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Abstract

‘We consider optimal control problems with initial-final state equal-
ity and inequality constraints and mixed state-control equality con-
straints given by smooth functions. The mixed constraints satisfy the
regularity assumption of linear independence of gradients with respect
to the control. We present simple proofs of second-order necessary
conditions of Pontryagin minimum for broken extremals in these prob-

lems.

1 Introduction

In this paper we study a relationship between necessary second order condi-
tions for a week local minirnum in an optimal control problem on a fixed time
interval and necessary second order conditions for a ©-week local minimum
in an optimal control problem on a variable time interval. The latter type of
the minimum is connected with small variations of jump points of optimal
control, and the corresponding necessary conditions take these variations
into account. The relationship between two types of optimality conditions
is based on a simple change of time variable. As a conseguence we obtain
a relatively simple proof of necessary second order conditions for a @-week
local minimum.

Let us recall conditions for weak and ©-week minimum in a simple case.
Consider the simplest problem of the calculus of variations:

1
J(z) =/0 F(t,z(t),2(t)) dt = min, z(0)=a, z(1) =9,

where z(t) is Lipschitz continuous, i.e., z(-) € W, A local minimum in
the space W1'™ is a weak minimum.
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Let z0(t) be an extremal, i.e., it satisfies the Euler equation

£ B(1,2°(),8°()) = Fa(t,2°(2),5°(2).

Set & = u, w = (z,u). We call u the control. Set u0(t) := z°(t), wO(t) =
(z0(),C (). Let
w() = (z(-),u(:)) € Wa = wt? x L2,
Define a quadratic form in the space Wh:
Qw) = fy (Fuwlt,w’(®)w(t), (1)) dt

I

I

Jo (Faam(t), 2(1)) + 2(Fauu(t), 2(t)) + (Fuu(t), u(t)) dt.

Set '
K={weWy: 2=u, z(0)==z(1)=0}.

The following theorem is well-known.

Theorem 1.1. {a) If z° is a weak minimum, then Q(w) >0 on K. (b) If
Q(w) is positive definite on K, then 10 is a (strict) weak minimum.

Now, assume that the control ul(t) is piecewise continuous with one
discontinuity point ¢, € (0,1). Moreover, assume that u0(t) is Lipschitz
continuous on each of the two intervals (0,t,) and (t.,1). Hence z°(¢) is a
broken extremal with a break at ¢,. Which quadratic form corresponds to a
broken extremal?

Let us change the definition of & weak local minimum. Set © := {¢.}
and define a notion of a ©-weak minimum as follows. Assuming that the
control u9(t) is left-continuous, denote by u0(-) the closure of the graph of
29(t). Denote by V' a neighborhood of the compact set u9(-).

v V=ViUV=VouV
Vi=vPuv;
Vo=V UV
VO = VUV Ve w0 (L, ) u0(2)
Vr=Vruvs VP
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Definition 1.2. 19 is a point of a ©-weak minimum if for any € > 0 there
exits a neighborhood V of the compact set u0(-) such that J(z) > J(z°) for
all z € Wb such that u(t) € V a.e., where u = .

Recall the Weierstrass-Erdmann necessary conditions for broken extremal:

(1) %(t) = —F.(t,w’(t)) is continuous at t., ie., ] = 0, where [¢] =
Y(ta+) — P(ta—) = 9+ — ¥~ denotes the jump of ¥ at t.;

(i) H(t) = (t)u’(t) + F(t,w0(t)) is continuous at t., i.e., [H] = 0.
We add one more necessary condition [5]:
(i) D(H) 20,
where D(H) is equal to minus derivative of the function
AH(E) = ($(0)[a0) + F(t, 2°(8), 00 (1.4)) — F(t,2°(2), (8. -))
at t. (the existence of this derivative is proved). One can show that [5]
D(H) =5~ — 5% + o),

where o(t) 1= —H(t).

Denote by PoW? the Hilbert space of piecewise continuous functions
z(t), absolutely continuous on each of the two intervals [0,t.) and (t.,1],
and such that their first derivative is square integrable. Any z € PgW!?
can have a nonzero jump

[z] = z(ts + 0) — z(t, — 0)

at the point ¢,. Let £ be a numerical parameter. Denote by Z(@) the space
of triples z = (¢, z,u) such that

EeR, z(-)ePoWl? wu()el?

Thus,
Z2(0) =R x PoWl? x 2.

In the space Z3(©), define a quadratic form
Qolz) = D(H)E* + 2[F;)zané + /ol(Fww(t,wo(t))w(t), w(t)) dt,
where [F}] is the jump of the function Fy(¢,w°(t)) at the point ¢., and
Tay = -21-<z(t,.-) +a(t.t)).
Set

Ko=1{z€2:(0): t=u, [z)=[¢, z(0)=z(1)=0}.



Theorem 1.3. (a) If 2° is a @-weak minimum, then Qo(z) > 0 on Ko.
(b) If Qo(z) is positive definite on Ko, then z¥ is a (strict) ©-weak mini-
mum.

