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Neural networks foundations 
for traffic f orecasting 

Maciej Krawczak• 

Abstract 
Most observational disciplines, such as traffic, try to infer properties of an 

unfamiliar system from the analysis of a measured data of its behavior. There are many 
highly developed techniques associated with traditional time series analysis. During the 
last decade, severa! new and innovative approaches have appeared, such as neural 
networks and time-delay embedding, which can give insights not available with those 
standard methods - however the realization of this promise is stili difficult. 

1. lntroduction 

In advanced management of traffic systems it is a crucial task to predict the future 
traffic conditions. A short-term prediction can help in improve smoothness, reduce crowd, 
change travel conditions. Models of traffic can be used for estimating the future travelling 
conditions and duration of them. Then drivers can be informed by e.g. radio about expected 
times of travelling, and about possibilities to avoid jams. 

In generał, traffic management systems use historical as well as current data for traffic 
control collected by inductive loop detectors. The data describe flows of cars in selected 
segments of roads. Here we will not consider any technical aspects of procedures of collecting 
data. After collecting and preprocessing data we are interested in extracting some knowledge 
involved in data in order to predict the future flows. 

If a mathematical model describing a studied traffic is known, forecasting becomes a 
trivia! task. However, if a model of the traffic is either unknown or incomplete, it is typical to 
attempt to forecast by building a model that takes into account only previous flows while 
ignoring any other exterior influence. 

The collected historical data of traffic streams have a form of time series. More 
formally, a time series {x(t )} can be defined as a function x of an independent variable t. Its 
main characteristic is that its future behavior can not be predicted exactly as in the case of a 
known deterministic function of t. However, the behavior of a time series can sometimes be 
anticipated by describing the series through probabilistic laws. Time series prediction 
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problems are approached either from a stochastic perspective [krawczak] or, more recently 
from a neural network perspective [2, 3]. Each of these approaches has advantages and 
disadvantages: the stochastic methods are usually fast, but of limited applicability since they 
commonly employ linear models, whereas the neural networks methods are powerful enough, 
but the selection of an appropriate architecture and parameters is a time consuming trial and 
error procedure. 

There are at least two reasons that might make neural networks very attractive for 
modeling time series: 1) The theoretical work shows that neural networks are powerful 
enough to uniformly approximate almost any arbitrary continuous function on a compact 
domain [4] similar to traditional universal approximation techniques based on Taylor function 
expansion, Fourier series, etc. However, neural networks can effectively construct 
approximations for unknown nonlinear functions by learning from examples (known 
outcomes of the function). The neural networks models can be complemented with other 
successful approximation techniques based on wavelets, kernel estimators, nearest neighbors, 
hinging hyperplanes, regression, partia! least squares and fuzzy models [5]; 2) There is a 
direct relationship between the basie stochastic models for time series and neural networks 
models. 

Our study explores: 
• the possibility of designing an appropriate neural networks for time series 

prediction based on information obtained from stochastic modeling. Such an 
analysis could provide some initial knowledge regarding an appropriate data 
sampling rate and neural network architecture, as well as regarding the choice of 
initial neural network parameters; 

• some tools from the chaos theory, mostly based on Takens' theorem [7] that can 
help to estimate the dimension m of the manifold from which the time series 
originated can be used to construct a neural networks model using (2m + 1) 
external inputs [8]. 

The approach is to perform an initial stochastic analysis of the data and to choose an 
appropriate neural networks architecture, and possibly initial values for the neural networks 
parameters according to the most adequate linear model. This idea is supported by the fact 
that many non-linear systems can be described fairly well by linear models and for such 
systems it is a good idea to use insights from the best linear model to select the regression for 
the neural networks model. The motivation for this approach is that the linear stochastic 
modeling is much more cost effective than the selection of a neural networks architecture 
through a trial and error procedure. Since information is obtained from a linear model, for 
mare complex problems the neural network might be over-dimensioned (similar performance 
could be obtained using a smaller net and less learning examples). However, the exhaustive 
trial and error procedure involved for determining such an optima) network could be costlier 
than the stochastic analysis. 

