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Abstract 

We consider optima! control problems with initial-final state equal­
ity and inequality constraints and mixed state-control equality con­
straints given by smooth functions. The mixed constraints satisfy the 
regularity assumption of linear independence of gradients with respect 
to the control. We present simple proofs ·or second-order necessary 
conditions of Pontryagin minimum for broken extremals in these prob­
lems. 

1 Introduction 

In this paper we study a relationship between necessary second order condi­
tions for a week loca! minimum in an optima! control problem on a fixed time 
interval and necessary second order conditions for a 8-week !ocal minimum 
in an optima! control problem on a variable time interval. The latter type of 
the minimum is connected with small variations of jump points of optima! 
control, and the corresponding necessary conditions take these variations 
into account. The relationship between two types of optimality conditions 
is based on a simple change of time variable. As a consequence we obtain 
a relatively simple proof of necessary second order conditions for a 8-week 
!ocal minimum. 

Let us recall conditions for weak and 8-week minimum in a simple case. 
Consider the simplest problem of the calculus of variations: 

J(x) = fo 1 F(t, x(t), x(t)) dt-+ min, x(O) = a, x(l) = b, 

where x(t) is Lipschitz continuous, i.e., x(·) E W 1•00 • A !ocal minimum in 
the space W 1•00 is a weak minimum. 
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Let x 0 (t) be an extremal, i.e., it satisfies the Euler equation 

~F;;(t, x 0 (t), x0 (t)) = Fx(t, x 0 (t), x0 (t)). 

Set :i; = u, w = (x, u). We call u the control. Set uP(t) := x0 (t), w0 (t) = 

(x0 (t), u0 (t)). Let 

w(·)= (x(·),u(•)) E W2 := W 1•2 x L 2 . 

Define a quadratic form in the space W2: 

O(w) f0
1 (Fww(t, w0 (t))w(t), w(t)) dt 

f0
1 ( (Fxxx(t), x(t)) + 2(Fxuu(t), x(t)) + (F,,,,u(t), u(t))) dt. 

Set 
K := {w E W2: :i;= u, x(O) = x(l) = O}. 

The following theorem is well-known. 

Theorem 1.1. (a) ff x 0 is a weak minimum, then O(w) 2: O on K. (b) ff 
O(w) is positive definite on K, then x 0 is a (strict) weak minimum. 

Now, assume that the control u0 (t) is piecewise continuous with one 
discontinuity point t. E (O, 1). Moreover, assume that u 0 (t) is Lipschitz 
continuous on each of the two intervals (O, t.) and (t., 1). Hence x 0 (t) is a 
broken extremal with a break at t •. Which quadratic form corresponds to a 
broken extremal? 

Let us change the definition of a weak !ocal minimum. Set 0 := { t.} 
and define a notion of a 0-weak minimum as follows. Assuming that the 
control u0 (t) is left-continuous, denote by u0 (-) the closure of the graph of 
u0 (t). Denote by V a neighborhood of the compact set u0 (-). 

u V = Vi U Vi = V 0 U V* 

Vi = v;_0 u v_; 
V2 = Vl U V~ 

v0 = Vi° u Vl V~ 
u0 (t.+) u0 (t) 

V*= V~ u V_; v,o 
2 

u0 (t) u0 (t.-) 
V* + 

v,o 
1 

o t. 1 t 
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Definition 1.2. x 0 is a point of a 0-weak minimum if for any E > O there 
exits a neighborhood V of the compact set u0 (-) such that J(x) 2: J(x0 ) for 
all x E W 1•1 such that u(t) E V a.e., where u = x. 

Recall the Weierstrass-Erdmann necessary conditions for broken extremal: 

(i) ,f;(t) := -F,..(t,w0 (t)) is continuous at t., i.e., [,f;] = O, where [1/i] = 
,j;(t.+) -,j;(t.-) = ,j;+ - ,j;- denotes the jump of 1P at t.; 

(ii) H(t) := ,j;(t)u0 (t) + F(t, w 0 (t)) is continuous at t., i.e., [H] = O. 

We add one mare necessary condition [5]: 

(iii) D(H) 2: O, 

where D(H) is equal to minus derivative of the function 

6.H(t) := (,j;(t)[u0J + F(t, x0(t), u0 (t.+ )) - F(t, x0 (t), u0(t.-))) 

at t. (the existence of this derivative is proved). One can show that [5] 

where 1/io(t) := -H(t). 
Denote by Pe W 1•2 the Hilbert space of piecewise continuous functions 

x(t), absolutely continuous on each of the two intervals [O, t.) and (t., 1], 
and such that their first derivative is square integrable. Any x E Pe W 1•2 

can have a nonzero jump 

[x] = x(t. + O) - x(t. - O) 

at the point t •. Let ~ be a numerical parameter. Denote by Z2(8) the space 
of triples z=(~, x, u) such that 

~ElR, x(-)EPeW1•2 , u(-)EL2 . 

Thus, 
Z2(8) = JR x PeW1•2 x L2. 

In the space Z2(8), define a quadratic form 

l1e(z) = D(H)e + 2[Fx]Xav~ + [ (Fww(t, w0 (t))w(t), w(t)) dt, 

where [Fx] is the jump of the function Fx(t,w0 (t)) at the point t., and 

Xav = ~(x(t.-) +x(t.+)). 

Set 

fee= {z E Z2(8) : :i;= u, [x] = [u0]~, x(O) = x(l) = O}. 
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-Theorem 1.3. (a) ff x0 is a 8-weak minimum, then De(z) 2: O on /Ce. 
(b) IJ De(z) is positive definite on /Ce, then x 0 is a (strict) 8-weak mini­
mum. 

