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Abstract
The paper deals with the well known set packing problem. It is as-
sumed that some of the problem coefficients are realizations of mutually
independent random variables. Probabilistic properties of selected prob-
lem characteristics are investigated for the variety of possible instances of
the problem. The important results of the paper are:

. ® There is no feasible solution, but the trivial cases, with probability
approaching 1, for the considered class of the random set packing
problems in the asymptotic case.

e Behavior of the optimal solution values of the set packing problem
is presented in the special asymptotic case.

1 Introduction

Let us consider a set packing problem consisting in packing m element set A
into n separate subsets M;, ¢ = 1,... ,n, where M; N M; = § for every i, 7,
i#£74,4,7€{1,...,n}. Set packing problem maybe formulated as the binary
multiconstraint knapsack problem, see Nemhauser and Wolsey [5]:

L3
ZopT(Tl) = max E i+ T;
i=1

subject to S aj-zi <1

It is assumed that:

¢;>0,a5=00rl,i=1,...,n,5=1,...,m.
Infact aj, i =1,...,n, j=1,... ,m are defining certain set of subsets of A,
namely M;,7=1,...,n in the following way
wood 1 ifien;
L0 ifiEM




where ¢; is the certain value expressing the preference assigned to M;. Choice
of z;, fulfilling the constraints imposed in (1) is defining the packing of the set
M into subsets M;, M; C M;,i=1,... ,n where

j€M;ifandonlyifa;;-z;=1,7=1,...,m.

Each of the constraints Z;l aj;-7; £ 1, j =1,...,m is guaranteeing that
each of the items of the set M is assigned to maximum one of the subsets
M;. Optimisation criteria in (1) is securing the choice of best possible packing
according to preferences expressed by ¢;, i =1,...,n.

Set packing problem (1) is well known to be NP hard combinatorial opti-
misation problem, see Garey and Johnson {2]. Although set packing problem
may be formulated as the binary multiconstraint knapsack problem, it is rather
special case of it, see Martello and Toth [3]. Its peculiarity consists in 2 facts:

e All the constraints left hand sides coefficients are equal either to 1 or to 0:

a;; =0orl,i=1,...,n,5=1,...,m.

o All of the constraints right hand sides coefficients are equal to 1.

In the general formulation of the binary multiconstraint knapsack problem it
is only required that all of the knapsack problem coefficients, i.e. goal function,
constraints left and right hand sides, are non-negative or, in order to avoid
unclear interpretations, strictly positive. It especially applies to goal function
and constraints right hand sides coefficients.

2 Definitions
The following definitions are necessary for the further presentation:
Definition 1 We denote V,, = Y, where n — oo, if
Yo -(1—0(1) € VoY, -(140(1))
when V,,, Y, are sequences of numbers, or
Jim P{Y,-(1-0(1)) Vo < Yo (1+o0(1)} =1

when V,, is a sequence of random variables and Y,, is a sequence of numbers or
random variables, where lim,_,, 0o(1) = 0 as usual

Definition 2 We denote V,, X Y, (V, = W,) of
Va<(l+0(1)) Yo (Va2 (1-0(1)) W)
when V,, Y, (W,) are sequences of numbers, or
lim P{Ve < (1+0(1)) - ¥a} =1 ( lim P{Va > (1—o(1)) Wy} =1

when V,, is a sequence of random variables and Y, (W,,) is a sequence of numbers
or random variables, where lim,, _,, 0(1) = 0.




Definition 3 We denote V,, = V,, if there exist constants ¢’ = ¢’ > 0 such that
Y=V =d Y,
where Yy, V,, are sequences of numbers or random variables.
The following random model of (1) will be considered in the paper:

e m, n, 0 < n < m, are arbifrary positive integers and moreover n — oco.

e ¢, a;,t=1,...,n, j=1,...,m, are realizations of mutually indepen-
dent random variables and moreover ¢;, are uniformly distributed over
(0,1] and Plaj; =1} =p, where 0 < p < 1.

