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Abstract

‘We consider optimal control problems with initial-final state equal-
ity and inequality constraints and control inequality constraints given
by smooth functions satisfying the hypothesis of linear independence
of gradients of active control constraints. For such problems, we derive
second-order sufficient conditions of a bounded strong minimum with
quadratic growth of ‘violation function’ [3].

1 Pontryagin and bounded strong minima. First
order necessary conditions

Consider the following optimal control problem on a fixed interval {0, T]:

y(t) = f(u(t),y(t)) for a.a. te 0,7, (1)
u(t) e U, foraa. ¢t€[0,T), (2)
$i(y(0),y(T)) <0, v=1,...,71, 3)
¢i(y(0),y(T)) =0, 1=r1+1,...,m, (4)
J(w) = ¢o(y(0),y(T")) — min, (5)
where f R™ xR* > R"and ¢; : R* x R* - R, 7 =0,...,r are twice con-

tinuously differentiable (C?) mappings, U is a closed subset of R™. Denote
by U := L*=(0, T;R™) and Y := W11(0,T;R"™) the control and state space.
We consider problem (1)-(5) in the space W :=U x Y, and we refer to this
problem as problem (P). Define the norm of element w = (u,y) € W by
il = lloo + gl = ess sup o ryfu(t)] + ly(O)] + [ [§(t)| dt. Elements
of W satisfying (1)-(4) are said to be feasible. The set of feasible points
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is denoted by F(P). We shall use abbreviations y(0) = vo, y(T) = yr,
(vo,yT) = 1.

It is well known that any control problem with a cost functional in the
integral form J = fOTF(u,y) dt can be represented in the endpoint form by
introducing a new state variable z defined by the state equation z = F'(u,y),
2(0) = 0. This yields the cost functional J = z(T). The new variable z
is called unessential component in the augmented problem. The general
definition of an unessential component[5] is as follows. The state variable
yi, 1.e., the i-th component of the state vector y is called unessential if the
function f does not depend on y; and if the functions ¢;, 7 = 0,1,...,r
are affine in ;0 := 3:(0) and y;r = v:i(T). Let y denote the vector of all
essential components of the state vector y. a

Let us define two concepts of minimum. We say that w® = (u%4°) €
F(P) is a bounded strong minimum if J(w®) < J(w¥) for large enough k for
any sequence w* € F(P), bounded in W, such that gk — QO uniformly and
y*(0) — °(0). We say that w® € F(P) is a Pontryagin minimum if J(w®) <
J(w*) for large enough k for any sequence w* € F(P), bounded in W, such
that y* — 3 uniformly and ||u* — u®||; — 0, where |Ju|l; = fOT Ju(t) dt.

Equivalently, w is a bounded strong minimum iff for any M > 0, there
exist & > 0 such that if w € F(P) is such that [[ullsc < M, ly—2°[loc < &, and
ly(0) — 4°(0)] < &, we have that J(w®) < J(w). A point w® is a Pontryagin
minimum iff for any M > 0, there exist € > 0 such that if w € F(P) is
such that [Julle < M, |y — ¥%)lee < €, and |lu — u°||; < &, we have that
J(w%) < J(w). Obviously, a bounded strong minimum implies a Pontryagin
minimum.

Let us recall the formulation of Pontryagin’s principle at the point w €
F(P). Denote by R?* the dual to R? identified with the set of ¢ dimensional
raw vectors. Set

(Yo, 1) = (Yo, yr, 1) = D _ pidbi(yo, yr), (6)
=0

where yo = y(0), yr = v(T), 1 = (ro,...pr) € ROTV*  Consider the
Hamitonian function H : R™ x R™ x R™ defined by

H(u,y,p) = pf(u,y). (7)

We call costate associated with p € RU+D* the solution p = p# (whenever it
exists) of

—p(t) = Hy(u(t),y(t),p(t)), aa. te[0,T); )
p(0) = -9l (0),y(T); p(T) = whr(y(0),y(T)).

Definition 1.1. We say that w = (u,y) € F(P) satisfies Pontryaguin’s prin-
ciple if there exist a nonzero u € RC+U* and p € WH(0, T, R™) such that



(8) holds and
pe 20, i=0,...,r1, mg:(y(0),y(T) =0, i=1,...,r1, (9
Hu(t),y(t),p(t)) < H(v,y(t),p(t)), forall velU, aa. te (0,7). (10)
The following theorem holds [3],[4],[5]:
Theorem 1.2. A Pontryagin minimum satisfies Pontryagin’s principle.