2. Neural networks approximations of stochastic models 

Stationary time series can be described time invariant characteristic parameters. This 
makes them very attractive in practice, since it implies that they could be represented by time 
invariant models. The first step in stochastic modeling is thus an attempt to stationarize the 
studied time series through a suitable discrete differentiation pre-processing, as described in 
[ 11 ]. 



A generał linear stochastic model of a stationary time series is the autoregressive 
moving a'lerage model of orders p and q (ARMA(p, q). It describes the future value as a 
weighted sum of p previous values and the current as well as q previous values of a random 
process. Formally, a stationary ARMA(p, q) process with zero mean {x(t )} is represented as: 

where x(t -11 x(t - 2 i ... , x(t- p) represent the process values at p previous time steps, a,, a,. 

1, ... , a,.q are the current and the ą previous values of a random process, usually emanating 
from a norma! (Gaussian) distribution with mean zero and <p1 ... <pp., I/fi... 1/łą are the model 
parameters. 
The· ARMA(p, ą)-based predictor approximates the real process value x(t) by a predicted 

value x(t), computed as: 

The error between the real process value x(t) and the predicted value x(t) is the residua/ a,. 
The AR(p) and MA(ą) models are special cases of the ARMA(p, ą) model, where 

AR(p) is described as: 

(3) 

and MA(ą) is described as: 

(4) 

A natura! generalization of the linear ARMA and AR models to the nonlinear cases 
leads to the NARMA model 

x(t )= h(x(r-11x(t-21 .. ·,x(t- p 1a,-1>a,_2 ,a,_ą) +a,, (5) 

and the NAR model 

x(t )= h(x(t-11x(t-21· · •,x(t - p )) +a,, (6) 

where h is an unknown smooth function. 
The NARMA and NAR models are very complex, thus being unsuitable for real life 

applications. Fortunately, they are closely related to more practical nonlinear models, the 
neural networks. 

The neural network architecture considered in this paper consists of a number of 
relatively sirnple processing units called neurons. The neurons are grouped in layers, neurons 
in adjacent layers are interconnected through weights. Three different layer types can be 
distinguished: input layer - the layer that external stimuli are applied to. output layer - the 
Iayer that outputs results to the exterior world, and one or more hidden layers - intermediate 
computational layers between input and output layer. The neural network architectures 



considered here are either feedforward, in which the signal flow is from input layer towards 
output layer, or recurrent, in which the . feedforward signal flow is s1:1pplemented with 
additional feedback connections from output to input layer. Each neuron applies an activation 
function (usually a nonlinear smooth and bounded function) to the sum of its weighted inputs 
and a neuron specific parameter (called bias). 

Feedforward Recurrent and NNs have been proposed (12, 2] for simulating NARMA 
and NAR models respectively. An invertible [l] NARMA-based predictor can be 
approximated as: 

n, p q 

x, = h(x,-1,",x,_p,a,_1, .. ,a,_q) "'})~f(L wljxl-j + L w'lj (x,_J -x,-1) + 0;) + r, (7) 
1-1 /=I ]•I 

where f represents a nonlinear, smooth and bounded function and lXk = x(k )- x(k} for all 
k E {t-q, .. ·,t-1}. This approximation of the NARMA-based model corresponds to the 

recurrent neural network from Fig. 1, in which W;; are the weights between hidden and output 
neurons, W;j are the weights between extemal input neurons and hidden neurons,' w';i are the 
weights between context input neurons and hidden neurons, 0; are the hidden neuron biases, r 
is the bias and fis the activation function of the neurons. Similarly, a NAR-based predictor 
can be approximated as: 

x(t)= h(x(t-1} .. ·,x(t- p))"' :t WJ(f, w,1x(t- j)+0;)+ r, 
i-1 ]=I 

obtained by disconnecting the context inputs a,.J, .•. , <Xt-ą from Fig. 1. 
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Fig. I. Stochastic Model Approximation. 

lXk = x(k) x(k i 

a(t-q) FEEDBACK 

(8) 



3. Chaos theory and time series prediction 

It is assumed that an interesting system is observed namely the output of a traffic system 
is available and observed. The second assumption is such that, generally, the reasons of traffic 
system performance is unknown - it means the inputs to the system are not available. The aim 
is to analyze the system and to forecast the future behavior of it. 