Under the assumptions made about ¢;, a;;, and taking into account (1) the
following always hold

0 < zopr(n) < Zcz (2)

i=1
Moreover, from the strong law of large numbers it follows that

n

ZcizE(cl)-n=n/2, Zaﬁz;rn. (3)

i=1 i=1

Therefore, it is justified to enhance formulas (2) and (3) in the following way:

. . 1 r 1
0 € zopr(n) <n/2, ;aﬁ <1,ifp< - or Z;aj,- = 1 when p > g (4)

Formula (4) shows that random model of set packing problem (1) is complete
in the sense that nearly all possible instances of the problem are considered.

The growth of zppr(n) - value of the optimal solution of the problem (1)
may be influenced by the problem coefficients, namely:

n, m, ¢, aj, wherei=1,...,n, j=1,...,m.

We have assumed that ¢;, a;; are realizations of the random variables and there-
fore their impact on the zopr(n) growth is in this case indirect. Moreover, we
have also assurned that m, n are arbitrary fixed positive integers and n — oo.

The main aim of the present paper is to perform probabilistic analysis of the
considered class of random set packing problems in the asymptotical case, i.e.
when n — oo. Probabilistic analysis has 2 strategic goals, namely:

¢ To exmine existence of the feasible solutions.

o To investigate asymptotic behaviour of zopr(n).



3 Lagrange and dual estimations

When the knapsackLagrange and dual estimations problem, with one or many
constraints, is considered then Lagrange function and the problem dual to it,
see Averbakh (1], Meanti, Rinnooy Kan, Stougie and Vercellis [4], Szkatula [6]

and [7] is very useful tool to perform various kind of analyses. In the case of

set packing problem Lagrange function of the problem (1) may be formulated

as follows:
n m n
Ln(I) = ZC,"I,;—{-Z/\J'- (1— aji'Ii) =
i=1 J=1 =1
m n m
S YRS I U DIV I

=1 i=1 j=1
where z = [z1,... ,z5) and A = [Ay,...,Ay] - vector of Lagrange multipliers.
Moreover, let for every A, X\; 20,7 =1,... ,m:

m n m

z€{0,1}"

#a(A) = max Ln(z,A)= goa;c},,{z: RO CRPITE
- y ]=1

j=1 i=1

Taking the following notation:

1 ifci—Z)\j-aﬁ>0
i=

II(A) =
0 otherwise.
G oifei— 3 Aj-ag >0
() = TN
0 otherwise.
g 'f._m/\.. >0
ap(d) = { NS ;gl 7
0 otherwise.
we have for every A, X; >0,j=1,...,m:
Pulh) = D N+ ci—ZAj-aﬁ) ai(A) =
=1 i=1 =1

= Z)\j + Z ci(A) - Z/\j : aa‘i(A)>

Obviously
ci(A) =ci-zi(A), aj(A) =aj; - z:(A).

Problem dual to set packing problem (1) maybe formulated as follows:

()




&7, = min . (A). (6)

For every A > 0 the following holds:

m

20p7(n) £ 87, < ¢, (A) = 2n(A) + Y A;(1 = 55(A)). (7)

i=1

Let us denote:

wm(A) = D e-m(d) =) c(A)s;(8) = aj-m(A) = aj(A),
i=1 i=1

=1 i=1
Sam(A) = D" Nj-si(A), Am) =" A;
i=1 j=1

By definition of ¢;(A) and aj;(A), see also (5), we have:
(M) 2 A aj(A)
i=1
and therefore

Zn (A) > Som (A) (8)

For certain A, z;(A) given by (5) may provide feasible solution of (1), i.e.:

si(A)y<1 forevery j=1,...,m. (9)
Then:
2n(A) < 20p7(n) € 7, < B,(A) = 2a(A) + A1) = Sam(A). (10)
If (9) holds, then the below inequality also holds:
A(m) — Spm(A) > 0.
From (8) we get:

6a(A) _ zn(8)  A(m) = Sem(A) _ n A(m) — Spm(8)

zn(A)  z,(A) zn(A) = Snm(A)
Therefore if (9) holds, then the following inequality also holds:

2opr(n) _ ®F  _ ¢.(8) _ A(m)
1= C;:(A) S = ) S S (11)

Formula (11) shows, that if there exits such a set of Lagrange multipliers A(n)
which is fulfilling the formula (9) and if the formula below holds:




A(m)
m —
=00 Snm (A(n))
then z;(A(n)), ¢+ = 1,...,n, given by (5), is the asymtotically sub-optimal
solution of the set packing problem (1). Moreover the value of 2,(A(n)) is an
asymptotical approximation of the optimal solution value of the set packing
problem i.e. zppr(n).