A detailed proof of this theorem (based on the so-called "method of 
deciphering") is given in [5]. It is rather long and technical. But it turned 
out that there was a relatively simple way to prove the necessary condition 
a) of this theorem and thus to come to the quadratic form which corresponds 
to a broken extremal. This way will be shown in the present paper for the 
generał problem of the calculus of variations. 

The paper is organized as follows. In section 2 we formulate the generał 
problem of the calculus of variations on a fixed time interval and derive the 
second order necessary conditions for a weak loca! minimum in this problem, 
using Dubovitskii-Milyutin method of critical variations [2]. In sectiori 3 we 
formulate the generał problem of the calculus of variations on a variable 
time interval and derive the second order necessary conditions for a 8-weak 
!ocal minimum in this problem, using simple change of time variable and 
necessary conditions of a weak minimum obtained in section 2. 

2 N ecessary Second Order Condition for a Weak 
Local Minimum in the General Problem of the 
Calculus of Variations on a Fixed Time Interval 

A weak !ocal minimum in problem A Consider the following 
optima! control problem of Bolza type on a fixed interval of time [to, t f]. 
It is required to find a pair of functions w(t) = (x(t),u(t)), t E [to,t1l, 
minimizing the endpoint functional 

J(w) := J(x(to),x(t1))--+ min 

subject to the constraints 

F(x(to),x(t1)):::; O, K(x(to),x(t1)) = O, 

±(t) = f(t, x(t), u(t)), 

g(t, x(t), u(t)) = O, 

(x(to),x(t1))) EP, (t,x(t),u(t)) E Q, 

(1) 

(2) 

(3) 

(4) 

(5) 

where Pand Q are open sets, x, u, F, K, f, and g are vector-functions. Vie 
call (1)-(5) the Problem A. 

We assume that the functions J, F, and K are defined and twice contin­
uously differentiable on P, and the functions f and g are defined and twice 
continuously differentiable on Q. It is also assumed that the gradients with 
respect to the control 9i-u ( t, x, u), i = 1, ... , d(g) are linearly independent at 
each point (t, x, u) E Q such that g(t, x, u) = O (the regularity assumption 

4 



for the equality constraint g(t, x, u)= O). Here 9i are the components of the 
vector function g and d(g) is the dimension of this function. 

The Problem A is considered in the space of pairs of functions w = (x , u) 
such that the state variable x(t) is an absolutely continuous d(x)-dimensional 
function and the control u(t) is a bounded measurable d(u)-dimensional 
function on the interval [to, t1]- Hence the problem is considered in the 
space 

Define a norm in this space as a sum of the norms: 

1t1 

llwll := llxll1,1 + llulloo = lx(to)I + li:(t)I dt + ess sup [to,t,Jlu(t)I. 
to 

We say that w E W is an admissible pair if it satisfies all constraints of the 
problem. Let w0 = (x0 , u 0 ) E W be a fixed admissible pair. We say that 
w 0 is a weak loca/ minimum if it is a loca! minimum in the space W, i.e., 
there exists E: > Osuch that J(w) 2'. J(w0 ) for all admissible pairs w E W 
satisfying the condition !Iw - w 0 li :SE:. 

Necessary condition for a week loca! minimum We introduce the 
Pontryagin Junction 

H(t,x,u , 1/;) = 1/;J(t,x,u) (6) 

and the augmented Pontryagin Junction 

fl(t, x, u, 1/;, v) = H(t, x, u, 1/;) + vg(t, x, u), (7) 

where 1/; and v are row-vectors of the dimensions d(x) and d(g), respectively. 
For brevity we set 

Denote by (Rd(:rl)• the space of d(x)-dimensional row vectors. Define the 
endpoint Lagrange Junction · 

l(p, ao, a, /3) = aoJ(p) + aF(p) + (3K(p), (8) 

where 

Introduce a tuple of Lagrange multipliers 

A= (ao, a, /3, 1/;(·), v(-)) (9) 

such that 1/;(·) : [to, t1] ---+ (R,d(x))• is an absolutely continuous and vC) 

[to , t 1) ---+ (Rd(g))• is a measurable bounded function. 
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Denote by Ao the set of all tuples A satisfying the following conditions 
at the point w 0 : 

ao 2': O, a 2': O, aF(p0 ) = O, ao + I;f~;l °'i+ I:;~~) I.Bi l = 1, 
1fa=-flx, 1/;(to)=-lx0 , 1/;(t1)=lx1 , fl,.=0 , 

(10) 

where p0 = (x0 (to),x0 (t1)), the derivatives lx0 and lx1 are at (p0 ,a.o,a,,B) 
and the derivatives flx, il„ are at (t, x0 (t), u0 (t), 1/;(t), v(t)), t E [to, t1]- By 
Ci.i and ,Bj we denote the components of row vectors a. and ,B , respectively. 

The following well-lmown first order necessary condition holds: if w0 

is a weak !ocal minimum, then the set Ao is nonempty. This condition is 
called the local minimum principle (or the Euler-Lagrange equation). From 
the regularity assumption for the constraint g = O and definition (10) it 
easily follows that Ao is a finite dimensional compact set, and the projector 
(a.o, a., ,B, 1/;(·), v(-)) --+ (a.o, a., ,B) is injective on A0 . 

