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The paper deals with the problem of the interpretation of the results of statistical 
tests in terms of the theory of possibility. The well known in statistics concept of 
the observed test size p (also known as p-valv.e and significance) has been given a 
new possibilistic interpretation and generalised for the case of imprecisely defined 
statistical hypotheses and vague statistical data. The proposed approach allows 
a practitioner to evaluate the test results using intuitive concepts of possibility, 
necessity or indifference. 
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1 Introduction 

In the majority of practical cases decisions are made after the evaluation of 
existing information pertained to the considered problem. When this infor­
mation is in a form of statistical data the decisions to be made are called 
statistical decisions. Let us assume that a phenomenon of interest is described 
by a random variable X (univariate or multivariate) distributed according 
to a certain probability distribution Po belonging to a family of probability 
distributions P = { Po : 0 E e} indexed by a parameter 0 ( one- or multidimen­
sional). In a classical statistical setting we also assume that decisions depend 
entirely on the value of this parameter. If the value of 0 were known we might 
take an appropriate decision without any problem. However, the value of 0 
is usually not known, and we could only formulate a respective hypothesis 
about it. Therefore, our decision is equivalent to the acceptance (or rejection) 
of a certain statistical hypothesis H : 0 E e H ( where e H C e ) upon a 
value of the parameter 0. Such a hypothesis is called the null hypothesis. The 
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available statistical data either confirm or disprove our hypothesis. Statistical 
tests of this type were introduced by R.Fisher, and are known as statistical 
significance tests. 

A better framework for making statistical decisions is offered by the Neyman­
Pearson theory of statistical tests. According to this theory we should also 
formulate an alternative hypothesis K: 0 E ex , where ex c e, and eH n 
ex = 0. In such a case we have either to reject H (and to accept K) or 
not to reject H ( usually identified with the acceptance of H). To design the 
statistical test we usually set an upper value for the probability of a wrong 
rejection of the null hypothesis H (the so called probability of type I error) . 
This probability, denoted by o, is called a significance level of the test. 

Despite their clear mathematical descriptiop., statistical tests are very often 
difficult to understand for a general user. First of all, the concept of signifi­
cance level is not well understood, especially for single tests. Another reason of 
difficulties is the asymmetry between the null and the alternative hypotheses. 
It is clear, that only the probability of type I error o is under control. The 
probability of wrong acceptance of the null hypothesis H ( called the proba­
bility of type II error /3) is generally either not explicitly defined or even not 
possible to define. Only certain statistical tests, such as procedures for testing 
simple statistical hypotheses, i.e. when H : 0 = 0u, and K : 0 = 0K, are 
relatively easy to explain for practitioners. However, even in this simple case 
there still exist some problems with practical interpretation of the results. 
Therefore, there is a need to provide the user with a methodology which let 
him/her to better understand the results of the statistical test. In the second 
section of the paper we propose to look at statistical tests from a perspec­
tive of the theory of possibility introduced by Zadeh [23]. We propose to use 
the possibilistic approach by Dubois and Prade [5] in order to arrive at new 
interpretation of the results of statistical tests. 