In the sequel, we assume that the set U is given in the form U = {u €
R™ | g(u) < 0}, where g : R™ — RY? is C% mapping. In other words, the
control constraints are defined by

gi(u(t)) <0, foraa. te[0,T], j=1,...,q (11)

We assume that the following qualification hypothesis of linear independence
holds: the gradients gj(u), ¢ € Ig(u) are linearly independent at each point
u € R™ such that g(u) < 0, where Ig(u) = {1 € {1,...,q} | gi(u) = 0} is the
set of active indices.

Let us recall a first order necessary condition of a weak minimum, which
is a local minimum in W. To this end, define the augmented Pontryagin
function H : R™ x R® x R™ x R?* — R by

H(u,y,p,a) = H(u,y,p) + ag(u). (12)

For w = (u,y) € F(P), denote by Ag the set of all tuples A = (u,p,a) €
R+0* 5 oo, T R™) x L*>(0,T; R?) of Lagrange multipliers such that
the following relations hold

i >0, i=0,...,7m, wdi(y0),y(T)) =0,i=1,...,m,
a(t) 2 0, a(t)g(u(t)) =0, aa. t € (0,T),

~p(t) = Hy(w(t),p(t)), a.a. t € (0,T), (13)
p(0) = —@ha(m), p(T) = hr(n),

Hy(w(t),p(t),a(t)) =0, aa. t e (0,T); |u| =1}

The following result is well-known [1].

Theorem 1.3. Let w be a weak minimum. Then the set Ay is nonempty
and bounded. Moreover, the projector (p, A, u) — u is injective on Ap.

Denote by Mo the set of all A = (u,p,a) € Ag such that inequality (10)
of Pontryagin’s principle is satisfied. Obviously, My C Ag, and the condition
My # 0 is equivalent to Pontryagin’s principle.



2 Growth condition of order

Let us fix a pair w = (u,y) € F(P). By dw = (6u, dy) we denote a variation,
i.e., an arbitrary element of the space W, and the notation {dwy} stands for
an arbitrary sequence of variations in W. For any dw € W we set

0f = f(u(t)+6u(t), y(t) + 5y(1) — f(w(t), y(t)) = f(w(t) +6w(t)) - f(w(?)),

ie., ¢f is the increment of the function f (at the point w(¢)) which corre-
sponds to the variation dw(t). Similarly, we set

8¢o = do(y(0) + 6y(0), y(T) + 6y(T)) — ¢o(y(0), y(T)) = bo(n + 6n) — ¢o(n),

etc. In order to define a growth condition of the order 7, we must define
the so-called ‘order function’. A function I' : R™ — R is said to be an order
function if there exists a number ep > 0 such that (a) T'(u) = |u|? if [u| < er;
(b) T(u) > 0 if Ju|] > ep; (¢) T'(u) is Lipschitz continuous on each compact
set C C R™. Obviously, the function I'(u) = Ju|? is an order function. For
an arbitrary order function I'(u), we set

T
y(6w) = 6y]%, + / I'(Gu(t)) dt. (14)

We call the functional v : W — R the higher order [3)].
Next, let us define the violation function {3]

T

o) = (57)s + S diln+ onye + S |duln+ 60 + 169 — 3£, (15)

i=1 F——}

where n = (yo,yr) = (¥(0),y(T)), dn = (8yo, Syr) = (3y(0),6y(T)), (8J)+ =
(¢o(n + 0n) — do(m))+, oy = max{e, 0}.

We say that {Jw,} is a bounded strong sequence if lim supy, |6uy|loo < 00,
{0y (0)] + |03k lloo — O (k — 00). Denote by S the set of all bounded strong
sequences satisfying (a) u(t) + dug(t) € U for a.a. t € [0,T) for all &, and
(b) o(bwy) — 0 (k — co).

We say that a bounded strong y-sufficiency holds (at the point w} [3] if
there exists a constant C' > 0 such that for any sequence {6w;} € S we have
o(dwy) > Cy(bwy) for all sufficiently large k.

Equivalently, a bounded strong y-sufficiency holds iff there exists C' > 0
such that for any M > 0 there exists £ > 0 such that the conditions

u(t) + 6u(t) € U for a.a. t € [0,T], léulleo < M,
o(dw) <e, [y(0)] <&, |dylleo <€

imply the inequality o(dw) > Cy(éw).

We say that a bounded strong v-growth condition holds for the cost func-
tion J if there exists C' > 0 such that for any M > 0 there exists ¢ > 0 such
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that the conditions w + dw € F(P), [[ullec < M, [|8ylleo < &, 18y(0)] < €,
0J < € imply the inequality §J > Cv(dw). Obviously, a bounded strong
~v-sufficiency implies a bounded strong y-growth condition for the cost func-
tion, and the latter implies a strict bounded strong minimum.

