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Abstract
The paper deals with the well known set packing problem. It is as-
sumed that some of the problem coeflicients are realizations of mutu-
ally independent random variables. Certain probablistic properties of se-
lected problem characteristics are investigated for the variety of possible
instances of the problem.

1 Introduction

Let us consider a set packing problem consisting in packing m element set M
into n separate subsets M;, ¢ = 1,...,n, where M; N M; = | for every 1, j,
i # 4,1, € {1,...,n}. Set packiug problemn maybe forinulated as the binary
multiconstraint knapsack problem, sce Nemhauser and Wolsey {5}:

i3
zopr{n) =max Y ¢ - x;
iz

subject to Sajix <1 O
i=1
where j=1,..,m x;=0or 1

It is assumed that:

¢ >»0,a5=00r1,i=1,...,n, j=1,...,m.

In fact ay, i =1,...,n, j = 1,... ,m are defining certain set of subsets of M,
namely M, i =1,...,7n in the following way

1 ifjeM;

aji = oy o

0 ifj¢ M;
where ¢; is the certain value expressing the preference assigned to M;. Choice
of ;, fulfilling the constraints imposed in (1) is defining the packing of the set
M into subsets M;, M; C M;,i=1,... ,n where

jeM;ifandouly if aj; -2y =1,5=1,... ,m.



Each of the constraints 3. ay; - x; < 1, § = 1,...,m is guarantecing that
cach of the items of the set Af is assigned to maximum one of the subscts
M;. Optimisation criteria in (1} is sccuring the choice of best possible packing
according to preferences expressed by ¢;,1=1,... ,n.

Sct. packing problem (1) is well known to be AP hard combinatorial opti-
misation problem, see Garey and Johmson {2]. Although set packing problem
way be formulated as the binary multiconstraint knapsack problem, it is rather
special case of it, see Martello and Toth [3). Its peculiarity consists in 2 facts:

e All the constraints left hand sides cocfficients are equal either to 1 or to
0, ie.

ajy=0o0rl,i=1,...,n,5=1,... m
o All of the constraints right hand sides coeflicients are equal to 1.

In the general formulation of the binary multiconstraint knapsack problem it
is only required that all of the knapsack problem cocfficients, i.e. poal function,
constraints left and right hand sides, arc non-negative or, in order to avoid
unclear interpretations, strictly positive. It espccially applies to goal lunction
and constraints right hand sides cocfficients.

2 Definitions

The following definitions are necessary for the further presentation:
Definition 1 We denote V;, = Y, where n — oo, if

Yo -(1—0(1)) Vi < Yo - (1+0(1))
when V., Y, are sequences of numbers, or

Jim P{Y, - (1-0(1)) S Va < Yn - (T+o(1))} =1

when V,, 1s a sequence of random variables and Yy, s o sequence of numbers or
random variables, where lin, o, 0o(1) = 0 a3 usual.

Definition 2 We denote V,, X Y,,(V,, = W,,) if
Vi (1 +0(1)) Y (Vi 2 (1—0(1)) - W,)
when Vi, Vs, (W,,) are sequences of numbers, or

lim P{V, < (1+0(1)) Ya}=1( linolo P{Vy2(1-o) W,}=1)

when V,, is a sequence of random. variables and Y,, (W, ) is a sequence of numbers
or randomn variables, where lim,, o 0(1) = 0.

Definition 3 We denote V,, Y, if there exist constants ¢ 2 ¢ > 0 such that
D el A

where Yy, V, are sequences of nwnbers or random variables.



The following random model of (1) will be considered in the paper:
e m, n are arbitrary positive integers, n — o0, i=1,... ,n, j=1,...,m,
e ¢;, u;; are realizations of mutually independent random variables and

morcover ¢;, are uniformly distributed over (0,1] and P{a;; = 1} = p,
where 0 <p < 1.

Under the assumptions made about ¢;, aj;, and taking into account (1) the
following always hold

n

0< zopr(n) < Zci < n, 2)

i=1

Moreover, from the strong law of large numbers it follows that
n n
Zci ~ Elcy) - n=mn/2, Zaji SRR TR
i=1 i=1
Therefore, it is justified to enhance formula (2} in the following way:

n n
, 1 1
0 € 2z0pr(n) X n/2, Z;uji <1, ifp< sor Eaﬁ > 1 when p > o (3)
i= i=

Formula (3) shows that random model of set packing problem (1) is complete
in the sense that nearly all possible instances of the problem are considered.