A detailed proof of this theorem (based on the so-called ”method of
deciphering”) is given in [5]. It is rather long and technical. But it turned
out that there was a relatively simple way to prove the necessary condition
a) of this theorem and thus to come to the quadratic form which corresponds
to a broken extremal. This way will be shown in the present paper for the
general problem of the calculus of variations.

The paper is organized as follows. In section 2 we formulate the general
problem of the calculus of variations on a fixed time interval and derive the
second order necessary conditions for a weak local minimum in this problem,
using Dubovitskii-Milyutin method of critical variations [2]. In section 3 we
formulate the general problem of the calculus of variations on a variable
time interval and derive the second order necessary conditions for a ©-weak
local minimum in this problem, using simple change of time variable and
necessary conditions of a weak minimum obtained in section 2.

2 Necessary Second Order Condition for a Weak
Local Minimum in the General Problem of the
Calculus of Variations on a Fixed Time Interval

A weak local minimum in problem A  Consider the following
optimal control problem of Bolza type on a fixed interval of time [to,2y].
It is required to find a pair of functions w(t) = (z(t),u(t)), t € [to,ts],
minimizing the endpoint functional

T (w) = J(z(tp), z(ty)) — min (1)
subject to the constraints
F(z(to), z(tf)) €0, K(z(to),z(ts)) =0, (2)
z(t) = f(t, z(1),u(t), (3)
g9(t,z(t), u(t)) =0, (4)
(I(fo),l‘(tf))) € P) (t! I(t)ru(t» €Q, (5>

where P and Q are open sets, z, u, F', K, f, and g are vector-functions. We
call (1)-(5) the Problem A.

We assume that the functions J, F, and K are defined and twice contin-
uously differentiable on P, and the functions f and g are defined and twice
continuously differentiable on Q. It is also assumed that the gradients with
respect to the control g;,(¢t,z,u), i = 1,...,d(g) are linearly independent at
each point (¢,z,u) € Q such that g(¢,z,u) = 0 (the regularity assumption



for the equality constraint g(¢,z,u) = 0). Here g; are the components of the
vector function g and d(g) is the dimension of this function.

The Problem A is considered in the space of pairs of functions w = (z,u)
such that the state variable z(t) is an absolutely continuous d{z)-dimensional
function and the control u(t) is a bounded measurable d(u)-dimensional
function on the interval {to,¢7]. Hence the problem is considered in the

space
W = WO ([to, £, RE®)) x L ([to, tf], R4M),

Define a norm in this space as a sum of the norms:
ts
lwll = lizli1 + fullo = lz(to)] +/ (8] dt + ess sup 1 ) [u(t)]-
to

We say that w € W is an admissible pair if it satisfies all constraints of the
problem. Let w® = (2°,u%) € W be a fixed admissible pair. We say that
w® is a weuk local minimum if it is a local minimum in the space W, i.e.,
there exists € > 0 such that J(w) > J(w®) for all admissible pairs w € W
satisfying the condition ||Jw — w® < e.

Necessary condition for a week local minimum We introduce the
Pontryagin function

H(t,z,u,9) = ¢ f(t,z,u) (6)
and the augmented Ponltryagin function
H(t,z,u,p,v) = H{t, z,u,9) + vg(t, z,u), (7)

where 1 and v are row-vectors of the dimensions d(z) and d(g), respectively.
For brevity we set

zO:I(tO)y Ifzz(tf)7 p:(.'Eo,-'l?f)

Denote by (R¥®)* the space of d(z)-dimensional row vectors. Define the
endpoint Lagrange function

Up, ao, @, B) = a0 (p) + aF(p) + BK (p), (8)

where
a€R, ac (RUD  ge RU)

Introduce a tuple of Lagrange multipliers
A= (aoya:ﬁvd)(')iu(')) (9)

such that ¥() : [to,tf] = (R¥®)* is an absolutely continuous and () :
[to, tf] = (R%9))* is a measurable bounded function.



Denote by Ag the set of all tuples A satisfying the following conditions
at the point w?:

a0 20, a2 0, aF(p°) =0, ap + 0 ai + 259 18] = 1, 10)
w—“Hz) ¢(t0) lIm 1/’(tf)_lzp H “'O

where p? = (20(tg), x (tf)) the derivatives ly, and I, are at (#°, ag, o, B)
and the derivatives H,, H, are at (¢,2°(t),u%(t), ¥ (t), v (), t € [to,t;]. By
@; and B; we denote the components of row vectors @ and 3, respectively.

The following well-known first order necessary condition holds: if w®
is a weak local minimum, then the set Ag is nonempty. This condition is
called the local minimum principle (or the Euler-Lagrange eguation). From
the regularity assumption for the constraint ¢ = 0 and definition (10) it
easily follows that Ag is a finite dimensional compact set, and the projector
(20, @, B,9(),v(")) = (e, @, ) is injective on Ag.