In the classical theory of statistical tests all hypotheses should be well defined, 
and when the considered hypotheses are related to certain real life decisions 
their interpretation should be absolutely clear to potential users. Unfortu­
nately, in many practical situations it is not the case. It is not difficult to 
indicate situations when precise formulation of statistical hypotheses is ei­
ther useless or creates problems with clear understanding of the considered 
problem. To illustrate the problem let us consider an example taken from 
the statistical quality control when the decisions that are to be made depend 
upon a fraction of nonconforming (defective) items which have been found 
in a sample taken from a certain lot of products. Mathematically speaking 
the problem can be described as a certain statistical test for a value of a pa­
rameter p from the binomial (or hypergeometric) distribution. Statisticians 
formulate the problem as the test of the null hypothesis H : 0 = Po against 
the alternative K : 0 = p1• In this setting the value of p0 is called "an accept-
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able quality", and the value of p1 is called "a disqualifying quality". However, 
in practice there is no ground to claim that these particular values have any 
special meaning. Their interpretation as fractions of nonconforming items in a 
lot for which that lot is accepted or rejected with a given probability is hardly 
understandable by practitioners who use rather vague concepts of "good" or 
"bad" quality. Therefore, for practical reasons it is much more convenient to 
formulate statistical hypotheses in a more relaxed fuzzy form. This is the mo­
tivation for the generalisation of classical statistical tests by fuzzy statistical 
tests with fuzzy requirements. The statistical tests with fuzzy requirements 
have been proposed by many authors such as Saade and Schwarzlander [19], 
Saade [18], Watanabe and Imaizumi [22], Arnold [2], Taheri and Behboodian 
[21], and Grzegorzewski and Hryniewicz [10]. In the third section of the pa­
per we extend the possibilistic interpretation of statistical tests to the case of 
imprecisely defined fuzzy hypotheses. 

Traditional statistical tests have been proposed for precisely defined crisp data. 
However, in many practical situations we face data which are not only random 
but vague as well. The introduction of vagueness to the problem of statistical 
testing leads to a new class of statistical tests which have been proposed by 
many authors such as Arnold [1], Casals et al. [3], Kruse and Meyer [13], Saade 
[18], Saade and Schwarzlander [19], Son et al. [20],Watanabe and Imaizumi 
[22], Romer and Kandel [17], and Montenegro et al. [16]. For deeper discussion 
and critical review of the problems considered there we refer the reader to the 
pa.per by Grzegorzewski and Hryniewicz [9]. Recently, Grzegorzewski [8] has 
proposed a unified approach for testing statistical hypotheses with vague data 
which is a direct generalisation of the classical approach. U nfortuna.tely, all 
these proposals do not address the problem considered in this pa.per, namely 
the problem of the interpretation of the test result that is used for ma.king a 
single and unique decision. In the fourth section of this pa.per we apply the 
approach proposed in the second section to the case of statistical tests with 
vague data. In the fifth section of the pa.per we combine the results presented in 
the previous sections in order to propose a unified possibilistic interpretation 
of fuzzy statistical tests when both statistical data and statistical hypotheses 
are given in a fuzzy form. 

One of the most difficult problems that faces a practitioner is ma.king the 
final decision basing on the interpretation of the results of a single statistical 
test. The reasons for this problem stem from the fact that the null and the 
alternative hypotheses are not symmetric. It means, that the result of the 
test depends upon which hypothesis is considered as the null hypothesis, and 
which as the alternative one. Thus, it may happen that on a given significance 
level 8 we cannot neither reject the null hypothesis H vs. the alternative K, 
nor the alternative hypothesis K (treated as a new null hypothesis) vs. H 
(being a new alternative hypothesis). The problem becomes very serious when 
both considered hypotheses are "close", for example, when we test the null 
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hypothesis H : 0 S 0H against the alternative K : 0 > 0H. As the result 
of this asymmetry a decision maker is very often advised not to reject the 
null hypothesis despite the fact that the test data apparently support the 
alternative. This makes him confused, especially when the decision has to 
be made only once. To overcome this problem Hryniewicz [11] proposed a 
decision support tool that uses the notions of the theory of possibility. In the 
sixth section of this paper we present this approach as an additional tool that 
may be helpful for making final decisions. 

2 Possibilistic interpretation of crisp statistical tests 

The theory of statistical tests is well described in numerous textbooks. In 
the following paragraphs we recall some its most important notions. Let us 
observe a random sample X1, ... , Xn, and the following decisions are to be 
made: either to reject H (and to accept K) or not to reject H (usually iden­
tified with the acceptance of H). Let's denote by 1 the rejection, and by 0, 
the acceptance of H. Hence, the decision rule, called a statistical test, can 
be defined as a function cp : nn -+ [O, l]. Each nonrandomised statistical 
test divides the whole space of possible observations of the random vari­
able X into two exclusive subspaces: {(x1, ... ,xn) E nn: cp(x1, ... ,Xn) = O}, 
and { (x1, ... , Xn) E nn : cp (x1, ... , Xn) = l }. First of these subspaces is called 
an acceptance region, and the second is called a critical region. In the major­
ity of practical cases we deal with a certain test statistic T = T (X1, ... , Xn), 
and we reject the considered null hypothesis H when the value of T belongs 
to a certain critical region K,, i.e. if T = T (X1, .. . , Xn) E K,. In such a case the 
decision rule looks like this 