The main difficulties in analyzing the real world time series and related traffic systems 
are due to presence of nonlinearity and representation of only finite observations - these kind 
of difficulties justifies the use of empirical as well as nonparametric methods dealt in this 
paper. 

For last few years much attention has been paid to the application of the chaos theory 
for analysis of different time dependent real systems. At the same time much interest has been 
given to the ability of modern computational tools such as neural networks and genetic 
programming. 

3.1. Observation of Linear Systems 

For long time in the system theory linear dynamie systerns (very often time-invariant) 
were investigated very deeply. Let us consider a linear time invariant system defined by state­
space equations: 

x(t) = Ax(t )+ bu(t) 
y(t )= hx(t )+ dv(t) 

(9) 
(10) 

The state vector of the system x is of the N dimension; y(t) is the observed output of the 
system; u( t) is the dri ving force ( control or noise) applied to the system; v( t) is considered as 
noise; the matrix A and vectors b, h, d are parameters of the system. Having the system 
parameters as well as the value of the state x(t) it is easy to predict y(t). 

Now, !et us consider a discrete version of the system (9)-(10), taking samples of the 
output at times L1t: 

x(k + !)= <I>x(k) 
y(k )= hx(k) 

( 11) 

(12) 

in these equations k=nL1t and <I>= exp(AM ). There is a question when and if y(k) can 

determine corresponding state x( k), in other words there is a question of observability of the 
system. For linear systems like (11)-(12) we define a so-called observability matrix: 

O(h, <I>)=[:~ l <I>x(k) 

h<I>N-1 

( 13) 

Putting 



y(k +n)= h<I>" x(k) (14) 

we can describe an observation vector 

[y(k h(k + 1} ... ,y(k + N -1)]= O(h,<I> )x(k) (15) 

In order to find the state of the system the observability matrix o(.) must be invertible. 
The linear autoregression which exactly models the observed sequence has a form 

y(k )= h<I>No-1 [(k - N) .. , y(k -1)+ dv(t )Y . (16) 

Now let us consider a nonlinear system, which are much more useful because most of 
observed time series represent nonlinear dynamie systems. In a similar way we can write a 
nonlinear system: 

~(t) = F(x(t )) 
y(t) = h(x(t )) 

(17) 

(18) 

where x is N dimensional state of the system, F is a nonlinear transition function, h is an 
observation function. Applying sampling intervals equal to .1t we can write a delay vector 

[y(k -1} y(k-2} ... , y(k-T)] (19) 

Takens theorem (1981) allows to apply the observability problem of nonlinear systems. Due 
to this theorem which states that under very mild conditions, if 

T > 2D+l (20) 

(where Dis the fractal dimension), then there exists (for almost all smooth function h) an one­
to-one differentiable mapping 'ł' between the delay vector and the state vector x(k) 

'P(y(k -1} y(k -2} ... , y(k -T)) = x(k) (21) 

In this way we can write an autoregression which models the time series in the form 

y(k)= ho Fo 'P(y(k- Ih(k-2} ... , y(k-T)). (22) 

It is worth to notice that equation (21) has a similar form as equation (15). Such a form allows 
to apply nonlinear autoregressions to model time series. 