Set (6k)
. P T\0Wg

C(c,5) = inf [liminf ,

1(:5) {aéf}eS(lmkm v(dwk)>

where the lower bound is taken over the set of all sequences from S that do
not vanish. The following proposition easily follows from definitions.

Proposition 2.1. The inequality C, (0, 5) > 0 is equivalent to the bounded
strong v-sufficiency.

Our goal is to obtain conditions which guarantee this inequality. To this
end, we will estimate C,(c,S) from below.

Let A = (u,p,a) € Mp. We say that the function H(v,y(t), p(¢t)) satisfies
a growth condition of the order ' if there exists C' > 0 such that for a.a.
t € (0, 7] we have

Hv,y(t),p(t) — H(u(t),y(t),p(t)) > CT(v~wu(t)) forall velU. (16)

For any C > 0, denote by M(CT') the set of all A € My such that the
condition (16) is satisfied for a.a. ¢ € [0,T]. One may show that if a
bounded strong v-sufficiency holds, then there exists C > 0 such that the
set M (CT) is nonempty.

3 Second order sufficient conditions

A direction (variation) dw = (du,dy) € W is said to be critical [1] at the
point w if the following relations hold

Pi(m)on <0, i € Ig(n) U{0}; ¢i(n)dn =0, j=ri+1,...,7, a7
dy = f(w)dw, (gi(w)du)x(g;m=0y <0, 7=1,...,q,

where I4(n) = {¢ € {1,...,71} | ¢:i(y(0),y(T)) = 0} is the set of active
indices, X(g;(u)=0) i8 the characteristic function of the set {t € [0,T] |
g5 (u(®) = 0}, 7 = 1,...,q, 1 = (4(0), y(T)), and & = (dy(0),6y(T)). De-
note by K the set of all critical directions dw € W at the point w. Obviously,
K is a convex cone in W. We call it the critical cone.

For any A = (u,p,a) € Ag, let us define a quadratic form at the point w

by relation

1 1 /7T _
20w, A) = §<<Pnn(n,u)5n,5n) + 5/0 (Huyw(w,p,a)w,éw)dt.  (18)



For any C > 0, set

Qpm(cr)(dw) = AL Q(0w, A). (19)

Theorem 3.1. For a feasible point w = (u,y), assume that there ezist an
order function T' and a number C > 0 such that the set M(CT) is nonempty
and there exists Cx > 0 such that

T
Qaser) (0w) 2 G (16O + / bulPdt) Jorall Swek.  (20)
0
Then, for the corresponding higher order v (14), a bounded strong y-sufficiency

holds at the same point.

Remark 3.2. One may prove that the sufficient optimality condition given
by Theorem 3.1 is a natural strengthening of the following necessary condi-
tion of Pontryaguin minimum: the set My is nonempty (i.e., Pontryaguin’s
principle holds) and maxyeps, 2(6w, A) > 0 for all dw € K.

Below, we will give a proof of Theorem 3.1.

4 Passage to Pontryagin’s sequences, the basic con-
stant

In what follows, we assume that, for given order function I' and a number
C > 0, the set M(CT) is nonempty. For any A = (u,p, a) € Ag, we set

T T
T (5w, ) = 6 — / p(6 — 6f) dt = P — / (psy — SHYdE,  (21)
0 0

where dpt = pH(n+ dn) — p*(n), 6H = pdf. Since Ag is a bounded set, it is
easy to show that there exists kg > 0 such that

< .
,{2% V(dw, N) < koo (dw) (22)

Moreover, in virtue of (8), we have

I péy dt = péy |7 — [T poydt N (23)
= Pho(n)y(0) + Phr(moy(T) + f, Hy(w,p)dydt

for any A € Ay. Consequently,
T
B (Bw, ) = 6 — ()8 + / (6H — H,(w,p)dy)dt, YA € Ag.  (24)
0

In the sequel, we shall omit k in notation of sequences. Under the assumption
that M (CT) # ¢, C' > 0, the following lemma holds.



Lemma 4.1. If {dw} € § then ||dull; — 0, |[0yllcc — 0, and hence y(dw) —
0.

The proof of this lemma consists of two propositions.

Proposition 4.2. Let {§w} € S and (u,p,a) € Ag. Then (fOT oH dt)+ —

0.

Proof. According to (22) and (24), 6(,0“—tpf,(n)én—f-fOT(éH—Hy(w,p)6y) dt <

koo (dw). Since ||0y|leo — 0, the condition o(dw) — 0 implies (fOT oH dt) —
- +

0. O

Proposition 4.3. If {§w} € S, then fOT |6u)? dt — 0.