Naw !et us formulate the second order necessary condition at the point 
w 0 . Set 

W2 := w1,2([to, t JL nd(x)) X L2([to, t JL nd(u)), 

where L2([to, tJL R,d(u)) is the space of square integrable functions , and 
W 1•2([t0 , t1 L nd(x)) is the space of absolutely continuous functions such that 
their first derivative is square integrable. Hence W2 is a Hilbert space with 
a scalar product 

i.tj . i.tj 
(w, w) := (x(to), x(to)) + (±, x) dt + (1t, u) dt. 

to to 

Let /C, be the set of all w = (x, u) E W2 satisfying the following conditions: 

J'(p0 )p :SO, F:(p0 )p :SO Vi E lF(P0 ), K'(p0 )p = O, 
x(t) = fw(t, w0 (t))w(t), for a.a. t E [to, t1L (11) 
9w(t,w0(t))w(t) = O, for a.a. t E [to, t1L 

where lF(P0 ) := {i : Fi(p0 ) = O} is the set of active indices . It is obvious 
that /C, is a convex cone in the Hilbert space W2. We call it the critical cone. 

Let us introduce a quadratic form on W2. For AE Ao and w= (x, u) E 
W2 , we set 

i.tj 
D(>-,w) = (lppP,P) + (flwww(t),w(t)) dt, 

to 
(12) 

where lpp = lpp(p0 ,a.o , a.,,B), flww = flww(t,x 0 (t),u0 (t),1/;(t),v(t)), p = 
(x(to), x(t 1 ). 

Theorem 2 .1. ff the trajectory T yields a weak minimum, the n the f ollow­
ing Condition A holds: the set Ao is nonempty and 

maxD(\w) 2': O for all w E /C,_ 
.XEAo 

6 



Proof of the necessary condition for a week loca! minimum Vve 
present a short proof of this theorem omitting details. In this proof, we will 
use the Dubovitskii-Milyutin method of critical variations, cf. [2]. Let w 0 be 
a weak loca! minimum. Without loss of generality we. assume that J(p0 ) = O, 
and F;(p0 ) = O for all i= 1, ... , d(F). Denote by L 1([to, t1J, Rd(x)) the space 
of integrable functions. Consider the operator 

G: w= (x, u) EW--+ (t(w) - x, g(t, w), K(x(to) , x(t1 )) ) E Y, (13) 

where 
Y = L1([to, t1J, Rd(x)) X L00 ([to , t1J, Rd(g)) x Rd(I<) . 

This operator is Frechet continuously differentiable in a neighborhood of the 
point w 0 , and its derivative at w 0 is a linear operator 

G'(w0): w= (x , u) EW--+ (/w(t, w0 )w - x, 9w(t , w0 )w, K'(p0 )p) E Y. 
(14) 

The derivative G'(w0 ) has a closed image (see, e.g., [4]), since the operator 

w EW--+ (/w(t,w0 )w - x , 9w(t,w0 )w) E L1([to, t1], Rd(x))xL00 ([to, t1J, Rd(g)) 

is surjective (it easily follows from the regularity assumption for the con.­
straint g(t, w) = O), and the operator w E W --+ K'(p0 )p E Rd(I<) is finite 
dimensional. Consider two possible cases: G'(w0 )W i= Y and G'(w0)W = Y. 

a) In the first case, the image G'(w0 )W is a closed subspace of Y, not 
equal to Y. Therefore, there exists a nonzero linear functional l(w) vanishing 
on this image. The latter means that there exists a nonzero triple 

such that 

111 1PUw(t,w0 )w-x)dt+(v,gw(t,w0 )w)+f3K'(p0 )p=0 \Iw EW. (15) 
to 

On the subspace of w E W such that x = O this condition takes the form: 

1t1 
1Pfu(t,w0 )udt+ (v,gu(t,w0 )u) = O \lu E L00 . 

to 

From this relation and the regularity assumption for g we easily obtain that 
the functional vis absolutely continuous . Hence it is defined by an integrable 
function, which will be also denoted by v. Then 1Pfu(t, w0 ) + vgu(t, w0 ) = O, 
i.e. , fiu= O, where il= 1/1/ + vg (cf. (7)). It follows that vis an essentially 
bounded function. 

Now, setting u = O in (15) and taking into account that v E L00 , we 
obtain 

J/: (1PUx(t,w0 )x - x) + vgx(t,w0 )x) dt 
+f3(Kx0 (p0 )x(to) + Kx 1 (p0 )x(t1)) = O \lx E W1•1 . 

7 
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It easily fellows from (16) that the ful}ction 1/; is absolutely continuous, and 
moreover it satisfies the adjoint equation -,J; = fix and the transversality 
conditions -1/;(to) = lx0 and ,f;(t f) = lx1 with l = f3K. If /3 = O, then the 

conditions 'l/;(t1) = lx1 = O and -,J; = fix imply that ,f; = O, and then the 
relation ,f; fu + vgu = O and the full rank condition for 9u imply that v = O. 
Hence /3 =/- O and we can take a triple (/3, ,f;, v) with l/31 = 1. Set aa = O, 
a= O, and >.=(O, O, /3, ,f;, v). We see that thus obtained tupie>. belongs to 
the set Aa, and moreover, ->. E Aa. Then, for any element w E W2 we have: 
D(.\w) 2: O or D(->.,w) 2: O. Thus, in the considered case, the set Aa is 
nonempty and maxAo D(\ w) 2: O on the whole space W2. Hence condition 
A trivially holds, although it is not informative in this case. 

b) Naw, consider the main case: G'(w0 )W = Y. The following lemma 
holds in this case. 