{ 
1 ifT(X1, ... ,Xn) EK,, 

cp(X1, ... ,Xn) = 
0 otherwise. 

(1) 

To define the critical region we must set an upper value for the probability of 
a wrong rejection of the null hypothesis H (the so called probability of type I 
error). This probability, denoted by o, is called a significance level of the test . 
Thus, we have 

P(cp(X1,, ... ,Xn) = llH) so. (2) 

In general, for a given sample number n there may exist many statistical tests 
which fulfil this condition. However, only some of them may have additional 
desirable properties, and only those are used in practice. For more detailed 
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description of the problem we refer the reader to textbooks on mathematical 
statistics such as the excellent book of Lehmann [15). 

There exists a strong relationship between statistical tests and statistical con­
fidence intervals. Suppose that the null hypothesis is given as H : {} :-:; {} H, 

and we observe a random sample {X1 , ... , Xn)- The one-sided confidence in­
terval on a confidence level 1-/i is given by [1rL (X1 , ... ,Xn; 1- /i) ,oo), and 
is closely related to the test of H : {} :-:; .i11 on a significance level Ii. We 
reject the null hypothesis on the significance level Ii if the observed value 
of 7r L ( X 1 , ••• , Xn; l - Ii) is larger than {} H, i.e. when the inequality {} H < 
7rL (x1, ... ,xn; 1- Ii) holds. Similarly, we reject the hypothesis H : {} 2': '19H 
on the significance level Ii when the inequality '19H > 1ru (x1, ... ,xn; 1 - Ii) 
holds, where 1ru (x1, . .. , x,.; 1 - Ii) is the observed value of the upper limit 
of the one-sided confidence interval (-oo, 1ru (X1 , ... , Xn; 1 - Ii)] on a confi­
dence level 1 - Ii. When we test the hypothesis H : '19 = {}H on the signif­
icance level Ii we reject it if either {}H < 1rL(x1 , ... ,xn; 1 - /i/2) or '19H > 
1ru (x1, ... , Xn; 1 - /i/2) holds, where 1rL(x1, ... , Xn; l - /i/2) is the observed 
in the sample value of the lower limit of the two-sided confidence interval 
7rL (X1 , ..• , Xn; 1 - /i/2) on a confidence level 1 - Ii . The observed value of 
its upper limit 1ru (X1, .. . , Xn; 1 - Ii /2) is given by 1ru (x1, . .. , Xn; l - Ii /2). 
Thus, when we test a hypothesis about the value of the parameter '19 we find 
a respective confidence interval, and compare it to the hypothetical value. 

Dubois et al. [7] considered the problem of the relationship between statistical 
confidence intervals and possibility distributions. Following their approach we 
claim that the family of two-sided confidence intervals 

[1rL(x1, . .. ,xn; l - /i/2), 1ru (x1, ... ,xn; 1 - /i/2)], Ii E {O, 1) {3) 

forms the possibility distribution {) of the estimated value of the unknown para­
meter '19. Similar observation holds also for the families of one-sided confidence 
intervals. The o,-cuts of the membership functionµ ( '19) denoted by [µr>, µ0'l] 
are equivalent to the respective observed confidence intervals on a confidence 
level 1 - °'· Denote by J L the possibility distribution whose o,-cuts are formed 
by the set of one-sided confidence intervals 1rr) = [7rL (x1, ... , Xn; l - o,), oo). 
Thus, the membership function of {IL is expressed as 

µL('!9) = sup{o,J (a){'!9): 11' E (0, 1]}, 
"i 

{4) 

where I <o> ( '19) denotes the characteristic function of 1r1"). We can now look at 
"L 

the problem of testing the hypothesis H : '19 :-:; '19 H as on the problem of the 
evaluation of the relation {IL>- '!9H.To evaluate this relation we propose to use 
the concept of the Necessity of Strict Dominance index introduced by Dubois 
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and Prade [5] defined as 

NSD=Ness(A'r-B)=l- sup min{µA(x),µB(y)} 
X,YiX$y 

(5) 

and NS D represents a necessity that the set A strictly dominates the set B. 