Proof. Let {dw} € S and (u,p,a) € M(CT) (C > 0). We obviously have

§H = H(w+6éw,p)— H(w,p) = 6,H + 6, H,

where 5yH = H{u+du,y+0y,p) — H{u+ou,y,p), §,H = H(u+du,y,p) —

H{w,p). The conditions ||6yllc — 0 and limsup [[dufles < oo imply that

[6yH]|lco — 0. Therefore, the condition (fOT SH dt) — 0 {which holds

+

by Proposition 4.2) implies (fOT o H dt) — 0. But 6,H > CT'(éu), since
+

(u,p,a) € M(CT) and u + du € U. Consequently, fOTI'(du) dt — 0 which
easily implies that fOT [6ul?dt — 0. O

Proof of Lemma 4.1 Let {dw} € S. Then by Cauchy-Schwartz in-
equality and Proposition 4.3 we have

6ully = /OT \6ul dt < VT (/OT 162 dt)é ~o0.

Moreover, from conditions ||éull; — 0, |6y(0)| + ||d¥{lcc — O, and [|dy —
8f]ly — 0 we easily deduce that ||6y[l; 1 — 0 and hence ||dy|loo — 0. Conse-
quently, y(dw) — 0. U

We shall say that {dw} is a Pontryagin’s sequence if the following condi-
tions are satisfied: limsup ||dulleo < 00, {|dull; — 0, and [[dy]jco — 0. Denote
by II the set of all Pontryagin’s sequences. For any {dw} € II we obviously
have: ¢(dw) — 0. Thus, under the assumption that M(CT) # @, C > 0, we
have proved that

S = {{0w} € I1 | u(t) + ou(t) € U} (25)

(in this formula, the condition u(t) + du(t) € U is assumed to be satisfied
for a.a. t € {0,7] and for all members of the sequence{dw}). Set

oy = {{0w} € I | u(t) + du(t) € U, o(dw) < O(y(dw))}. (26)
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From equality (25) and definition (26) we easily deduce that
Cy(a,5) = Cy(0,1loy). (27)

Set
Up, (dw) = max U (6w, A). (28)

Then according to (22) we have ¥, (dw) < kpo(dw). Consequently,

Cy(o,1lgy) = ko_lcv(\l}l\o’nﬂv)f (29)
where T, (5w)
L . A AplOW

Cy(Pag,llgy) := {6w1}réfnn (hm inf 6w ) (30)

(the lower bound in this formula is taken over the set of sequences from
I1,, that do not vanish). We call C,(¥,,1l5) the basic constant on the
set of Pontryagin’s sequences. From (27) and (29) we obtain the following
inequality

Cy(0,8) > kg 1Cy (T ay, Tgy). (31)

In the sequel, we will estimate C.,(¥,, o) from below.

5 Extension of the set II,,

Let A = (u,p,a) € Ag and {dw} € II satisfies the condition u(t) + du(t) € U

a.e. on [0,T] for all members of the sequence. Then relation (24) combined

with the equalities adg + adg_ = 0 (where a_ = max{—a,0} > 0 and
= (91-,-.-,94—) and 6H = §H + adg imply

T T
P (dw, A) = o — ph(n)on + (6H — Hy(w, p)dy) dt +/ adg_ dt. (32)
0 0

Let {0w} € IIyy and hence o(dw) < O(y(dw)). For given sequence, we
deduce from (22) and (32) that

)r‘ré%)({&p (p 17)577+/ ((5H Hy(w, p)5y)dt—f—/ adg_ dt} < O(7), (33)

where v = y(dw). Since H,(w,p,a) = 0, H, = H, and limsup 6w < 00,
the following estimate holds uniformly on Ag: foT |60 — Hy(w,p)dy|dt <
O(7). Moreover, |6¢* — @l (n)dn| < O(v) uniformly on Ag. Therefore, con-
dition (33) implies
7
bg_dt < . 34
ggggoagd_O(v) (34)



This estimate is satisfied for any {§w} € II,,. Thus, we get

. T
Oy = {{6w} €Tl|glu+du) <0, o <O(y), yu}\x/ adg_ dt < O('y)}.
€Mo Jo
(35)
Since we estimate the basic constant from bellow, we may extend the set of
sequences Il,,. Namely, let us define a set of sequences

T
o) = { {60} € T g(utdn) <0, o = o), ax [ ado- at < O()}.

Obviously, I1,, C Ho(ﬁ), and hence
C“/(‘I'onnm) = Cv(‘I'onno(ﬂ))~ (37)

In what follows, we will estimate Cy(¥a,, Iy )) from below.