Lemma 2.2. For any w E K, n W the following system of linear equal-ities 
and inequalities is inconsistent with respect to w E W.-

1 
J' (po)f; + 2 (J" (P°)P, p) < o, 

F' (p0 )p + ~ (F" (p0 )p, p) < O, 

K'( 0 ) - + ~(K"( 0)- -) = O P P 2 P P,P , 

fw(t, w 0 )w - i+ ~Uww(t, w 0 )w, w)= o, 
1 

9w(t, w 0 )w + 2(9ww(t, w 0 )w, w)= o, 

where p = (x(to), x(t1 )). 

(17) 

(18) 

(19) 

(20) 

(21) 

Proof. Assume the contrary: Jet there exist w E KnW and w E W satisfying 
(17)-(21). Consider the curve w'= w0 +Ew+ c2w parameterized by E > O. 
From conditions (19)-(21) it easily fellows that IIG(w')II = o(c). Then, by 
generalized Lyusternik's theorem [l], there exists a curve w' E W (c > O) 
such that G(w' +w")= O and llw"II = o(c). Conditions (17)-(18) together 
with condition w E K, n W imply that J(p' + p') < O and F(p' + p')) < O. 
Since llw" + w" - w0 11 -, O (c-, O), the latter means that w0 is not a loca! 
minimum in the problem. O 

In order to analyze inconsistency of system (17)-(21), we will need the 
following well-known assertion (see, e.g., [4]). 

Lemma 2.3. Let X, Y be Banach spaces, li : X-, R linear functionals, a; 
real numbers, i = 1, ... , k, A : X -, Y a liner surjective operator, b E Y a 
given element. The linear system 

li(x) + ai < O, i= 1, ... , k, Ax + b = O 
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is inconsistent (in x E X) if and only if there exist numbers Cti 2: O and a 
functional y* E Y* such that 

k 

L a;l; + y* A = O, 
i=l 

k 

LCl'i > o, 
i=l 

k 

L a;a; + y*b 2: O. 
i=l 

Applying this lemma to system (17)-(21), we obtain the following result: 
there exist a; 2: O, i= 0,1, ... ,d(F), f3 E nd(I<), 'I/; E L00 , v E (L00 )* such 

d(F) 
that Li=O a; > O and 

o i.tł o . o lp(P , ao, a, (J)p + Uw(t, w )w - x) dt + (v, 9w(t, w )w) = O \/w E W, 
to 

(22) 

i.
tł 

(lpp(P0 , ao, a,(J)p,p) + Uww(t, w 0 )w, w) dt + (v, (9ww(t, w 0 )w, w)) 2: O, 
to 

(23) 

where l is as in (8) . Without loss of generality we assume that :z=f~~) a;+ 

:z=;~~) l/3j I = l. The analysis of equation (22) is similar to that of (15). As 
result we prove that vis absolutely continuous functional given by a bounded 
measurable function (which we also denote by v), the function 1/; is absolutely 
continuous, and the tuple >. = (a.o, a, (3, 'I/;, v) satisfies all conditions in the 
definition of Ao . Clearly, condition (23) means that St(>-, w) 2: O. Thus 
we have proved that for any w E JC n W there exists >- E Ao such that 
St(>-, w) 2: O and hence maxA0 St(>., ·) is nonnegative on JC n W. To get the 
same assertion on JC, it suffi.ces to prove that the closure of the set JC n W in 
W2 is equal to JC. The latter easily can be proved using Hoffman's lemma 
[3]. We omit this simple proof. 

3 Necessary Second Order Condition for a 8-Weak 
Local Minimum in the General Problem of the 
Calculus of Variations on a Variable Time Inter­
val 

3.1 Problem B and a 8-weak local minimum. Main results 

Now, we consider amore generał optima! control problem. Let T denote a 
process (x(t), u(t) I t E [to, t1]), where the state variable x(·) is a Lipschitz 
continuous function, and the control variable u(•) is a bounded measurable 
function on a time interval 6. = [to,t1]- The interval 6. is not fixed. For 
each process T we denote by 

p = (to, x(to), t1, x(t1 )) 

g 



the vector of the endpoints of time-state variable (t, x). It is required to find 
T minimizing the functional 

subject to the constraints 

:f(T) := J(p) • min 

F(p) ~ O, K(p) = O, 

x(t) = f (t, x(t), u(t)), 

g(t, x(t), u(t)) = O, 

p EP, (t, x(t), u(t)) E Q, 

(24) 

(25) 

(26) 

(27) 

(28) 

where Pand Q are open sets, x, u, F, I(, J, and g are vector-functions. 
We assume that the functions J, F, and Kare defined and twice contin­

uously differentiable on P, and the functions f and g are defined and twice 
continuously differentiable on Q. It is also assumed that the gradients with 
respect to the control giu(t, x, u), i= 1, ... , d(g) are linearly independent at 
each point (t, x, u) E Q such that g(t, x, u) = O (the regularity assumption 
for g). 