Direct application of (5) for the evaluation of the relation {h 'r- r)H leads to 
the following result 

(6) 

where 

(7) 

Thus, Ness ( J L 'r- rJ H) is equal to one minus the ordinate of the intersection of 
µi(rJ) and the vertical line that crosses the x-axis at r}H, From the definition 
of µL( rJ) it is easy to notice that the value of Ness ( J L 'r- rJ H) is equal to 
the minimal value of the significance level of the test of the hypothesis H : 
rJ :::; rJ H for which this hypothesis has to be rejected. Therefore, the value of 
Ness ( J L 'r- rJ H) is equivalent to the well known in statistics notion of the 
observed test size p, known also as p-value or significance. 

It is not difficult to show that similar results are obtained when we consider 
statistical tests of hypotheses H : rJ 2'. rJ H and H : rJ = iJ H. In both cases, the 
Necessity od Strict Dominance indices are equal to the respective p-values of 
the considered tests. 

The concept of p-value is not accepted by many statisticians as it does have 
frequency interpretation only in the case of simple statistical hypotheses. In 
the case of continuous probability distributions it can be related to the so 
called fiducial distributions of probability distribution parameters introduced 
by R.Fisher in the early 1930's. For a composite null hypothesis it can be 
computed as its fiducial probability. This approach, however, is also strongly 
criticised by many statisticians for the same reasons as the concept of p-value. 
The result presented above gives a new interpretation of the notion of p-value 
using concepts used in the theory of possibility. 
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3 Possibilistic interpretation of statistical tests of fuzzy hypotheses 

In many practical situations both null and alternative hypotheses may not be 
formulated precisely. In such a case many authors propose to use the fuzzy 
sets theory, and to replace the sets 0H (for the null hypothesis) and 0x (for 
the alternative hypothesis) by their fuzzy equivalents OH, and Bx, respectively. 
This approach allows a user to describe formally hypotheses that are defined 
imprecisely. For example, we can define a hypothesis in such vague terms as 
'the average life time is about 5000 hrs.' or 'the fraction of defective items in 
a production Jot is much smaller than 1%'. In all this cases, we may use fuzzy 
sets to represent imprecise notions like 'about 5000' or 'much smaller than 
l'. The examples that illustrate this approach can be found in all fuzzy sets 
textbooks. 

Let us assume that the null hypothesis H is defined as H : 0 E OH, where 
OH is a fuzzy subset of 0 described by a membership function µH (0). The 
membership function for the fuzzy set OH we denote by µH (0). 

Now, let us define the a-cuts of the fuzzy set OH by 

{fk = {0 E 8: µH (0) 2'. a}. 

The set (fk = ( 0'if ,min, 0'if ,max) is an ordinary set of real numbers, and for any 
number 0 H E 0'if we may define a crisp null hypothesis H : 0 :S 0 H . 

Proceeding as in the previous section we can treat the problem of testing 
the hypothesis H : 0 :S OH as the problem of the evaluation of the relation 
fh >- OH. From (5) we find that 

(8) 

Thus, Ness ( J L >-- 0 H) is equal to one minus the ordinate of the intersection 
of µL(fJ) and the right-hand side of µH (0). 

In the case of testing the statistical hypothesis H : 0 2'. OH we have to evaluate 
the relation 0 H >-- J L· In this case Ness ( 0 H >- J L) is equal to one minus the 
ordinate of the intersection of µu (fJ) and the left-hand side of µH (0). Similar 
results can be also obtained for the two-sided test of the hypothesis H : 0 = 0 H. 