6 Passage to the sequences of local variations.

Set S¥¢ = {{6w} | [[dw]leo — 0} . Sequences from $%* will be called local.
Note that ' ¢ I1. Bellow, we will pass to the set of sequences

loc . loc
SO(\/;/) = Ho(ﬁ) S

Lemma 6.1. For any A = (u,p,a) € Ag and for any sequence {Jw} € ¢
satisfying the relation g(u + du) < 0 (for all members of the sequence) the
following formula holds:

T
U (dw, A) = Q(dw, A) +/0 adg-. dt + o{v{dw)) (38)

uniformly on Ag.

Proof. Formula (38) follows from (32) and relations: H, = H,, Hy(w,p,a) =
0 for all A € Ag. a

Let {6w} € I1,( /), and let {€} be a sequence of positive numbers con-
verging to zero, i.e.,, € — +0. For members dw = (du,dy) and € of the
sequences {dw} and {€}, respectively, which have the same numbers, we set

Sup () = {éu(t) if jdu(t)] <e,

0 otherwise,
duf = du — due, dw, = (du.,dy), dw = (5uf,0).

Then ||6ucljooc — 0 and hence {§we} € S'°°. Moreover, {§w} = {dwe} +
{dw*}.



Proposition 6.2. For the sequences {dw}, {dw.}, and {6w}, the following

formula holds
Of =0 f+6f+ry, (39)

where

8f = fw+ bw) — f(w), 6 f = flw+ dwe) — f(w),

5 F = fw+ buF) ~ f(w), s = (6 — By P,

Sy f = fu,y +6y) — f(u,y), opf = flu+du,y+by) — flu+du,y),
and X€ is a characteristic function of the set M = {t | du®(t) # 0}.
Proof. We have

6f =8fx"+0f(1~X°)

= (Flu+us,y + by) — flu+ 5u,y) + 8F )x" + 6 f(1 = X°)
=B fXE O f 8 f = 0 fxE = 07 F + 8uf + (8, = 8,/

= 8ef + 0 f +ry.

O
We continue to work with the sequences {dw} € Il ( ), and {e}. For

the sequence {dw}, we obviously have: ||rf|loc — 0. Let us now assume that
the sequence {e} satisfies the following conditions

(a) e — +0, (b) ﬂ%@—»o, (c) —77(31”—)—»0.
(Note that (c) = (b).) Then
st < 52 [ e — oy, (40)

where 7° = y(dw®). Let A = (u,p,a) € Ag. Since 6H = pdf, it follows from
Proposition 6.2 and estimate (40) that fOT SH dt = fOT S H dt + fOT 5 H di +
o(~F) uniformly on Ag, where 6. H = H(u + du.,y + dy,p) — H{u,y,p),
8*H = H(u + du®,y,p) — H(u,y,p). Consequently, ¥(éw,\) = ¥(dw,, A) +
fOT 8¢ H dt + o(v*) uniformly on Ag, and hence

T
W, (6w) = max { T (bwe, A) + /0 5FH dt} + o(7"). (41)

Furthermore, the condition g(u + éu) < 0 implies

glu+duc) <0, g(u+duf) <O0. (42)
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Consequently, 6*H > CT'(6u) for any A € M(CT), and then fOT CHdAt >
C+* for any A € M(CT). Since M(CT") C Ay, we have

max { W(6we, ) + [ B dth > max {D(we, ) + [ 0°H dt}

Aeho AeM(CT)
> /\eM(CF){\Il (6we, A) + Cv* } Up(cry(dwe) + CF,
where, by definition,
¥ pm(cr)(dw) = N (6w, A). (43)
This and formula (41) imply that
o (6w) = ¥ preor) (dwe) + Cv° + o(7). (44)

Moreover, we obviously have v = . 4+ 7%, where v = y(dw), 7. = v(dwe),
7* = v(6w®). Consider two possible cases.

(A) liminf . /v = 0. In this case, we take a subsequence such that v, =
o(y), and hence v*/+ -- 1 on the subsequence. Assume that this condition
is satisfied for the sequence {dw} itself. Then, according to Lemma 6.1, and
since adeg_ > 0, we have

Up(er)(dwe) = Aélll\/fa()é) {Q((Sws, A) + fOT adeg—_ dt} + o(7e)
> Quor)(0we) + o(ve)-

Obviously, |2 cry(dwe)| < O(ve) = o(7). Therefore, inequality (44) implies
in this case Un, (00)
Ag (OW
— > . 45
(ow) )
(B) liminf~, /v > 0, and hence v < O(v,) and ¥* < O(~.). Let us show,
in this case, that

lim inf

{we} € Si s (46)