We say that a process T is admissible if it satisfies all constraints of the 
problem. Let T = (x(t), u(t) I t E [to, tJ]) be a fixed admissible process. 
We say that T is a weak loca/ minimum if there exists E > O such that 
:rch 2:: :r(T) for each admissible process T = (x(t),u(t) I t E [to.tJll 
satisfying the conditions 

!to - toi< 1::, itJ - t1i < E, maxtEM.& lx(t) - x(t)I < 1::, 

ess suptEM.&fii(t) - u(t)I < E, 

where ii= [ta, t1]. 
In the sequel, we consider an admissible process T = (x(t), u(t) I t E 

[to, t f]) such that the control u(•) is a piecewise continuous function on 
the interval 6. with the set of discontinuity points 0 = { t1, ... , t 5 }, to < 
t1 < ... < t 5 < tJ, Moreover, we assume that the control u(•) is Lipschitz­
continuous on each interval (tk-I, tk), k = 1, .. . , s + 1, where ts+I := tf (in 
this case, we say that the function u(-) is piecewise Lipschitz-continuous on 
6.). Let us formulate the first-order necessary condition for optimality of the 
trajectory T Again, we introduce the Pontryagin function H(t, x, u, 'ljJ), the 
augmented Pontryagin function fl(t, x, u, 'ljJ, li), and the endpoint Lagrange 
function l(p, cxo, ex, /3) defined as in (6), (7), and (8), respectively, but now 
p = (to, x(to), t f, x(t f)). Introduce a tupie of Lagrange multipliers 

>. = (cxo, ex, /3, 'ljJ(·), 1Po(·), li(·)) (29) 

such that 'ljJ(·) : 6. • (7?.d(xl)• and 1Po(·) : 6. • R 1 are piecewise smooth 
functions, continuously differentiable on each interval of the set 6. \ 0, and 
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v(·): 6.-+ (Rd(g))* is a piecewise continuons function, Lipschitz continuous 
on each interval of the set 6. \ 8. 

Denote by A~ the set of all tuples A satisfying the conditions: 

ao:?:0, a:?:0, aF(p)=O, ao+Zai+Zl,Bjl=l, 
~ = -Hx, ~o= -Ht, fiv. = O, t E 6. \ 0 , 
1/J(to) = -lx0 , 1/J(t1) = lx1 , 1/Jo(to) = -lt0 , 1/Jo(t1) = lt1 , 

H(t,x(t),u(t),1/J(t)) + 1/Jo(t) = O, t E 6. \ e. 

(30) 

The derivatives lx0 and lx1 are at (p, ao, a, ,B), where p = (to, x(to), t f, x(t f)), 
and the derivatives Hx, fiv., and Ht are at (t, x(t), u(t), 1/J(t), v(t)), where 
t E 6. \ 0. 

Let us give the definition of 8-weak minimum in problem (24)-(28) on a 
variable interval [to, t f]. For convenience, we assume that u(-) is left contin­
uo us at each point of discontinuity tk E 0. Denote by u the closure of the 
graph of u(t). 

Definition 3.1. The trajectory T affords a 8-weak minimum if there exist 
E > O and a neighborhood V C Rd(v.)+l of the compact set u such that 
J(T) 2'. J(T) for all admissible trajectories T = (x(t),u(t) I t E [t0 ,i1]) 
satisfying the conditions 

(a) !to - toi< E, lt1 - t11 < E, 

(b) r_nax lx(t) - x(t)I < E, where 6. = [to, t1J, 
L::.nL::. 

(c) (t, u(t)) EV a.e. on [to, t1]. 

The condition A~ =f 0 is equivalent to the !ocal minimum principle. It is 
a first-order necessary condition of 8-weak minimum for the trajectory T. 
Assume that A~ is nonempty. Using the definition of the set A~ and the full 
rank condition of the matrix 9v. on the surface g = O one can easily prove 
that A~ is a finite-dimensional compact set, and the map ping >- H ( a0 , a, ,B) 
is injective on A~. 

Let us formulate a quadratic necessary condition of a 0-weak minimum 
for the trajectory T. First, for this trajectory, we introduce a Hilbert space 
Z2(0) and a" critical cone" K C Z2(8). We denote by Pe W 1•2 (6., Rd(x)) the 
Hilbert space of piecewise continuous functions x(-) : 6.-+ Rd(x), absolutely 
continuous on each interval of the set 6. \ 0 and such that their first derivative 
is square integrable. For each x E PeW1•2(6., Rd(x)) , tk E 8 we set 

Thus [x]k is the jump of the function x(t) at the point tk E 0. Similar 
notation we will use to denote jumps of other functions at a point tk E 0. 

Set 
z= (toJ1, ... , ts, t1, x, u), 
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where 

Thus, 

tkE -R1, k=O,l, ... ,s, 
i E PeWl,2(6., R,d(x)), 

ff E R,1, 
u E L2(6., R,d(uJ). 

Moreover, for given i we set 

w = (i, u), (31) 

j5= (lo,i(to)+lox(to),lJ,i(t1)+l1x(t1)). (32) 

By lp(p) = {i E {l, ... ,d(F)} I F;(p) = O} we denote the set of active 
indices of the constraints F;(p) ::; O. Set [±]k = x(tk+) - x(tk- ). 

Let K, be the set of all i E Z2(8) satisfying the following conditions: 

J'(p)j5::; O, F:(p)j5::; O \/i E lp(p), K'(p)j5 = O, 
x(t) = fw(t,w(t))w(t), for a.a. t E [to, tJj, 
[i]k + [x]kfk = 0, k = l, ... , s 
gw(t, w(t))w(t) = O, for a.a. t E [to, t1l, 

(33) 

where p = (to,x(to),t1,x(t1)), w= (x,u). It is obvious that K, is a convex 
cone in the Hilbert space Z2 ( 8). We call it the critical cone. 