Now let us formulate the second order necessary condition at the point
wO. Set

Wy = VVLQ [to tf] Rd(z) ) x L2 ([to, tf] Rd(u))

where L%([to,1/], RE®)} is the space of square integrable functions, and
WL2({to, ], R4®) is the space of absolutely continuous functions such that
their first derivative is square integrable. Hence W, is a Hilbert space with
a scalar product

(w, @) = (z(to),i(to))+/j<i,é) dt+/tj{u,ﬁ) dt.

to

Let K be the set of all w = (%, 1) € Ws satisfying the following conditions:

()5 <0, Fl()p<0vielr(?), K'(@)F=0,
I(t) = fu(t, w0 ()w(t), for a.a. t € [to, ty), (11)
guw(t,w0(D)w(t) =0, for a.a. t € [to, /],
where Ip(p°) := {i : F;(p°) = 0} is the set of active indices. It is obvious
that K is a convex cone in the Hilbert space W,. We call it the critical cone.
Let us introduce a quadratic form on Wh. For A € Ag and w = (Z,4) €
Wa, we set
tro_
Q(/\’TD) = (lPPﬁa ﬁ) + (wa’lf)(t),’lf)(t)) dt: (12)
to
where lp = Lp(P® 20,0, 8), Huw = Huww(t, 20(2),u0(8), ¥(£), v(t)), B
Theorem 2.1. If the trajectory T yields a weak minimum, then the follow-
ing Condition A holds: the set Ag is nonempty and

max (A, w) > 0 for all w € K.
A€o



Proof of the necessary condition for a week local minimum We .
present a short proof of this theorem omitting details. In this proof, we will
use the Dubovitskii-Milyutin method of critical variations, cf. {2]. Let w® be
a weak local minimum. Without loss of generality we assume that J(p°) = 0,
and Fy(p®) = O for alli = 1,...,d(F). Denote by L' ([tp, ts], R%®)) the space
of integrable functions. Consider the operator

Grw=(mu)eW = (Jw) -3, gtv), K(slto) 2(t))) €Y, (19)

where

V= L(fto, 4], RA®) x L= ([to, t7], RU) x RUK),
This operator is Frechét continuously differentiable in & neighborhood of the
point w°, and its derivative at w® is a linear operator

G’(wo) Fwe=(z,u) e W — (fw(t,wo)w — 2, gul(t, ww, K'©%)p) € J(/ :
14

The derivative G'(w?) has a closed image (see, e.g., [4]), since the operator
weEW = (fult,u®)w — &, gu(t,w®)w) € L (fto, /], REZ)x L= ({to, t /], R4?)

is surjective (it easily follows from the regularity assumption for the con-
straint g(t,w) = 0), and the operator w € W — K'(p%)p € R¥X) is finite
dimensional. Consider two possible cases: G'(w®)W # ¥ and G/ (wW = V.

a) In the first case, the image G'(w®)W is a closed subspace of Y, not
equal to V. Therefore, there exists a nonzero linear functional {(w) vanishing
on this image. The latter means that there exists a nonzero triple

b € L=([to, t7], RY®)), v e (L®([to, t7}, R4D))*, B e RO
such that

tr
Y(fu(t,w)w —2) dt + (v, gu (t, w)w) + BK'(P*)p = 0 Vo € W. (15)
to
On the subspace of w € W such that =z = 0 this condition takes the form:
ty
W fult, wPudt + (v, gu(t, wu) =0 Vu e L™
to
From this relation and the regularity assumption for g we easily obtain that
the functional v is absolutely continuous. Hence it is defined by an integrable
function, which will be also denoted by v. Then ¥ fu(t,w) + vgu(t, w®) =0,
ie., H, =0, where f =1 f 4 vg (cf. (7). It follows that v is an essentially
bounded function.
Now, setting » = 0 in (15) and taking into account that v € L*, we

obtain

[ ((f=(t,w0)z — ) + vga(t, w¥)z) dt ”
+B8(Kzo (P%)z(t0) + Kz, (p7)z(ts)) =0 Vz e Wi,
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It easily follows from (16) that the function ¢ is absolutely continuous, and
moreover it satisfies the adjoint equation —¢ = H, and the transversality
conditions —(tp) = Iz, and (tf) = Iz, with | = SK. If B = 0, then the
conditions 9(ty) = Iz, = 0 and —op = H, imply that 1 = 0, and then the
relation ¥ f, + vg, = 0 and the full rank condition for g, imply that v = 0.
Hence 8 # 0 and we can take a triple (#,1,v) with |8] = 1. Set ap = 0,
a=0and A = (0,0,8,%,v). We see that thus obtained tuple  belongs to
the set Ag, and moreover, —~X € Ap. Then, for any element w € W, we have:
QA w) 2 0 or Q(—A,w) > 0. Thus, in the considered case, the set Ap is
nonempty and maxp, A, ) > 0 on the whole space W,. Hence condition
A trivially holds, although it is not informative in this case.

b) Now, consider the main case: G'(w®)W = Y. The following lemma
holds in this case.

Lemma 2.2. For any w € X N'W the following system of linear equalities
and inequalities is inconsistent with respect to w € W:

TEp+ 5658 <0, a7)
F() + l<F"<;o°>;5 7 <0, (18)
K%+ (" ()5,5) =, (19)
Fultsw®) = & + 3 fun(t,),) = 0, (20)
9ult, w)i + 3 (guu(t ), ) =0, (1)

where p = (Z(to), Z(tf)).