Indeed, the sequence {dw, } = {(du,, 0y)} satisfies the conditions ||dw|| — 0,
(v + du.) < 0. Furthermore, the following estimate hold

meas ME — E%/M €2dt < Eiﬂf 0(1) < g\/’_y-s-()(l) — o), (47)
since /7/e? - 0. In virtue of Proposition 6.2 §f = &.f + 6 f + rf, where
according to (40}, |Irflli = o(¥%), 6l = O(meas M®) = o(y/7%). This
and the relations [|0g — 6f|l; = o(/7), v = O(v) imply |6y — 6 fll1 =
o(/7:). The sequence {dy} was not changed. Finally, maxy, fOTa eg— dt <
maxa, fOT adg_ dt < O(v) = O(+). Thus, (46) is proved.
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It follows from (46) and inequality (44) that

5 v Swe) + CHF
i inf 22000 o oo Taron (Owe) + O

o) ;

[ I} &
Mmcr)(dwe) +C-1—)

— lim inf (l :
Y Ve

v Sw, v dwe
> timint (o { ZHEC 0} — i g D)
Ye 3

i
ol

> min{ inf (lim inf E%(_C_Q) , C} = min {07 (‘I/M(CF)’Sclr(Zf/‘?)) ’ C} ’

Thus, we have proved that for each sequence {éw} € Iy /) there ex-
ists a subsequence such that for this subsequence we have liminf Uy, /vy >

min {C, (\p M(CT), Si?%)) , C}. This implies that

W
inf liminf —22 > min {C Siis }
ind liminf e > min {G, (Vaor, 55%m) » O}

that is
Cy (¥ py, Ho( ) = min {C7 (\p M(CF))Si((’f/»;)) , c}. (48)

Along with (37) this implies that
Cy(Ung, Toy) > min {C, (\IJM(CF),Sf,‘Zfﬁ)) ¢} (49)

In what follows, we will estimate C,, (lIJ M(CT); S(l,‘zc\ﬁ)) from below.

7 Passage to the set of sequences 5,

Our goal consists in passing to the set of sequences of critical variations
defined by relations (17). In this section, we will do one more step in this
direction.

Proposition 7.1. Let A = (u,p,a) € Ao. Then the critical cone has the
following equivalent representation:

¢:(m)dn <0, pgi(n)dn =0, i € Iy(n) U {0},
Fim)dn =0, j=r1+1,...,7, 6y = f'(w)dw, (50)
(¢ (W)du)x (g; (wy=0) < 0, ajgsu(w)du =0, j=1,...,q.
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Proof. Indeed, from the definition of the set Ap it easily follows that for any
A= (u,p,a) € Ag we have

T T T
S il ()on - / (65 — f'(w)ow) dt + / o (W)budt =0 Vow e W.
=0 0 0
Therefore, relations (17) imply that u;¢(r7)dn =0, ¢ € I(;7)U{0}, ag’ (u)du =
0. Thus, relations (50) are satisfied. Vice versa, if relations (50) are satisfied,
then, obviously, relations (17) are satisfied too. O

Since the convex hull co Ag of the set Ag is a finite dimensional convex
set, its relative interior int co Ag is nonempty.

Proposition 7.2. Let A = (i, p,8) € intcoNg. Then there exists C > 0
such that, for any A = (u,p,a) € co g, the following inequalities hold

pi < Chiy 1=0,...,m1;  a;(t) < Ca;(t) ae on[0,T), j=1,...,q. (51)

Proof. Since A = (i, P, a) is an interior point of the set co Ag, there exists
€ > 0 such that for any A = (u,p,a) € coAg we have At (A — 5\) € coly.
Condition A —e(A— ) € coAg implies ji; —e(p;— i) >0,i=0,...,r;, and
a;(t) —e(a;(t) —a;(t)) 20,5 =1,...,q. Consequently,

1+¢ ., ) 1+¢€, .
c i 2 piy, 1=0,...,71; a’](t)za'](t)l J=1...,q
Thus, it suffices to set C' = (1 +¢)/e. |

Let us fix an element A = (#,P,a) € int coAg. It follows from Proposition
7.2, that, in the definition of the set of sequences Sia(fﬁ), the condition

maxa, fOT a(dg)_ dt < O(7) is equivalent to the condition fOT a{dg)- dt <

O().
Define a new set of sequences S by the relations

6w]loe — 0, o(dw) = o(+v/7(6w)), (52)
9(u) + ¢'(w)du < 0, gi(w)duxia;sey =0, 7 =1,...,9, € = +0,(53)

where x(s,>¢)(t) is the characteristic function of the set {t | a;(t) > €}.
Relations (53) mean that for a given sequernce {dwy} there exists a sequence
{ex} such that e > 0, & — 0, and gj(u(t))éux(t) = 0 ae. on the set
{t|a;(t) > e} forall j=1,...,gand forall £ =1,2,.... Set

1 r ’
OH(0w) = AEIP/I%F) {Q(éw, A) + /0‘ a(g' (w)du)_ dt} . (54)