=1 (12)

4 Probabilistic analysis

In the present section of the paper some probablistic properties of the set packing
problem (1) will be investigated. Let us observe that due to the assumptions
made the following holds, fori=1,... ,n,j=1,...,m:
P{aj.; = 1} =D, P{aﬁ = 0} =1 - D, P{aﬁ(A) = 1} =1- P{a_“(A) = 0},
1] when = <0
Ple; < z)=( z whenO0<z <1 . (13)
1 whenz > 1

Moreover for the random variable Y, , 45 4i, due to the binomial distribu-
tion, the following holds for every r - integer, 0 < r < m —1:

PYY e =("7 1) (14)

k=1,kj
Let us also assume that
A={A- A} ie A=A, j=1,---,m.

Lemma 1 If aj; are realizations of mutually independent random variables
where P{a;; =1} =p, 0 < p< 1, then

= m—1 T m-—r—1 B
P{aji(A)=1}=p—pZ< . >~p (1-p) min{1, A\(r + )}.
=0

If, moreover, A < 1/m then:
Plaji(A) =1} =p-(1—-A-(m-p+1-p)).
Proof. From (5), (13) and (14) and taking into account that random vari-

able Z;’;Lk# aj; may take any integer value r from the range [0, m — 1] with
the probability given in (14) it follows that:

m
P{aji(A)=0} = P aj,;=0Uaji:1rwci<)\- Z aj; +1 =
k=1,kj
= 1—p+pP Ci<)\' Z aji—i—l =
k=1,ks]
=l m—1

= 1- pT - (1= p)™ " min{1, A(r + 1)}.
1 p+p§( ) @ a1, 1)




Due to the (13) it proves the first formula of the Lemma. When A < 1/m then
the following holds

Pwﬂc)—0}-1—p+A§:—_:i%{§§#~ﬂ“-u—prb“* (15)
r=0 )

Let us observe that for every integers {, m, {,> 1, m > 2, and 0 < p € 1 the
following hold

l

S () a-p = wei-p-1
k=0

r+l = m—-(m—1-r).

Using the above mentioned formulas (15) may be rewritten as:

P{az:(A) = 0}

Il

m—1
1—p+/\-p<z_(_—1)lﬂ_' p(1- )m—l—r_

r=0 T!-(m—l )
_Z _1)' —1—1r)7 )'Pr'(1~p)"“1")=
r=0
m-—1 m—1
= 1l-p+Ai: m P (1- )m-l-—r___
P p( ;( . )p p
m—2
_P‘(m"'l)'(l—-P)Z(mr_2>.pr.(1_p)m—2~r):
r=0

= 1=ptAp(m—(m=1)-(1-p) =
= l-p+Xi-p-(m-p+l—p).

Finally above formulas can be summarized as:
Plaji(A) =0} =1-p+A-p-(m-p+1-p). (16)
Due to the formulas (13) and (16) we have

Plaj(A) =1} = 1-Plau(A)=0}=
= p-Ap(mp+tl-p)=p-(1-A-(m-p+1-p)).

[
As the direct consequence of the above formulas we have

E(azi(A) =1- P{aj(A) =1} +0- P{a;i(A) =0} = Plaju(A) =1} (17)

Now instead of A we will consider A(n). It does mean that for every value of
integer n, we may consider different vector A(n) = {A(n),---, A(n)}.
For every 7, 7 =1,--- ,m, we have:

E(s;(A()) = ZE(aﬁ(A(n)))=n'P{aji(A(n))=1}= (18)

= n-p(l-An)-(m-p+1—p)).




Lemma 2 For every a, a > 0 there ezists m’ n/, m’, n’ >,1 such that for every
m2zm' and n 2 n', the following choice of A(n) :

is solving the equations E(s;(A(n))) = a.