Proof. Assume the contrary: let there exist w € KNW and w € W satisfying
(17)-(21). Consider the curve w® = w® + e + £% parameterized by & > 0.
From conditions (19)—(21) it easily follows that ||G(wF)|| = o(¢). Then, by
generalized Lyusternik’s theorem [1}, there exists a curve W® € W (g > 0)
such that G{w® + ¥*¢) = 0 and ||w°|| = o(g). Conditions (17)-(18) together
with condition w € X W imply that J(p® + ) < 0 and F(p° + p°)) < 0.
Since |Jw® + @f — w0 — 0 (¢ — 0), the latter means that w® is not a local

minimum in the problem. (]

In order to analyze inconsistency of system (17)—(21), we will need the
following well-known assertion (see, e.g., [4]).

Lemma 2.3. Let X,Y be Banach spaces, l; : X — R linear functionals, a;
real numbers, i = 1,...,k, A: X — Y a liner surjective operator, b €Y a
given element. The linear system

li{z) +a; <0, i=1,...,k, Az+b=0



is inconsistent (in x € X ) if and only if there ezist numbers a; > 0 and a
functional y* € Y* such that

k k &
Zaili+y*A:0, Zai > 0, Zaia,;—i-y*bz 0.
i=1 i=1 i=1
Applying this lemma to system (17)- (21) we obtain the following result:
theree)ust @ >0,i=0,1,...,d(F), § € R¥K) o e % v € (L*®)* such

that Zl o al > 0 and

¢
lp(po, ag, o, B)p +/ f(fw(t,wo)w — &) dt + (v, gu(t, w)w) =0 Ywe W,
t
° (22)
¢
(6", 0,0, B)5.8) + | 6,000, e+ (v, (g (70, 0) 2 0,
° (23)
where { is as in (8). Without loss of generality we assume that Zd(‘g) o5 +
ng) 1851 = 1. The analysis of equation (22) is similar to that of (15). As
result we prove that v is absolutely continuous functional given by a bounded
measurable function (which we also denote by v), the function ¢ is absolutely
continuous, and the tuple A = (ao, @, 8,%, v) satisfies all conditions in the
definition of Ag. Clearly, condition (23) means that Q(A,@) > 0. Thus
we have proved that for any w € KX N W there exists A € Ag such that
(A, w) > 0 and hence maxa, §2(, ) is nonnegative on L N W. To get the
same assertion on X, it suffices to prove that the closure of the set XNW in
Wy is equal to K. The latter easily can be proved using Hoffman’s lemma
[3]. We omit this simple proof.

3 Necessary Second Order Condition for a ©-Weak
Local Minimum in the General Problem of the
Calculus of Variations on a Variable Time Inter-

val
3.1 Problem B and a ©-weak local minimum. Main results

Now, we consider a more general optimal control problem. Let 7 denote a
process (z(¢),u(t) | t € [to,tf]), where the state variable z(-) is a Lipschitz
continuous function, and the control variable u(:) is a bounded measurable
function on a time interval A = [t,t7]. The interval A is not fixed. For
each process 7 we denote by

p = (to, z(to), s, z(ts))



the vector of the endpoints of time-state variable (t,z). It is required to find
7 minimizing the functional

J(T) = J(p) = min . (24)
subject to the constraints

F(p) <0, K(p)=0, (25)

o(t) = f(t,=(t),u(t)), (26)

g9(t,z(8),u(t)) = 0, (27)

peP, (tz(t)ult)) €, (28)

where P and Q are open sets, z, u, I, K, f, and g are vector-functions.
We assume that the functions J, F, and K are defined and twice contin-

uously differentiable on P, and the functions f and g are defined and twice

continuously differentiable on Q. Tt is also assumed that the gradients with

respect to the control g;,(t,z,u), ¢ = 1,...,d(g) are linearly independent at
each point (¢,z,u) € Q such that g(t,z,u) = 0 (the regularity assumption
for g).

We say that a process 7 is admissible if it satisfies all constraints of the
problem. Let 7 = (z(¢),u(t) | t € [to,tf]) be a fixed admissible process.
We say that 7 is a weak local minimum if there exists € > 0 such that
J(T) > J(T) for each admissible process 7 = (2(¢),a(t) | t € [fo,f])
satisfying the conditions

lfo—t0‘<€, 'ff—-tfl <€, mMaX,c nna |i(t)—a:(t)l <eE,
€55 SUD cana l8(E) — u(t)] <é,

where A = [fo, 1],

In the sequel, we consider an admissible process 7 = (z(t),u(t) | t €
[to,tf]) such that the control w(-) is a piecewise continuous function on
the interval A with the set of discontinuity points © = {t1,... ¢}, to <
t) < ... <ty < ty. Moreover, we assume that the control u(-) is Lipschitz-
continuous on each interval (tg—1,tk), K =1,...,s+ 1, where t,41 =15 (in
this case, we say that the function w(-) is piecewise Lipschitz-continuous on
A). Let us formulate the first-order necessary condition for optimality of the
trajectory 7. Again, we introduce the Pontryagin function H (¢, z,u, ), the
augmented Pontryagin function H(t, z,u,,v), and the endpoint Lagrange
function {(p, ap, &, B) defined as in (6), (7), and (8), respectively, but now
p = (to, z{t0),ts, z(ts)). Introduce a tuple of Lagrange multipliers