3.2. Neural Networks Prediction 

Feedforward neural networks work as an universal approximators. Before using such a 
network it must be trained. For an input x(k) the network response (or output) is given as 



y(k)= N(w,x(k)) '(23) 

where weights w are parameters of the network. During the learning process we try to 
minimize the average squared error (a learning error) 

l P 2 

min-L[d(k)-N(w,x(k))] 
w p p=I 

(24) 

counting over a training set of examples, where d(k) is the desired pattern for each input. 
Under some stationary and ergodic conditions the learning error (23) converges to an 
expectation: 

1 p 2 

lim min- L[d(k)-N(w,x(k))] ~ EIID-N(w,Xf . 
P->- w p p=I 

(25) 

Here D and X are considered as random vańables while the expectation is taken over the joint 
probability distribution. 

The problem of finding optima) parameters w* for linear systems is trivia), eg. 
Shanmugan (1988). For nonlinear systerns, the problem is much more complex, especially 
using neural networks. Namely, we must use the universal approximator properties of 
feedforward neural networks. The forma! explanation of using least square errors for neural 
network training can be found e.g. in Hecht-Nielsen (1990). 

3.3. Chaotic series 

Many interesting systems in the real world are known to be nonlinear or chaotic. Up till 
now by some mathematical expressions the analysis is constrained to extraction of similar 
tendencies. For example Jet us analyze one of the most famous and oldest, perhaps, equation 
modelling a population growth. The equation is called the logistic equation and is described 
by the following form (discrete case) 

x(t +I)= bx(t XI- x(t )} t = 0, ... ,300 (26) 

where b is a real value. parameter. The logic equation is drawn in Fig. 2 for the parameter 
b = 3.0 , and first 200 points t = 1, .. . ,200 , and for the initial condition x(O) =O.I, 
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Fig. 2. The first 200 points of the logistic equation. 

Another example ofchaotic series is generated by the Mackey-Glass equation (1977) of 
the form: 

x(t + l) = bx(t) + a x(t ( s) ) 
l +xc t -s 

(27) 

where the parameters can be stated as follows: a = 0.2 , b = 0.9, c = IO , s = 18, and the 
initial conditions are assumed to be x(O)=x(l)= ... =x(18)=0.7. Time evolution of the 
Mackey-Glass equation for the above parameters is shown in the Fig. 3 
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Fig. 3. The first 200 points of the Mackey-Glass equation. 

The above time series are shown in order to show thai simple nonlinear equations with 
feedback can cause very complex behavior of the plots. It will be shown little later the 
attractors of complex time series. 

Embedding There is a pretty simple method for analyzing time series, the method is called 
the time series embedding, Ruelle (1981) and Takens (1981). The approach can be illustrated 
by plotting pairs of point x(t) and x(t + l) for the considered functions . The case of the 

logistic equation is shown in the Fig. 4 
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Fig. 4. Ernbedded logistic function. 
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In the case of the Mackey-Glass equation the embedding plot is shown in Fig. 5: 
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Fig. 5. Ernbedded Mackey-Glass function. 

It should be emphasizes that even plots versus time are very complex time series than 
the respective embedding plots are rather simple as well as known patterns. The idea is such, 
namely given the point x(t) it is easy to make a very good estimation of the next point x(t + 1) 
by interpolation. The similar principle can be extended to multiple dimensions: 

X(t )= x(t }x(d + t }x(Zd + t }x(3d + 1} .. ,x(nd + t) (28) 

where X is the embedded vector, d is the separation, and n is the embedding dimension. 

It has been shown (Takens, 1981) that for a given chaotic series embedded properly 
there exists a smooth function . This function of embedding can be approximated in various 
ways, e.g. or by neural networks. Proper parameters that is the dimension parameter d as well 
as the embedding function must be found empirically. Latter we will discuss difficulties 
appearing during the modelling process. 