_l—-0a/(n-p)

Alr) = m-p+1—p
Corollary 1 If E(s;{A(n))) = a, then P{aj;(A(n)) =1} = a/n.

Proof. Proof of Lemma and Corollary follows immediately from formulas
(17) and (18) and following fact that for all m > m/ and n > n”:

1
< —.
Aln) £ m

=
Solution of the set packing problem (1) given by formula (5) is feasible if
and only if the formula (9) holds.

Theorem 1 For every o, o > 0 there exists m' n/, m/, n’ >,1 such that for

A(n), providing E(s;(A(n))) = «, the following hold

Ploam) <1y = (1-2)" a+a-9)

Moreover for every fired value of o, > 0, we have
_l+a
=

Jlim P{s;(A(n)) < 1}

Proof. As it was already mentioned solution of problem (1) given by
formula (5) is feasible if and only if formula (9) holds i.e. s;{A(n)) = 0 or
s;(A(n)) = 1. For every A(n), random variable s;(A(n)) = Y = ; a;i{A(n)) may
take any integer value r from the range [0,n] with the probability given by the
following formula:

P {Z a;i(An)) = r} = (:) -7 - (1= p)* ", where p = P{a;;(A(n)) = 1}.
=1

From the above formula and Corollary 1 it follows that

P{Zaﬁ(/\(n)) =0U> aj(A(n) = 1} = (19)

2:=1
(-2 0= 5 - (-9 e

The proof is finished by observing that lim (1 — %)"_1 =e " m

Ps;(A(n)) <1}

i

I

Corollary 2 P{sj(A(n)) <1} =1ifandonlyifn =1 Whena — 0asn —
then

lim P{s;(A(n)) <1} =1.

n—oo
However if o, @ > 0, is a constant then:

Jim P{s;(A(m) <1} <1 20)









If (9) holds then due to the formulas (10) and (11), where A(m,n) =
Z Aj(n) = m-n-A(n), E(Swm(A(n))) = a-m-n- A(n), one may recejve

much stronger results for 0 < a < 1, namely:

1<E (fﬂ("—)> <L, where B (%) = é and  (25)

-7 (1—a/(n-p)?
o) = (- T S ) o

Formula (25) may provide some estimations of the set packing problem (1)

optimal solution value zopr(n) growth, when n — oo. Corresponding to Exam-
ple 1 estimations of the E (%) for the different values of o are provided
in the below Example, where appropriate value of E(z,(A(n))) is given in the
formula (26):

Example 2

Whena = 001 then 1< E ( zopT(n) ) < 100 with approz. probablity 0.999

20PT

Whena = 0.1 then 1 < E (z (A(n)))
)
)

) < 10 with approz. probablity 0.995

2opr(n
2z (A(n)
zopr(n)
zn(A(n))
Since n < m and moreover n — oo then obviously also m — oco. According
to formula (26) asymptotic growth of the E(z,(A(n))) may be influenced by
both n and m. Let us consider the following mutual asymptotic dependence of
the both parameters:

Whena = 0.5 then 1< FE ( ) < 2 with approz. probablity 0.9098

2
-~ 0.736.
e

Whena = 1 then E( ) = 1 with approz. probablity

n = f3-m?, where 8 and vy are constants, 0 < y<1, 3>0; <1 wheny=1
@7

If 0 < v < 1 then condition n € m is always fulfilled asymptotically since for
every constant 3 > 0 there exist constant m’ > 1 such that for all m > m’ the
inequality 8 € m!™" (implying n < m) holds. When v = 1 then additional
condition # £ 1 is necessary .

Under the above assumption the following Lemma holds

Lemma 3 If asymptotical dependence (27) holds then:

% when 0 <y <1
2

mthE(Zn(A("))) = { :E'i%‘%‘ﬂ when v =1

11







the optimal solution values when there is certain mutual asymptotic dependence
of the parameters n and m.

Some of the important avenues for the future research is convergence of the
approximate solutions to the optimal solution and possibility of investigating
realistic approximations of their values.
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