A= (00,0, 8,%(),%a(-),v(")) (29)

such that ¢(-) : A = (R¥®)* and vg(-) : A — R! are piecewise smooth
functions, continuously differentiable on each interval of the set A\ ©, and
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v(-) 1 A — (RU9DY* is a piecewise continuous function, Lipschitz continuous
on each interval of the set A\ ©.
Denote by AY the set of all tuples A satisfying the conditions:

20, @20, aF(p) =0, ao+ o+ 1|6 =1,

Y=—~Hy, tho=—H, H,=0,t€ A\ O, (30)
¢(t0) = ‘l:vm 1ﬁ(tf) = l::j; wo(tO) = —ltm ¢o(ff) = ltj’

H(t, z(t),u(t),¥(t)) + ¢o(t) =0, t € A\ O.

The derivatives iz, and I;, are at (p, 2, &, §), where p = (to, z(t0), t 5, (ts)),
and the derivatives H,, H,, and H; are at (¢, z(t), u(t),¥(t), »(t)), where
te A\O.

Let us give the definition of ©-weak minimum in problem (24)-(28) on a
variable interval {to,ts]. For convenience, we assume that u(-) is left contin-
uwous at each point of discontinuity ¢, € ©. Denote by @ the closure of the
graph of u(t).

Definition 3.1. The trajectory 7 affords a ©-weak minimum if there exist
£ > 0 and a neighborhood V < R4™+1 of the compact set @ such that
J(T) = J(T) for all admissible trajectories 7 = ((t),4(t) | t € [fo,f])
satisfying the conditions
(a) lto—tol <&, |ty —tsl <e,
(b) max|Z(t) — z(t)| <&, where A = [f,if],

AnA

(c) (t,%(t)) € V ae. on [fg,tf].

The condition A? # () is equivalent to the local minimum principle. It is
a first-order necessary condition of ©-weak minimum for the trajectory 7.
Assume that Ag) is nonempty. Using the definition of the set A[? and the full
rank condition of the matrix g, on the surface ¢ = 0 one can easily prove
that A(? is a finite-dimensional compact set, and the mapping A — (ag, o, 8)
is injective on A§.

Let us formulate a quadratic necessary condition of a ©-weak minimum
for the trajectory 7. First, for this trajectory, we introduce a Hilbert space
Z5(0©) and a”critical cone” K C Z3(©). We denote by PoW12(A, RU=)) the
Hilbert space of piecewise continuous functions Z(-) : A — R¥®) absolutely
continuous on each interval of the set A\© and such that their first derivative
is square integrable. For each & € PoW1L2(A, R, ¢ € © we set

P =a(t—), I =zer), [F)F =3P -3

Thus [£]* is the jump of the function Z(t) at the point ¢ € ©. Similar
notation we will use to denote jumps of other functions at a point ¢t € ©.
Set

Z= (EO:t—l:"-;t_sztfyzvu))

11



where o )
teRy, k=0,1,...,s, I;€eRL,
i€ PoWh(A, RUDY, G e LHA, RAW),
Thus,
€ 2(0) =R x PoW (8, RU)) x LP (8, RAW).

Moreover, for given Z we set

W= (Z,1), (31)
P = (fo, Z(to) + toz(to), ty, Z(ty) + tra(ty)). (32)
By Ip(p) = {i € {1,...,d(F)} | Fi(p) = O} we denote the set of active

indices of the constraints F;(p) < 0. Set Z)f = 2(te+) — 2(ts—).
Let K be the set of all z € 2,(©) satisfying the following conditions:

J(p)p<0, F(pp<0Vielr(p), K'(p)p=

Z(t) = fu(t,w(t))w(t), for a.a. t € [to,ty], (33)
E)f + [ =0, k=1,...,s

guw(t, w(t))w(t) =0, for a.a. t € [to, 1],

where p = (tg, z(to), tf, z(tf)), w = (z,u). It is obvious that K is a convex
cone in the Hilbert space Zo(®). We call it the critical cone.

Let us introduce a quadratic form on Z3(©). For A € AS and 7 € K, we
set

Q()‘:Z) = (lpppp +ft (waw() ()) dat

H(o(e0) + Dlta)ale B +2w(to) (to)to
—(tl’o(tf)+1/)(?5f)1ﬂ(7«‘f))f2 - 2h(t ) (ty)Ey,
where lpp = lp(p, 00, @, 8), p = (to, z(to), 15, 2(ty)).