3.4. Elements of the empirical chaos theory 

Lyapunov exponents The rnain feature of chaotic systems is their high sensitivity to init ial 
conditions. There is a way to distinguish this feature, namely by calculating the Lyapunov 



exponents (Wolff, Swift, Swinney, 1985). These exponents indicate whether succeeding 
points łaying on an attractor diverge or converge - with passing time. ,_ 

The examined trajectories on the attractor are embedded in a space. The divergence ·c 
between two trajectories can be measured as a difference between two n-tupłes. At the 
beginning there is a need to define the so-called dominant average Lyapunov exponent as: 

Lk 
L ł n-I /n = ogi--­

n-1 
(29) 

where n denotes the index of a sample, I is the Euclidean distance between two neighboring 
traje.ctories. There is ałso possible to calculate local Lyapunov exponents, for that we need 
samples of trajectories of attractor which shoułd be dense. It is obvious that the rate of 
divergence is not constant at all along the attractor. 

It is interesting to allays the Lyapunov exponents. If the Lyapunov exponents are 
positive it means the system is a chaotic one, white the negative exponents indicaie the system 
behavior is reverting, the value zero of the exponents characterizing cyclic behavior of the 
systems. For instance, an attractor of a sinusoidal system is a circle. 

Hurst exponent There is a very important measure of predictability of states of time series. 
This measure is named the Hurst exponent which is derived by application of so-called R/S 
analysis. Considering a time series X representing by n points, and choosing a number p 

which can be taken for convenience as 10 ~ p < n/2, then the data can be divided into nip 

błocks. For any błock the average is calculated, then next the maximum range of each błock 
as well as the standard deviation of each błock is calcułated. The 
value=range/standard_deviation is calculated for any błock and next average of the błock is 
calculated. The average value rs is in relation with the Hurst exponent in the following way 

(30) 

where H is the Hurst exponent. 
The Hurst exponent values are between O and 1. We can distinguish two ranges of the 

exponent. A value 0.5 < H < 1 indicates so called persistent behavior, it means a system can 
be considered as the values moves to one as a predictable system. White a value O< H < 0.5 
indicates probabilistic systems. For H = O time series must change direction every sample, for 
H = 0.5 time series moves as a random walk, while for H = I a system is a purely 
deterministic. 

There is a relationship between one definition of the fractal dimension and the Hurst 
exponent, that is following expression 

D=2-H. 

Analysis and prediction of chaotic time series requires finding the above mentioned 
parameters - this is another difficult task. We can distinguish two class of methods: the first 
empiricał and the second analytical one. Within the first group we must form a model of the 
attractor and a supervised learning algorithm of some kind is required (e.g. algorithms for 
learning feedforward neural networks or genetic algorithm). Within the analytical methods we 



must base our consideration on the Takens theorem (1981) for determining the upper bounds 
of an embedding parameter (if we know the fractal dimension of the attractor). There are 
severa! methods for deriving a choice of embedding dimension, e.g. Tong (1990), Wolff, 
Swiftt, Swinney, (1985). 

4. Conclusions 

In this paper we summarize modern foundations of application neural networks for 
prediction of time series. Here feedforward neural networks which are universal 
approximators are used as a tool for modeling unknown nonlinear functions . 

. We have considered linear systems and associated state observability or autoregression. 
In a similar way we described nonlinear systems. Next we showed feedforward neural 
networks as universal approximators. Nonlinear systems, even very simple, can generale in 
some sense unstable solutions - these kind of systems are called chaotic systems. The main 
parameters of such systems are described and the role of neural networks as a tool for 
modelling. 

We have studied neural networks as models for time series forecasting, and our 
research compares the Box-Jenkins method against the neural network method for long and 
short term memory series. Our work was inspired by previously published works that yielded 
inconsistent results about comparative performance. We have since experimented with many 
time series of differing complexity using neural networks. The performance of the neural 
networks is compared with thai of the Box-Jenkins method. Our experiments indicate that for 
time series with long memory, both method produced comparable results. Howe'Ver, for series 
with short memory, neural networks outperformed the Box-Jenkins model. Because neural 
networks can be easily built for multiple-step-ahead forecasting, they present a better long 
term forecast model than the Box-Jenkins method. We discussed the representation ability, 
the model building process and the applicability of the neural net approach. Neural networks 
appear to provide a promising alternative for time series forecasting. 
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