Let us introduce a quadratic form on Z2(8). For.>- EA~ and z E K., we 
set 

n(.>-, z) = 

(34) 

Theorem 3.2. ff the trajectory T yields a 8-weak minimum, then the fol­
lowing Condition A ho/ds: the set A? is nonempty and 

max O(\ z) 2: O for all z E K.. 
>.EA'g 

3.2 Proofs 

The proofs are based on the quadratic necessary optimality conditions of a 
weak minimum, obtained for the problem on a fixed interval of time. We 
will give the proofs omitting some details. In order to extend the proofs 
to the case of a variable interval [to, t f] we use a sim ple change of the time 
variable. Namely, with the fixed admissible trajectory 

T = (x(t), u(t) I t E [to, t1]) 

12 



in problem (24)-(28) on a variable time interval we associate a trajectory 

considered on a fixed interval [ro,TJ], where To= ·to, TJ = tJ, t(r) = T, 
v(r) = l. This is an admissible trajectory in the following problem on a 
fixed interval (ro, TJ]: to minimize the cost function 

:J(I') := J(t(ro),x(ro),t(TJ),x(TJ))--+ min 

subject to the constraints 

(35) 

F(t(ro), x(ro), t(TJ ), x(TJ )) ~ O, K(t(ro), x(ro), t(TJ ), x(TJ )) = 0,(36) 
dx(r) dt(r) 
~ = v(r)J(t(r), x(r), u(r)), ~ = v(r), (37) 

g(t(r),x(r),u(r)) = O, (38) 

(t(ro),x(ro),t(TJ),x(TJ)) EP, (t(r),x(r),u(r)) E Q. (39) 

In this problem, t(r) and x(r) are state variables, and u(r) and v(r) are 
control variables. For brevity, we will refer to problem (24)-(28) as problem 
P (on a variable interval 6. = [to, tJ]), and to problem (35)-(39) as problem 
PT (on a fixed interval (ro, TJ]). We denote by AT the necessary quadratic 
condition A for problem PT on a fixed interval (ro, TJJ-

Recall that the control u(-) is a piecewise Lipschitz-continuous func­
tion on the interval 6. = [to, iJ] with the set of discontinuity points 8 = 
{t1, ... , ts}, where to < t1 < ... < is < tJ. Hence, for each A E A~, the 
function v(t) is also piecewise Lipschitz-continuous on the interval 6., and, 
moreover, all discontinuity points of v belong to 8. This easily follows from 
the equation fiu = O and the full rank condition for matrix g,.,. Conse­
quently, u and i, are bounded measurable functions on 6.. The proof of 
Theorem 3.2 is composed of the following chain of implications: 

(i) A 8-weak minimum is attained on the trajectory Tin problem P ==> 
(ii) A weak minimum is attained on the trajectory TT in problem PT ==> 
(iii) Condition AT for the trajectory TT in problem PT ==> 
(iv) Condition A for the trajectory Tin problem P. 

The first implication is readily verified, the second follows from Theo­
rem 2.1. The verification of the third implication ( iii) =} ( iv) is not short 
and rather technical: we have to compare the sets of Lagrange multipliers, 
the critical cones and the quadratic forms in the both problems. This will 
be done below. · 

Comparison of the sets of Lagrange multiplies. Let us formulate 
the !ocal minimum principle in problem PT for the trajectory I'. The 
endpoint Lagrange function ł, the Pontryagin function Hand the augmented 
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Pontryagin function ff ( all of them are equippedwith the superscript T) have 
the form: 

lr = aol + aF + (31( = l, 
Hr= 1/;fv + 1/Jov = v('l/;f + 1/;o), [Ir== Hr+ vg. 

( 40) 

The set A0 in problem pr for the trajectory T' consists of all tuples of La­
grange multipliers >,_r = (ao, a, (3, 1/;, 1/;o, v) such that the following conditions 
holds: 

ao + lal+ 1/31 = 1, 

-'fi,:-= v'l/;fx + vgx, -* = v1/Jft + vgt, 
1/;(To) = -lx0 , 1/;(TJ) = lx1 , 1/Jo(To) = -lt0 , 1/Jo(TJ) = lt1 , 

H:{, = v1/Jfu + vgu = O, ff;= 1/;f + 1/;o = O. 

(41) 

Recall that here v(T) = l, t(r) = T, To= to, TJ = tJ. In (41), the function 
f and the derivatives fx, fu, ft, gx gu, gt are taken at (t(T), x(T), u(T)), 
T E [To, TJ] \ 8, while the derivatives lt0 , lx0 , lt1 lx1 are calculated at 
(t(To), x(To), t(TJ ), x(TJ )) = (to, x(to), tJ, x(t J )). This implies that A0 =A~. 

Comparison of the critical cones. For brevity, we set(!= (t, x, u, v)' = 
(t,w,v). Let us define the critical cone K,T in problem pr for the trajectory 
Tr. It consists of all tuples e = (t, x, u, ii) satisfying the relations: 

lt0 l(To) + lx0 x(To) + lt1 t(TJ) + lx1 x(TJ) :SO, 

Fitot(To) + Fixox(ro) + F;t/(TJ) + F;x/i(TJ) :S o, 
Kt0 l(ro) + Kx0 X(To) + Kt/(TJ) + Kx1 x(TJ) = O, 

dx -
dT = iif + v(ftt + fxx + fu'u), 

dt 
dT = ii, 
git+ gxx + guu = o, 

where the derivatives lt0 , lx0 , lt1 lx1 , etc. are calculated at 

( 42) 

i E JF(P), (43) 

(44) 

( 45) 

(46) 

(47) 

while f, ft, fx, fu gt, gx, and gu are taken at (t(r), x(T), u(T)), TE [To, TJ]\8. 
Let e = ( t, x, u, ii) be an element of the critical cone K,T. We will make use 
of the following change of variables: 

i= x - tx, u= u - tu, (48) 

or briefly 
w =w-lw. ( 49) 
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Since v = 1, ± = f, and-t = T, equation (45) is equivalent to the equation 

dx -
- =ii±+ ftt + !ww. (50) 
dt 

Using the relation x = i+ lx in this equation along with l = ii, we get 

i+ lx= !tł+ !ww. 