Theorem 3.2. If the trajectory T yields o @-weak minimum, then the fol-
lowing Condition A holds: the set Ag) 18 nonempty and

rna.XQ()\ 2)> 0 forallz € K.
AeAD

3.2 Proofs

The proofs are based on the quadratic necessary optimality conditions of a
weak minimum, obtained for the problem on a fixed interval of time. We
will give the proofs omitting some details. In order to extend the proofs
to the case of a variable interval [tg,tf] we use a simple change of the time
variable. Namely, with the fixed admissible trajectory

T = (z(t),u(®) | t € [to, 1))

12



- in problem (24)-(28) on a variable time interval we associate a trajectory
TT = (t(T),I(T),u(T),U(T) I TE [TO;TfDa

considered on a fixed interval [rg, 7], where 79 = 1o, 75 = ty, t(r) = T,
v(r) = 1. This is an admissible trajectory in the following problem on a
fixed interval [7p, 77]: to minimize the cost function

T(T7) = J(t(r0), z(70), t(7s), x(77)) = min (35)
subject to the constraints

Ft(ro), z(m0),t(rs), 2(75)) < 0, K(t(70), z(70),t(7y), z(7¢)) = 0,(36)

—d—:Ed—S_T—) = (1) f(¢(7), z(T),u(T)), d’;—(:z = v(1), - (387)
g(t(7),z(7),u(r)) = 0, (38)
(t(70), z(m0), t(rys), 2(ry)) € P, (¢(7),2(7),u(7)) € Q. (39)

In this problem, t(7) and z(7) arve state variables, and u(7) and v(7) are
contro} variables. For brevity, we will refer to problem (24)-(28) as problem
P (on a variable interval A = [ty,1s]), and to problem (35)-(39) as problem
P7 (on a fixed interval [1p, 74]). We denote by A" the necessary quadratic
condition A for problem PT on a fixed interval [rg, f].

Recall that the control u(:) is a piecewise Lipschitz-continuous func-
tion on the interval A = [tg,tf] with the set of discontinuity points © =
{t1,...,ts}, where tg < t1 < ... < tg < ty. Hence, for each X € A((?, the
function v(t) is also piecewise Lipschitz-continuous on the interval A, and,
moreover, all discontinuity points of v belong to ®©. This easily follows from
the equation &, = 0 and the full rank condition for matrix gu- Conse-
quently, 22 and 2 are bounded measurable functions on A. The proof of
Theorem 3.2 is composed of the following chain of implications:

(i) A ©-weak minimum is attained on the trajectory 7 in problem P =
(ii) A weak minimum is attained on the trajectory 77 in problem P7 ==
(iif) Condition A" for the trajectory 77 in problem P7 —=

(iv) Condition .4 for the trajectory T in problem P.

The first implication is readily verified, the second follows from Theo-
rem 2.1. The verification of the third implication (i4¢) = (iv} is not short
and rather technical: we have to compare the sets of Lagrange multipliers,
the critical cones and the quadratic forms in the both problems. This will

be done below.
Comparison of the sets of Lagrange multiplies. Let us formulate
the local minimum principle in problem P7 for the trajectory 7. The

endpoint Lagrange function {, the Pontryagin function H and the augmented
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Pontryagin function A (all of them are equipped with the superscript 7) have
the form:

I" = agJ + aF + BK =1, ) w0
H' =9yfo+ydov=0v(0f +1), H =H +uvg.

The set AJ in problem P7 for the trajectory 77 consists of all tuples of La-
grange multipliers A” = (ao, ¢, 3, v, %o, v) such that the following conditions
holds:

ag +jof + B =1,

‘Z—fzv¢fz+’19:; “%—szwft‘FUgh (41)
Y(10) = —lag,  $(7p) =lo;,  to(mo) = ey, tol7y) =1,
HJ=UT!’fu+V9u=0, FIJ=¢f+¢o=0~

Recall that here v(7) = 1, (1) = 7, 70 = to, 75 = t5. In (41), the function
f and the derivatives fz, fu, ft, 9z gu, g¢ are taken at (i(7),z(r),u(r)),
7 € [10,7f} \ ©, while the derivatives lyy, Iz, lt, I, are calculated at

(t(70), z(70), t(1f), z(7f)) = (to, z(t0), tf, z(¢;)). This implies that AF = A§.

Comparison of the critical cones. For brevity, we set g = (¢,z,u,v) =
(t,w,v). Let us define the critical cone K7 in problem P7 for the trajectory
T7. It consists of all tuples g = (£, Z, @, 0) satisfying the relations:

Jeot(10) + Jzg E(10) + Ji, H(7) + Jz, E(1y) <0, (42)
Fitot(70) + FizoZ(70) + Fit 8(7f) + Fiz Z(75) <0, 1€ Ip(p), (43)
Kiot(10) + KzoZ(T0) + thf('rf) + Ksz('rf) =0, (44)
dz _

E; =0f +vu(fif + folf + fud), (45)
dt

—d-; =v, (46)
gt{+ gzi +gut = O) (47)

where the derivatives Jig, Jzo, Ji; Jz;, etc. are calculated at
(¢(10), z(70), t(7s), 2(75)) = (to, z(t0), tr, z(ts)),

while f, fi, fz: fu 9t, 6=, and gy are taken at (¢(7), z(7),u(7)), T € [70, 7¢]\©.
Let 5 = (£,%,4,7) be an element of the critical cone 7. We will make use

of the following change of variables:
T=ZI—1iz, @=1-1y, (48)

or briefly
W= — b (49)



Since v =1, £ = f, and £ = 7, equation (45) is equivalent to the equation

dz _

I UL + fit + fu®. (50)
Using the relation Z = £ 4 £ in this equation along with = 7, we get