Let us show that

Cy(¥mcrys Sf,‘ff/:,)) > C, (¢, 51). (55)
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loc
Take any {éw} € Sotm) Then

: T
Jowlleo — 0, glu+du) <0, o=o(/7), / a(dg)— dt < O(y). (56)
0
Here the relation o = o(,/7) is equivalent to the set of relations
|69 — f'(w)dwlly = o(v/7), (57)
¢:(m)dn < o(v/7), i € Ly(m)U{0}, [¢i(n)dn| = o(v/7), i =r1+1...,7. (58)
The last relation in (56) is equivalent to
T
| (g m)-ar<06), =10 (59)
0
Finally, it follows from the relation g(u + éu) < 0 that
95 (u(t)) + g5 (u())du(t) < kldu(t))?, 5=1,...,q, (60)

where k; > 0 does not depend on the member of the sequence. In virtue of
the hypothesis of linear independence of gradients g;(u), for any sequence
€ = e(6u) — +0, there exist ky > 0 and a sequence {2} such that

[a(6)] < ko (1) + 3 (g5 (uE)ou®) X020 ®),  (61)
J=1

9; (u(®) + g (u(®)(Gult) + a(t) <Oae, j=1,...,q, (62)
g5 (w(®))(6u(t) + () =0 if a;(t) >, j=1,...,q,  (63)
gi(u@®)a(t) =0 if 0<a;(t)<e j=1,...,q. (64)

Relations (61) imply ||Z[lec < O(||dulles) = o(1). Since f{ﬁjzf}(g} (w)du)_ dt <
10 a;(g5(u)du) - dt, relations (59) and (61) imply [juf1 < O(y(éw))/e.

Choose € = g(dw) — +0 such that ||dw|lw/e — 0. Then /v(éw)/ec — 0,
and hence ||@||; = o(+/y(8w)). Moreover, since ||dufs/e — 0, we have that

T

/0 2| dt < lalleollall < O(fdulle) - O(y(6w))/e = o(v(6w)), (65)
T

/O [ouf - (@] dE < Jl6ulleo [[El) < JoulleoO(v(dw))/e = o(y(w)), (66)

T
/0 161 - @) dt < [8ylloolllls < 63 ]le0O(v(60)) /e = o(1(6w)). (67)

Set {dw;} = {(du+1T,dy)}. Relations (65)-(67) imply that, for the sequences
{éwy} and {Sw}, we have uniformly on Ag

6wy, A) = Qdw, A) + o(y(6w)),  (bwr) = v(dw) + o(y(bw)).  (68)
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Since {|]jooc — 0 and |||l = o{/y(dw)), we have
l6willo — 0, |18y — f'(w)dwrlly = o(v/7)- (69)

Moreover, the sequence {dw;} satisfies relations (58) with én = d7; (since
Sy = dy1) and relations

05 ()) + &) (u(0)Fur () <0 ae, =1, 0, (70)
gi(u(®)ou (t) =0 if a;(t) 2, 7=1,...,9, (71)
g5 (w(®))du(t) = gj(u(t))dus (t) if 0<a;(t) <e j=1,...,q (72)

Consequently {dwy} € S;. Let us show that, for any j =1,...,¢, we have

T T
/ a5 (g} (w)buy)_ dt < / ai(g5(u Fow)_dt vo(y)  (73)
0 Q

uniformly on Ag. Indeed, in view of relations (51),(71), (72), and since
e — 0, we have

T
Ofaj (g95(w)duy)_ dt = f&j <e 95(g; (u)duy)_ di
= e (- At < [, ay(g,(u+ ou))- d + €O(r(ow))
Jo as(gi(u+ du))— dt + o((6w)).
Relations (38), (43), (54), (68), and (73) imply that ®&(dw;) < ¥pror)(dw)+

o(v(dw)), where {dwy} € S1. Along with the second relation in (68) this
implies that

IA

. Uymeny(Ow) L (wy)
lim inf —W Z hmmfm Z C»Y((bb,Sl)

Since {éw} is an arbitrary sequence in S'!J(Efﬁ)’ inequality (55) follows.

