai (1989) was used: 

Corr. = 2(K+l)(K+2)/(n-K-2) (27) 

for E11 and E12 K becomes 2 and 3, re
spectively, leading to 

Corr. E11 = E11 + 24/(n-4) and (28) 

Corr. E12 = E12 + 40/(n-5). (29) 

where N is the number of samples taken. 
Fig. 8 and Table 2 show the perfortnance 
of these corrected estimators. Given are 

https://Esooll.05)8.45
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also the mean of Corr. EL 1 and Corr. EL2 
(denoted as EML) and the geometric mean 
of all corrected parametric estimators 
(denoted as Eo M). EML is introduced be
cause Corr. ELI and Corr. EL2 have op
posite biases. The mean levels this out 
(Table 2). 

Fig. 8 and Table 2 show that all cor
rections enhanced the quality of the esti
mators. Corr. Esoot and Corr. ELt gave 
roughly correct estimates even if only 
20o/o ofTS was found. However, both tend 
to overestimate TS in the middle range. 
The corrected second order jackknife is 
still the best estimator if already 2/3 TS is 

represented in the sample. Only 21 o/o of 
the estimates ranged outside TS ± 10%. 
But otherwise EML and EaM perforn1ed as 
well under the TS ± 20% criterion. Around 
25% of their estimates ranged outside TS 
± 20%. Both have the advantage of being 
less biased. In the range between 1/3 and 
2/3 TS only EML performed reasonably 
well with 26o/o of the estimates outside TS 
± 20% (Table 2). Over the whole range of 
sample sizes this and the EaM estimator 
gave the most stable and unbiased results. 
EaM has the advantage of giving better re
sults in more complete samples. 

4. CONCLUSIONS 

There is no simple solution to the 
problem of estimating total species num
bers from a series of samples and, as al
ready mentioned, it is a matter of choice or 
of philosophy, what degree of perforrn
ance is good enough. However, from the 
present study some general remarks can be 
made. 

- For any estimator to work at least 
1/3 of the total species number has to be 
represented in the sample. 

- If more than 1/5 of the species have 
been found the corrected Bootstrap or the 
corrected EL 1 may serve as a first guess, 
but not more. 

- In a fairly complete sample the cor
rected second order jackknife is the best 
estimator, although negatively biased. If 
such a bias is not desired the uncorrected 
asymptotic linear model (EAL) may serve 
as an alternative. 

- If the sample is not so complete (30 
to 70% TS sampled) the mean of the two 

corrected log-linear estimators (EML) 
proved to be the most efficient estimator. 
More time consuming but spanning over 
the whole range of sample sizes is the 
computation of EaM, the geometric mean 
of all corrected parametric estimators. 
Both estimators depend on the minimum 
population density, which limits their ap
plication. 

- The results of all other estimators 
were too poor to serve as reliable estima
tors of species diversity. 

Crucial to the performance of all of 
the estimators is the sample size, more ex
actly the percentage of the true species 
number sampled. Thus, additionally to di
versity estimators are necessary other esti
mators for sample size. This problem will 
be dealt with in the second part of this pa
per (Ulrich 1999a). 
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5. SUMMARY 

A computer program was constructed which 
simulates large species assemblages with various 
species rank order distributions and degrees of ag
gregation of the species (Figs. 1, 2 and 3). From 
these model populations quantitative samples were 
taken to study the performance of I4 estimators of 
species diversity (Figs 4, 5, 6, 7 and 8). Most esti
mators proved to be sensitive to species distribu
tion (Table 3). For 6 of the estimators correction 
factors are developed. 

In sufficiently large samples (more than 2/3 
of the true species number sampled) a corrected 
second order jackknife estimator gave the best re
sults (Tables I and 2). If fewer species are repre
sented in the sample two newly developed data 
analytical estimators performed better (Fig. 7). 

Crucial to the performance of all of the esti
mators is the sample size. The minimum sample 
size has to contain at least I /3 of the total species 
number. 
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