E4 1% = fif + fud. (51)

By differentiating the equation z(t) = f(t,w(t)), we obtain

i=fy+ furb. (52)
Using this relation in (51), we get )
I = . (53)

The relations

imply
[#]* + [3]F% = O, (54)

where
Bo=i(t), k=1,....s (55)

Further, relation (47) can be written as g, + g, = 0. Differentiating the
relation ¢(t,w(t)) = 0 we obtain

gt + gpw = 0. (56)
These relations along with (49) imply that
9w = 0. (57)
Finally, note that since T = Z + ¢, and 7o = tg, 75 = t5, we have
B = (to, Z(fo), I, Z(ty)) = (o, E(ta) + tox(to), Ty, Z(¢s) + E2(ts)),  (58)

where {5 = #(tp) and I = £(t;). The vector in the right hand side of the last
equality has the same form as the vector p in definition (32). Consequently,
all relations in definition (33) of the critical cone X in problem P are satisfied

for the element % = (fo,%1,...,%s, 15, w). We have proved that thus obtained
element z belongs to the critical cone X in problem P.
Vice versa, let (Ig,11,...,1s,%f, ) be an element of the critical cone K

in problem P. Let us take a Lipschitz continuous function f satisfying
t—(to) =Zo, E(tf) fo, E(tk) ={k: k= 1,...,5;

e.g., one can take a continuous function 7, affine at each interval (fx_1,%z),
k=1,...,5s+1, where to4; = t;. Set

a=1, wW=1w+hi.
Then we obtain an element (#,@,7) of the critical cone K7 (see (42)-(47))
in problem P7. Thus, we have proved the following lemma.
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Lemma 3.3. If (£,@,0) is an element of the critical cone K7, as in (42)-
(47), in problem PT for the trajectory T and

o =1(ty), tr=1i{t5), W=1u0-7iw, &:ﬂ@Lk:L”w& (59)
then (fo,21,-..,ts,Ef, W) is an element of the critical cone K, as in (88), in
problem P for the trajectory T. Moreover, relations (59) define a surjective
mapping of the critical cone K™ on the critical cone K.

We will say that an element (%,%,..., s, tf,w) of the critical cone K
in problem P corresponds to an element ( w, ) of the critical cone K7 in
problem P7 if relations (59) hold. :

Comparison of the quadratic forms. Let an element (Zo, 1, ..., %, {7, W)
of the critical cone K in problem P corresponds to an element (£, @, %) of the
critical cone K7 in problem PT. Assume that X € Af (recall that A = A).

Let us show that the quadratic form Q7(},), calculated on the element
(f,w, ) can be transformed to the guadratic form Q(},-) calculated on the
corresponding element (t_o,ff,é,u')), i.e., the forms on these elements take
equal values.
(i) Set

o= (t,w,v), &= (tu,u).

It follows from (40) that

Q7(A,2) = (i, B) + /t :l (H7,8,5) dt, (60)
where
(H3o0,0) = (Hyn®, 0) + 2Hpy Wt + Hat® + 20(Hyw + Hil). (61)
Since W = W + fw, we have
(B @, @) = (Hip 0, B + 2(Hoprothr, W) + (Hoprorhr, w)E2. (62)
2H Wt = 2Hp Wt + 2H, w2, (63)

Moreover, using the relations

Hull = ]:{w = VGw, f{t = Hv_t - Vg, gt{“‘ Gww = 0,
—TI}ZHI: _w():th Hu:07 gt+gww=01

we obtain
Hyw+ Hi = Hyw+ Hi— u(gww + g+f)
= wa+Htt—H$+Htt )
_1/;1 - wof = *1/)(1 + 13) — ot
—pF — (1/)1 + wo)t.

(64)

Il

i
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Relations (61)-(64) imply
(ﬁ;géa E) = <wa‘lf),‘lD> + %(ﬁwww,ﬂ)_)t—+ <F[www1 ’LU)fQ
+2Hy Wt + 283 d? + Hyt? (65)
—ED — 2y + Pp)iD.
Consequently,
(Hppb,8) = (Huw®, @) + 2((Huwtd, 8) + Hiuy®)T
+({(Hopurd, W) + Hey)F? + (Hpptb + )8 (686)

—29p50 — 2(4o + Y1) 0.
(i1) Let us transform the terms 2({ Moo, W) + Hy,, )t in (65). By differen-
tiating the equation —i¢ = H, with respect to t, we obtain )
~ = Hiz + () Hup + 9 Hys + 0B
Here H,pz = f; and H,, = g,. Therefore
= H ) B+ 9 + 05 (7
Similarly, by differentiating the equation &, = 0 with respect to ¢, we obtain

0= Hy + () Hu + P fu + Dgu- (68)

Multiplying equation (67) by Z and equation (68) by @& and summing the
results we get

% = B 4 (Hywth, B + ¥ fuld + Dguw.
But f,,w = Z and gy, = 0. Therefore,

i = HptD + (Hypth, ) + 915,

whence 4
Hi® + (Hyoth, @) = ——‘E(zj):i). (69)
This implies that
o L d .
2({Hypt, ®) + Hey )t = —QtEt-(d;:c). (70)