In all these cases the obtained values of the NSD indices may be regarded as 
the generalisation of the observed test size p (p-value or significance) for the 
case of statistical tests of imprecisely defined hypotheses. 
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4 Possibilistic interpretation of statistical tests with fuzzy data 

In the classical approach to statistical tests we assume that the observed ran­
dom phenomenon is described by a crisp random variable X . Suppose now, 
that instead of a crisp random variable X we observe a fuzzy random variable 
X. The notion of a fuzzy random variable has been defined by many authors. 
In this paper we use the definition proposed in Grzegorzewski(8]. 

Definition 1 (Grzegorzewski[8]). Let (0, A, P) be a probability space, where 
n is a set of all possible outcomes of the random experiment, A is a o--algebra 
of subsets of n (the set of all possible events), and Pis a probability measure. 

A mapping X: n----+ F N (R), where F N (R) is the space of all fuzzy numbers, 
is called a fuzzy random variable if it satisfies the following properties: 

(1) {xo (w): a E [O, 1]} is a set representation of X (w) for all w En, 
(2) for each a E [O, 1] both X~ = X~ (w) = inf X0 (w) and X;j = X;j (w) = 

sup X0 ( w), are usual real-valued random variables on 
(O,A,P) . 

This definition is similar to the definitions proposed by Kwakernaak [14] and 
Kruse [12], and the random variable X may be considered as a perception of 
an ynknown usual random variable X : n ----+ n, called an original of X. 

Let X1 , • • • , Xn denote a fuzzy sample, i.e. a fuzzy perception of the usual 
random sample X 1 , ••• , Xn, from the population with the distribution Pa. 

It is well known that in the statistical testing with crisp data there is an 
equivalence between the set of values of the considered probability distribu­
tion parameter for which the null hypothesis is accepted and a certain confi­
dence interval for this parameter. The same equivalence exists in the case of 
statistical tests with fuzzy data. 

Let us consider, for example, a statistical test with the null hypothesis H: {}::; 
{}H, and the alternative hypothesis K: 0 > 0H. In the case of crisp data there 
is one-to-one correspondence between the acceptance region for this test on 
the significance level o and the one-sided confidence interval for the parameter 
0 on the confidence level 1 - o. This correspondence has been described in the 
second section of this paper. 

Kruse and Meyer[13] introduced the notion of a fuzzy confidence interval for 
the unknown parameter 0, when the data are fuzzy. In the considered case, 
a fuzzy equivalent of the lower limit of [rri (X1, ••• , Xn; 1 - o), oo) can be 
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defined by the following a-cuts (for all a E (0, 1]): 

IIZ = IIZ (xi, .. . , Xn; 1 - <5) 

= inf { t En: Vi E {1, ... n}:3x; E (.X;L (9) 

such that 'Tr£ (xi, ... , Xn; 1 - J) ~ t} 

Similarly, we can define a fuzzy equivalent of the upper limit of the one-sided 
confidence interval (-oo, 1ru (X1, .. . , Xn; 1 - J)] as given in Grzegorzewski [8]: 

II(} = Il(J (xi, ... , Xn; 1 - <5) 

= sup { t En: Vi E {1, ... n} 3x; E (.X;L (10) 

such that 1ru (xi, ... ,xn; 1 - J) :C:: t} 

where 1ru(x1, . .. ,xn;6) = 1rL(x1, .. . ,xn;l-6). A similar definition can be 
also proposed for two-sided confidence intervals (see Kruse and Meyer[13] for 
details) . 

Now, let us construct the possibility distribution J F of the estimated value 
of the unknown parameter {) when sample data are fuzzy. First of all let 
us notice that in the case of fuzzy statistical data the limits of statistical 
confidence intervals become fuzzy for each confidence level 1 - J . In the second 
section of this paper we assumed that the value of J ( the significance level of 
the corresponding statistical test) is equal to the possibility degree a that 
defines the respective a-cut of the possibility distribution of J. We claim that 
in the possibilistic analysis of statistical tests on the significance level J we 
should take into account only those possible values of the fuzzy sample whose 
possibility is not smaller than J. Thus, the a-cuts of the membership function 
µp ({)) denoted by [µ~l, µ~l] are equivalent to the a-cuts of the respective 
fuzzy confidence intervals on a confidence level 1 - a. 