By differentiating the equation ±(t) = f(t, w(t)), we obtain 

x = ft+ f ww. 

Using this relation in (51), we get 

i= !ww. 

The relations 
x =i+ lx, [xt = O, k = 1, ... , s, 

imply 

where 

(51) 

(52) 

(53) 

(54) 

lk = l(tk), k = 1, ... , s. (55) 

Further, relation (47) can be written as git+ 9wW = O. Differentiating the 
relation g(t, w(t)) =Owe obtain 

9t + 9wtu = O. 

These relations along with (49) imply that 

9ww = O. 

Finally, note that since x =i+ lx, and To= to, TJ= t1, we have 

(56) 

(57) 

p= (lo,x(to)J1,x(t1)) = (lo,i(to) +lo±(to)J1,i(t1) +l1±(t1)), (58) 

where lo = l(to) and li = l(t f ). The vector in the right hand sicie of the last 
equality has the same form as the vector j5 in definition (32). Consequently, 
all relations in definition (33) of the critical cone IC. in problem P are satisfied 
for the element z = (lo, l1, ... , ls, li, w). We have proved that thus obtained 
element z belongs to the critical cone IC. in problem P. 

Vice versa, !et (la, l1 , . .. , ls, l f, w) be an element of the cri tical cone IC. 
in problem P. Let us take a Lipschitz continuous function l satisfying 

l(to) = lo, l(t1) = li, l(tk) = lk, k = 1, ... , s; 

e.g., one can talce a continuous function l, affine at each interval (tk-1, tk), 
k = 1, ... , s + 1, where ts+l = t f · Set 

ii= l, w= w+ lw. 

Then we obtain an element (t, w, ii) of the critical cone JC.T (see ( 42)-( 47)) 
in problem PT. Thus, we have proved the following lemma. 
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Lemma 3.3. ff (t, w, v) is an element of the critical cone JCT, as in {42)­
(47), in problem PT for the trajectory I' and 

to= t(to), t1 = t(t1), w= w-tw, tk = t(tk), k = 1, ... ,s , {59) 

then (to, t1 , ... , t„ t1 , w) is an element of the critical cone JC, as in {33), in 
problem P for the trajectory T. Moreover, relations {59} define a surjective 
mapping of the critical cone JCT on the critical cone JC . 

We will say that an element (to, t1, . .. , ts, t1, w) of the critical cone JC 
in problem P corresponds to an element (t, w, v) of the critical cone JCT in 
problem PT if relations (59) hold. 

Comparison of the quadratic forms. Let an element (to, t1, . .. , ts, tJ, w) 
of the critical cone JC in problem P corresponds to an element (t, w, v) of the 
critical cone JCT in problem PT. Assume that,), E Aó (recall that Aa= A~). 
Let us show that the quadratic form lY(>-, ·), calculated on the element 
(t, w, v) can be transformed to the quadratic form O(>-,•) calculated on the 
corresponding element (to, t1 i, w), i.e., the forms on these elements take 
equal values . 
(i) Set 

e=(t, w,v), e=(t,w,v). 

It follows from ( 40) that 

{60) 

where 

Since w= w+ tw, we have 

(flwww, w) = (flwww, w)+ 2(flwww, w)t + (flwww, w)t2. {62) 

2fltwwf = 2fltwWt + 2fltww'(2, (63) 

Moreover, using the relations 

we obtain 

Hw = flw - V9w, Ht = flt - V9t, 9tt + 9w'W = O, 
-'if; = flx, - 'if/o = flt, flv. = o, 9t + 9w'W = o, 

flww + fl1t - v(gww + 9t0 
flww + flit= flxx + fl1t 
-'if;x - 'iflot = -'if;(x + fr) - 'iflot 
-'if;x - ('iflx + 'iflo)f. 
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Relations (61)-(64) imply 

Consequently, 

(Hwww, w)+ 2(flwww, w)t + (flwww, w}F 
- - - ,2 -;::i 

+2HtwWt + 2HtwWt + Httt 
-2-ifJiv - 2(-ifJo + 'iflx)tv. 

(flwww, w)+ 2( (flwww, w)+ fltww)t 
+((flwww,w) + fltww)F + (fltww + fltt)l2 
-2-ifJiv - 2(-ifJo + 'iflx)tv. 