(iii) Let us transform the terms ({H 20, W) + Hyy0)E2 in (65). Multiplying
equation (67) by Z and equation (68) by w and summing the results we

obtain B B ~ )
-¢$ = Htww + <wa‘li),‘li)> + "-/’fww + Uguw. (71)
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From (52) and (56) we get fuuw = & — fi, guW = —gt, respectively. Then
(71) implies

Bty + (Bt ) = — 2 (68) + (e + 500). (72)

Multiplying this relation by £ we get
(Hawis i) + Fosh) B = ~P 23 + Df 4000 (73)
(iv) Finally, let us transform the terms (ﬁtwu} -+ I:In) £ in (65). Differen-

tiating the equation ——¢0 = H; with respect to t and using the relations
Hy = fi and Hy; = g1, we get

—po = Hy + Huwo + (¥ f2 + vgy). (74)
Consequently,
(Huwth + Hy) & = —of* — (§f; + 0g) B (75)
(v) Summing equations (73) and (75) we obtain
_ _ . d .
(H ot )82 4+ Hyd? 4+ 2H b2 = —ehot? — EQEE(W)' (76)
(vi) Using relations (70) and (76) in (65) we get
o o d ..
(Hgggy Q> = (wa’w, w> - Qta(d’z)

—ept? — #%(«/ﬁ) — 2937 ~ 2(ho + Pi)E0.  (77)

But
. s d . -d - . d /- -
D02 + 20t = EWOF), ta(d)i) +0(yz) = % (tiﬁf),
- d - d .
2Ao(y) + ?E(m) = E(«/;jm?).
Therefore,
(H7,,2) = (st 3) — & () o +2938). (79)

We have proved the following lemma.

Lemma 3.4. Let § = ({,w,7) € K7 and (fo,ff,é,w) € K be such that the
relations (59) holds, and let A € AS. Then formula (78) holds.
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(vi) Recall that 79 = ty, 75 = t7, t(r) = 7, dt = dr. Since the functions
Yo, ¥, &, and £ can have discontinuities only at the points of the set ©, the
following formula holds:

iy . . . . o L
J & (o + )2 + 2438) dt = (o + $a) + 25t [
o (79)

= 5 (o + ) + 20420 ).
k=1

Formula (78) along with formula (79) gives the following transformation of
quadratic form Q7 (60) on the element § of the critical cone K"

O"(08) = (o) + [ (Hu®, @) dt
- ((z/)o )P 4 27,&:5{) i (0)
+ 3 (o -+ e + 2.

Taking into account (59), we see that the right hand side of (80) is the
quadratic form (A, %) (34) in problem P for the trajectory 7, where z =
(fo,t1,...,ts,t7,10) is the corresponding element of the critical cone K. Thus
we have proved the following theorem.

Theorem 3.5. Let p = (t,w, %) be an element of the criticel cone X7 in
problem PT for the trajectory 77. Let z = (g, 1, ..., ts,t5,W) be the corre-
sponding element of the critical cone K in problem P for the trajectory T,
t.e., relations (59) hold. Then for any A € A the following equality holds
Q7(A8) =0\ 2).

This theorem proves the implication (7i1) = (iv) (see the beginning of
this subsection). Indeed, suppose that Condition A holds for the trajectory
77 in problem P7, and let 7 = (fg,t1,...,%, {5, @) be an arbitrary element
of the critical cone X in problem P. Then by Lemma 3.3 there exists an
element p = (,%, 7) of the critical cone K7 in problem P7 for the trajectory
77 such that relations (59) hold. Since A§ is a compact set and condition
Condition A holds in problem P7, there exists an element A € A§ such that
Q7(A,8) > 0. By theorem 3.5 we have Q7(A, 2) = Q(}, z). Consequently,
Q(A,Z) > 0, ie., Condition A holds for the trajectory 7 in problem P.
Thus we have proved the implication (¢7¢) => (iv). This completes the proof
of Theorem 3.2.

3.3 Equivalent formulation of main results
In [6] and [7] similar results were presented in another form. We will show

that the critical cone and the quadratic form defined in the present work

can be transformed to those in [6] and {7].
Let us transform the terms related to the discontinuity points ¢ of the

control u(-), k=1,...,s.
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Lemma 3.6. Let A € My be an arbitrary element. Then forunyk=1,...,s
the following formula holds
[Wo + P t(t)? + 202 E(tx) = DH(H)E — 2] T, &, (81)

where &, = ().

Proof. Everywhere in this proof we will omit the subscript and super-
script k. We will also write £ instead of #(t). Set

o= D(H)=9%c" ~ 72" + [o].

We have

[Wo + Y] -+ 2(P5)E o .

= 82[o] + EX(Tat — i) — 2 (PHET - w-‘-—)

= &l + (s —$757) = 2 (I (Fow + 3[61E) — $ (e — J2E)

= {2[ho] + (Pt 1@%-4%[@'} b [2]) — 2[y J%

—E"’w’} +E(Wra —Pma — gt (@t - 27) + (@t
)

— 62 £2 1,[)+I_ + ,(/) T+) - 2&[1”%

[¥
( 6_2“ []Iavé' D
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