The growth of zopr(n) - value of the optimal solution of the problem (1)
may be influenced by the problem coeflicients, namely:

n, m, ¢, aj;, wherei=1,... ,n, j=1,...,m.

We have assumed that ¢;, a;; are realizations of the random variables and there-
fore their imnpact on the zopr(n) growth is in this case indirect. Moreover, we
have also assuined that m, n are arbitrary fixed positive integers and n — oco.
The ain of the probabilistic analysis is to investigate asymptotic behaviour of
zopr(n) when n — oo.

3 Lagrange and dual estimations

When we consider the knapsack problem, with one or many constraints, the
Lagrange function and the problem dual to it, see Averbalkh [1}, Meanti, Rinnooy
Kan, Stougie and Vercellis [4], Szkatula [6] and [7] is very useful tool to perform
various kind of analyses. In the case of set packing problem Lagrange function
of the problem (1) may be formulated as follows:

L,,(:L‘) = i:ci-ilfi"rf:/\j'(l*i:aﬁ'l’i) =
F=1

i=1 i=1

e n "

Z/\j +Z ¢ — Z/\j cagi |
=1 i=1 =t

I




where x = [21,...,2z,] and A = [A(,... , \,,] - vector of Lagrange wmultiplicrs.
Moreover, lot for every A, A; > 0,5 =1,... ,m:

L mn
Z)\J+Z< Z)‘"” ;1:,»}.
: i=1

2€{0,1}" we 0,1} | =

b, (A) = max L,(x,A)= max {

Taking the following notation:

1D
1 ife ~ Z)\j'ﬂj;>0
=

zi(A) = (4)
0 otherwise,
6 ifei— 30 A -an>0
a(h) = ’ ,2 o
4] otherwise.
a;; if e — Ajra; >0
aji(A) = ! ng T
otherwise.

we have for every A, A; 20,5 =1,... ,m:

m

) = S NFD |e—D Nan | m(A) =
s =

=1

” m

Z A+ Z ci(A) = S Aj-az(A)

j=1

1l

Obviously
a(A) = ¢ 2i(A), ai(A) = aji - 2i(A).

Problem dual to set packing problem (1) maybe formulated as follows:

. .
&, = mind,,(A). (5)

For every A > 0 the following holds:

m

20p7(n) S B < Bu(A) = zu(R) + 3 A(1 = 5(A)). ©)

J=1

Let us denote:

n n n ”

z(A) = D e wi(A) =S elA),si(A) = 3 aji-wi(A) = 3 ais(A),
i=1 i=1 i=] =1
Sum(A) = Z Aj - s5(A), A(m) = Z)\Ju
J=1 J=1




By definition of c;(A) and a;;(A), see also (4), we have:

m

ci(A) 2 "Ny ajiA)
j=1
and thercfore

zn(A) > Snm(A)- (7)

For certain A, 2;(A) given by (4) may provide feasible solution of (1), i.e.:

s;(A) <1 forevery j=1,...,m. 8)
Then:
au(A) < zopr() < @5 < $u(A) = 2za(A) + () = Sun(A) (9)
If (8) holds, then the below inequality also holds:
A(m) — Span(A) > 0.
Frow (7) we get:

‘751;(/\) Zn(A) + A(’m') - Snm(A)

_ A(m) = Suun(A)
za(A)  za(A) ahy ST ey

Therefore if (8) liolds, then the following inequality also holds:

zopr(n) _ P, Pu(A) _ A(m)
< < < .
z,,(A) - Zn(A) - Zn(A) - Snm(A)
Formula (10} shows, that if there cxits such a set of Lagrange multipliers A(n)
which is fulfilling the formula (8) and if the formula below holds:

1< (10)

A(m)
lim ————— =
A Ry o
then z;(A(n)), 1 = 1,...,n, given by (4), is the asymtotically sub-optimal
solution of the sct packing problem (1). Morcover the value of z,(A(n)) is an
asymptotical approximation of the optimmal solution value of the set packing
problem i.e. zopp(n).