8 Support of the critical cone
Define g as a set of all variations dw = (du, dy) € W satisfying the relations
6y = fl(w)dw, gi(u)duxqy =0y <0, a;gi(u)du=0,j=1,...,q
(74)

Obviously, Rg is a closed convex cone, and by Proposition 7.1, K C Ry.
Consider two sets of linear functionals

LioweW-— ¢;(’q)67], 1€ [¢ ] {0}, (75)

ll§w€W~+¢i(Tl)5n, 7;:7'1-1—1,...,7‘7 (76)
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where dw = (du, éy), on = (6y(0), 0y(T)). Let Qo be the cone generated by
functionals (75), and Q; be the subspace generated by functionals (76). Set
Q = Qo+ Q1. Then Q is a convex and finitely generated cone. Assume that
there exists a linear functional w} € @ which has an integral representation
on the cone Rp:

T
(w}, 6wy = — / alg (w)budt Véw € Ro, (77)
0

where
al € L0, T;R?™), o' >0, a'g(u) =0 (78)

Obvicusly, (w},dw) > 0 for all dw € Rg, i.e. wi € Ry. Assume that there
exists dwy € Ro such that (w},éw;) > 0. Set Ry = {w € Ry | (wi,dw) =
0}. From (74), (77), and (78) it follows that Ry = {éw € Ry | aly’(u)du =
0}. On the other hand, since w} € @, we have (w},dw) < 0 for all dw € K.
But £ C Rp and w} € R, consequently (w;,dw) > 0 for all 6w € K. Thus,
(w},dw) = 0 for all dw € K, and hence K C Ry.

Similarly, assume that there exists a linear functional w3 € @ which has
an integral representation on the cone Ry: (w},dw) = — OT a%g'(u)bu dt
Véw € Rj, where a? € L°(0,T,R?), a? > 0, a%g(u) = 0. Obviously,
(wh,0w) > 0Véw € Ry, Le. wy € R}. Assume that there exists dwp € Ry
such that (w5, dwy) > 0. Set Ry = {dw € Ry | (w},dw) = 0}. Then Ry =
{6w € Ry | a®¢'(u)du = 0}. On the other hand, since w} € Q, wj € R} and
K C Ry,we have {w},dw) = 0 Véw € K. Hence K C Ry.

Continuing this process, we obtain a set of functionals w},ws,..., w}
and a set of cones R1,Rq,...,Rs such that £ ¢ R, C ... € R; C Ro.
This process will be finished on some finite step s, because the functionals
wi,ws,. .., wk are linearly independent (this can be easily proved) and the
cone @ (containing these functionals) is finite generated. Set S = R, o’ =
4. Then S is the set of variations dw € W such that

0 = Fw)sw, (g5(w)ou)x(g;m=0y S0 7 =100 (g,
a'g(u)du =0, 1 =0,1,...,s.

Moreover,
K ={6wesS|ginon<0,ielyU{0}, g(mon=0,j=ri+1,...,r}.

We call S the support of the critical cone K. Let us note an important
property of the cone S which follows from the maximality of the system
wl,...,W;.

Proposition 8.1. If a linear functional w* € @ has an integral representa-
tion (w*, fw) = fOT ag’'{u)dudt on the cone S such that a € L*®(0,T;R?),
a >0, and ag(u) = 0, then (w*,dw) = 0 for all 5w € S.
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As—1 such that ys = Ajy1+...+ As—1ys—1. Since () =0,k =1,...,5—1
and 2, C Q1 C ... C QY CQ, we get ye(Qs-1) =0, k=1,...,5s—1,
and hence y,(2;-1) = 0. We arrive at contradiction. Consequently, ys ¢
Span{y1,...,Ys—1}-

Let the system ¥, ... ys be maximal. Then for the cone {2, we have: if
y € @ be such that y(Q;) > 0, i.e. y € Cy, then y(Q,) = 0. In this case we
have (—y) € Cs. It means that the linear span of the intersection @ N C,
is a subspace in Cy. Denote this subspace by H. Set S = Q,, Sy =C
Then Sy = &, Sy NQ C H C Sy, where H is a subspace in the cone Sy.
Thus, for the system of functionals Iy, ..., [ on the cone &, the assumptions
of Lemma 11.6 are satisfied . By this lemma, for any zg € &, the system
l(z +x0) <0, z €S is compatible and has the Hoffman’s error bound. We
call § the support of the cone K.

Remark 11.8. Denote by lhl, i=1,. fc functionals of the set {y,..., [, such
that i(K) = 0. The functlonals l Wthh do not posses this property we
denote by I;, i = 1,. . By definition, for each I; there exits an element
Z; € K such that l(m,) < 0. Set & = 3 &;. Then & € K, and (%) <0
foralli =1,...,k Set Q= {z € Q| ii(z) = 0 Vi}. One can show that
KCQCS and foranyxoeﬂ the system li(zg +2z) < 0,1 =1,...,k,
z e Qis compatible and has the Hoffman’s error bound. Questlon. is
it true that ) = S? A simple example shows that this is not true. Let
k= 2, 11 be such that ZI(Q) = R, and 12 = *ll- Then [1 = ll, [2 = L‘2 and
K=0={zecQ|4()=0}#0=35.
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