(65) 

(66) 

(ii) Let us transform the terms 2( (flwww, w)+ fltww)t in (65). By differen­
tiating the equation -'if) = flx with respect to t, we obtain 

-,;/J = fltx + (w)* flwx + 'ifJH1x + vflvx· 

Here fl,J,x = fx and flvx = 9x· Therefore 

-,;/J = fltx + (w)* flwx + 'iflfx + vgx. (67) 

Similarly, by differentiating the equation fl,, = O with respect tot, we obtain 

(68) 

Multiplying equation (67) by i and equation (68) by ii. and summing the 
results we get 

But f ww= i and 9wW = O. Therefore, 

whence 

(69) 

This implies that 

(70) 

(iii) Let us transform the terms ( (Hwww, w)+ fltww)t2 in (65). Multiplying 
equation (67) by :i; and equation (68) by u and summing the results we 
obtain 

(71) 
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From (52) and (56) we get f ww = x - ft, 9wW = -gi, respectively. Then 
(71) implies · 

- - d . . 
Htww + (Hwww, w)= -d/ifJx) + ('if;ft + vgt). (72) 

Multiplying this relation by f2 we get 

- . . - . '2 '2 d . . . . '2 
((Hwww,w) + Htww)t = -t dt('if;x) + ('if;ft + vgi)t . (73) 

(iv) Finally, let us transform the terms (fltwW + fltt) f2 in (65). Differen­

tiating the equation -~o = flt with respect to t and using the relations 
flv,t = ft and flvt = 9t, we get 

(74) 

Consequently, 

(75) 

(v) Summing equations (73) and (75) we obtain 

- . . '2 - ,-i . ,-i „ ,-i '2 d .. 
(Hwww,w)t +Httt +2HtwWt =-'if;ot -t dt('if;x). (76) 

(vi) Using relations (70) and (76) in (65) we get 

But 

- - d . 
(Hwww,w) - 2tdt('lj;x) 

.. '2 '2 d . . . - - . . . --
-'if;ot - t -('if;x) - 2'1j;xv - 2('if;o + 'lj;x)tv. 

dt 

;/,or+ 2vt~o =!(~or), t~(~i) + v(~i) = ~ (t~i), 

_ . ,2d . d . ,2 

2tv(#) + t di(#)= dt('if;±t ). 

Therefore, 

We have proved the following lemma. 

(77) 

Lemma 3.4. Let Q = (t, w, v) E x:_r and (to, tJl, w) E K, be such that the 
relations (59) holds, and Zet A E A~ . Then formula (18) holds. 
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(vi) Reca)l that To = ta, TJ = t1, t(T) = T, dt = dT. Since the functions 
~o, ~' :i:, and i can have discontinuities only at the points of the set 8, the 
following formula holds: 

t1 

J ft ((~o+ ~:i:)[2 + 2~xt) dt = ((~o+ ~:i:)t2 + 2~xt) 1:~ 
~ ~ -Jl (r~a + ~:i:]k[(tk)2 + 2[~x]kf(tk) )-

Formula (78) along with formula (79) gives the following transformation of 
quadratic form [F (60) on the element e of the critical cone JC 

nr(>., e) = (lppf5,f5) + ft; (flwww, w) dt 

-((~o+ ~:i:):P + 2~xl) 1;~ 
+ t ([~o+ ~:i:]k[(tk)2 + 2[~x]kf(tk)). 

k=l 

(80) 

Taking into account (59), we see that the right hand side of (80) is the 
quadratic form n(>-, z) (34) in problem P for the trajectory T, where z = 
(fa, f1, .. . , ls, f1, w) is the corresponding element of the critical cone K. Thus 
we have proved the following theorem. 

Theorem 3.5. Let e = (l, w, ii) be an element of the critical cone K,r in 
problem pr for the trajectory Tr. Let z= (to, f1, . .. , t 5 , f1, w) be the corre­
sponding element of the critical cone J(, in problem P for the trajectory T, 
i. e., relations (59) hold. Then for any >. E A0 the following equality holds 
W(>-, e) = n(>., z). 

This theorem proves the implication (iii) => (iv) (see the beginning of 
this subsection). Indeed, suppose that Condition A holds for the trajectory 
Tr in problem pr, and !et z = (to, f1, ... , f,, f 1, w) be an arbitrary element 
of the critical cone lC in problem P. Then by Lemma 3.3 there exists ;i,n 
element e = (l, w, ii) of the critical cone !Cr in problem pr for the trajectory 
I' such that relations (59) hold. Since A~ is a compact set and condition 
Candi tion A holds in problem pr, there exists an element >. E A~ such that 
nr(>., e) 2: O. By theorem 3.5 we have nr(>., e) = n(>-, z). Consequently, 
D(\ z) 2: O, i.e., Condition A holds for the trajectory T in problem P. 
Thus we have proved the implication (iii)=> (iv). This completes the proof 
of Theorem 3.2. 

3.3 Equivalent formulation of main results 

In [6] and (7] similar results were presented in another form. We will show 
that the critical cone and the quadratic form defined in the present work 
can be transformed to those in (6] and (7]. 

Let us transform the terms related to the discontinuity points tk of the 
control u(-), k = l, ... ,s. 
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Lenuna 3.6. Let A E !Yfo be an arbitrnry element. Then for any k = 1, ... , s 
the following formula holds 

Proof. Everywhere in this proof we will omit the subscript and super­
script k. We will also write f instead of f(tk)- Set 

We have 

[·fa+ ,iJ±]P + 2[,iJx]f 
= (2 [·fol+ [2(,iJ+:ż:+ - +-x-) - 2((,iJ+x+ - ,iJ-5:-) 
= f[+ol + [2(,iJ+x- - +-x-) - 2(( ,iJ+(xav + ½[:i:]() - +-(Xav - ½[±]() 
= (2[,iJo] + (2(,iJ+:ż:+ - +-x- - ,iJ+[±] + ,µ-[±]) - 2([,iJ]xav 
= f[+ol + f(,iJ+x+ - +-x- - ,iJ+(±+ - x-) + 'lf;-(x+ - ±-)) - 2([,iJJxav 
= (2 [,iJo] + f(,iJ+x- + +-x+) - 2([,iJ]xav 
= D(H)(2 - 2[,iJ]xavf • 

(82) 
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