4 Probabilistic analysis

Tu the present section of the paper some probablistic properties of the set packing
problem (1) will be investigated. Let us observe that due to the assumptions

made the following holds, fori =1,... ,n,5=1,... ,m:
Plaj; = 1} =p, Plaj=0}=1-p, Plaj(A)=1} =1- Plaj;(A) =0},
0 when @ <0
Ple; < 2)=¢ o whenO<a g1 . (12)
1 when « 21

[




Moreover for the random variable Z'k":l ki s due to the binomial distribu-
tion, the following holds for every r - integer, 0 € r < m —1:

- W fm-1 Ly vmeret
r kz;#jnm =rj= ( , ) P (1—p) . (13)
Let us also assume that

A={)N Ahle Nj=Xj=1-,m
Lemma 1 If aj; are realizations of mutually independent random variables

where Plaj; =1} =p, 0 <p < 1, then

Plag(A) =1} =p - pi( )~p"-(1—p)’"—f"mmu,A(r+1>}.

=0

If, moreover, X < t/m then:
Plaji(A)=1}=p-(1~Xx-(m-p+1-p)).

Proof. From (4), (12) and (13) and taking into account that random vari-
able 371% 14 aji may take any integer value r from the range [0, — 1] with
the probability given in (13) it follows that:

Plaji(A)=0} = P{aji=0Ua;=1Nc <A- Z ai+1] 3=
k=1,k5#%j

1-p+p - P{c; <A Z aj; +1 =

k=1,ks#j
m—1
= 1—p+pz ( ) T (L= p)™ " min{l, A(r 4+ 1)}
»=0

Due to the (12) it proves the first formula of the Lenuna. When A < 1/m then
the following holds

m-—1

-1 +1)
Plaji(A )—0}‘1—1""/\22—7”—_-1_“1)'I’“'(l—P)1 ROty
Let us observe that for every integers {, m, [,> 1, m > 2, and 0 € p < 1 the

following hold

"y
Z(,;)-P‘*(va)"*’ = (p+1-p=1

r+t = m—(m—-1-r).




Using the above mentioned formulas (14) may be rewritten as:

m—1

m—1)-m N e ler

Plaji(A) =0} = l—p+/\~p<zT__l('(m_)l-r)’_.p I )
r=0 "' :

~1
B mX: (m—1)-(m—1 T r) (- IJ),,,_I_,) _
r=0

re(m—1-7r)!

m—1
—1
= l-p+tAp (m Z (mr ) (1= p)miTT

r=0

m—2
—p m—1)-(1-p) Z (mr- 2) Sra __p)m—‘z—r) _

r=0
= l—p+i-p-(m—(mn=-1).-(1-p)) =
= 1l=-p+A-p-(m-p+1-p).

Finally above forinulas can he summarized as:
Plaji(A)=0}=1~p+A-p-(m-p+1-p). (15)
Due to the formulas (12) and (15) we have

Plaj(A) =1} = 1-Pfau(A) =0} =
p=Ap-(m-p+l-p)=p-(1=X-(m-p+1-p)).

]
As the direct consequence of the above formulas we have

E(aji(A)) =1- P{aj,-(A) = 1} +O P{aj‘-(A) = 0} = P{(lﬁ(A) = 1} (16)

Now instead of A we will consider A(n). It does mean that for every value of
integer 1, we may consider different vector A(n) = {A(n), -, A(n)}.
For every j, j = 1,--- ,m, we have:

E(si(Am)) = Y Elaj(A()) =n- Plau(A(n)) =1} = (17)
i=1
= n-p(l=An)-(m-p+1-p)).

Lemma 2 The following choice of A(n), where o > 0:

_l-a/(n-p)

= pri-p is solving the equations E(s;(A(n))) = c.

A(n)
Corollary 1 If E(s;(A(n))) = o, then Plaji(A(n)) = 1} = a/n.

Proof. Proof of Lemua and Corollary follows immmediately from formulas
(16) and (17). =

Solution of the set packing problem (1) given by formula (4) is feasible if
and only if the formula (8) holds.




Proposition 1 For the A(n), providing E(s;(A(n))) = «, a > 0, the following
hold

ayn-! «

. < — i . i

Pl (A <1} = (1-5)" - (1+a-2)
Proof. As it was already mentioned solution of problem (1) given by formula
(4) is feasible if and only if formula (8) holds i.e. s;(A(n)) = 0 or s;(A(n)) =
1. For every A(n), random variable s;(A(n)) = 3_i_, a;;(A(n)) may take any

integer value r from the range [0, n] with the probability given by the following
formula:

P {Zuﬁm(n)) - } = (1)@ whore = Plaat) = 11
i=1

From the above formula and Corollary 1 it follows that

Pls;(Am)) <1} = P {Zaj«(l\(ﬂ)) =0u Zaﬁ(l\(ﬂ)) = 1} = (18)

S R SR R

[]
Corollary 2 Ifa =1 then

Pls;(A(m) <1} = (19)

[ ]

Proof. Formula (19) follows iminediately from the (18) and from the fact

that (1~ "‘)"_1 ~1l m

n

5 Estimations of the optimal solution values

In order to analysc the behaviour of the optimal solution value of the set packing
problem (1) one may need to exploit the probablistic properties of the randon
variables ¢;(A(n)), ¢ = 1,---,n. The construction of the random variables
ci(A(n)) is defined by formulas (4) and (12) respectively. Distribution func-
tions of the random variables ¢;{A(n)), i = 1,--+ ,n are given by the following
formulas, where 0 < 2 < It

PlefAm)) <a} = Pla<aUg2anea<A@)- Y aub= (20)

J=1

a4+ Pl < ¢ < An): Z:”ﬁ}'

=




Let us observe that P{a < ¢; < A(n)- Y1, a;i} is by definition equal to zero
if e; <wore >An)- Z:’zl aji. Therefore (20) may be rewritten as
m m

Plc;(A(n)) <z} z +EP{I < <A@®)-rn Eaﬁ =r}= (21)
=1 j=1

m

x4 2(7 A(n) - x) ZaJ, =r} (22)

The above formula may enable us to calculate the mean value of the random
variables ¢;(A(n)), i =1,--- ,n. Namely:

1
E(ci(A(n))) = L x-d(Plei(A(n)) < a}) = (23)
1 l\(n) m m
= -2- Z(r/\(n -} Eaﬂ =r}| =

[T

k=1 A(n)- (‘~ 1 r=k

m A(n) & m
+ Z (Z(n\(n —z), - {Z}uﬁ = r}) de =

mo Ak

——Z f x-P{Zaji:r}dr
i=t

B =

1 A (k=1)

Let us observe that, similiarly to the formula (13), the random variable ZZ; | 8,
due to its binomial distribution, has the following distribution function for every
7 - integer, 0 < v < me:

k=1

k=1

Therefore the formula (23) could be further simplified as follows:

1 m A(n)-k m m
—— [ xdx - ( ) e (-p)tTT ) =
2 Z (A(n»(k—n Z—E r

- l A(" Z(% <):(’") (- )'"—f)=

E(c:(A(n))

rek
- - Loy Z (;m - 1)) ((2)vr-a=om) -

Let us observe that the following formmula holds for 0 < p < 1 and m =1,2,...

'Z":rz . ((T) (1 —P)""") =m-p-(l+p-(in-1))

r=1




From Lemma 2 (where E(s;(A(n))) = 1, and A(n) = %{—}1’{%‘2) and due to the
formula (6) we will therefore receive

E(zopr(n)) < E(@%) < E(#.(A) = E(z,(A)) =
—1/(n- 2
LRy 1
Y et eyl DY e L
? moptiop |2\ T+ (1-p)/Gnp)

If (8) holds then due to the formula (9) we may receive much stronger results,
namely:

E(zopr(n)) = E(¥;) = E($.(A(n))) = E(zu(A(n))) =

- nf,__(-ea/n-p)?
h 2(1 1+(1—1))/(m-17))

or
. P _(-a/mp)?
zopr(n) =~ z(A(m) ~ 5 (l )
or

__(-o/(n-p)? )
T+ p)mp))’
where E(s;j(A(n))) = @, @ > 0, and A(n) = 11—;%1"—}2,

Untfortunately, due to the Corollary 2, existence of such strong and interest-
ing results ueeds further research cfforts, which however may open brand new
avenues concerning the probabilistic properties of the set packing problem in
the formulation (1).

zopr(n) = z,(A(n)) = g (1

6 Concluding remarks

In the present report some preliminary results describing probabilities properties
of the set packing problem (1) are suinmarized.

In the paper distribution functions of the various random variables repre-
senting important problems characteristics are presented. Moreover some results
concerning the feasibility of the reeeived solutions are obtained.

Important hints for the future research is convergence of the approximate
solutions to the optimal solution and possibility of investigating realistic ap-
proximations of their values.
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