In the case of a statistical test with the null hypothesis H : 0 ~ 0H we denote 
the possibility distribution of the estimated value of the unknown parameter {) 
by JF,L, and the respective a-cuts of its membership function µp ({)), denoted 

by [µ~l, oo), are such that 

(11) 

The remaining part of the possibilistic analysis of the result of statistical test of 
the hypothesis H : 0 ~ 0H with fuzzy data is exactly the same as in the second 
section of this paper. We have to find the intersection point of the membership 
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function µF,L ('19) whose a-cuts are defined by (11) and the vertical line that 
crosses the x-axis at i9 H . One minus the ordinate of this point is equal to the 
NS D index of the relation J F,L >-- i9 H. 

5 Possibilistic interpretation of statistical tests of fuzzy hypotheses 
in presence of fuzzy data 

Let us consider the most general case when both statistical hypotheses and 
statistical data may be expressed in a vague form. To cope with this problem 
we have to combine the results from the previous sections. Let us assume that 
we observe a fuzzy random sample X1, .. . ,Xn, and that we use this sample 
to test a fuzzy statistical hypothesis H : 0 E 8 H. 

Suppose now that our fuzzy hypothesis is given as H : 0 ~ 0H. In the case 
of crisp data we compare the lower limit of the one-sided confidence interval 
on a given confidence level 1 - o with the respective a-cut of the membership 
function that describes 0H . In the possibilistic framework described in the 
third section it means that we compare the possibility distribution of J L with 
the fuzzy value of 0H. In the presence of fuzzy data we have to compare the 
possibility distribution J F,L of the estimated value of the unknown parameter 
0 represented by its a-cuts given by (11) with the fuzzy value of 0H. In such a 
case we have to find the intersection point of the membership function µF,L ( 19) 
and the left-hand side of µH (0). The NSD index of the relation JF,L >-- JH is 
equal to one minus the ordinate of this point, i.e. 

(12) 

The NSD index defined by (12 can be regarded as the generalisation of the 
observed test size p ( also known as p-value or significance) for the case of 
imprecisely defined statistical hypotheses and vague statistical data. In exactly 
the same way we can find the NSD index for other one-sided and two-sided 
statistical hypotheses. 

6 Possibilistic interpretation of statistical decisions 

As we have written in the Introduction one of the most difficult problems 
that faces a practitioner is to make decisions basing on the interpretation 
of the results of statistical tests. To overcome this problem Hryniewicz [11] 
proposed a new possibilistic interpretation of the results of statistical tests. In 
this interpretation he used the concept of the observed test size p ( also known 
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as p-value or significance). In the previous sections of this paper we have 
shown that the respective NSD indices can be interpreted as the generalised 
observed test size p. Thus, in the following part of this paper we denote by p 
the respective value of the NSD index. 

Let us assume that our statistical decision problem is described, as usually, 
by setting two alternative hypotheses H: 0 E 8H and K: 0 E 8K. Without 
the loss of generality we assume that H : 0 ~ 0H and K : 0 > 0K, where 
0K 2: 0H . According to Hryniewicz [11] we consider these two hypotheses 
separately. First, we the null hypothesis H. Using the methodology developed 
in the previous sections of this paper we could find the observed test size PH 
for this hypothesis. The value of observed test size PH shows how the observed 
data support the null hypothesis. When this value is relatively large we may 
say that the observed data strongly support H. Otherwise, we should say that 
the data do not sufficiently support H. It is worthwhile to note that in the 
latter case we do not claim that the data support K . The same can be done for 
the alternative hypothesis K, so we can find for this hypothesis the observed 
test size PK • It is worthy to note that when e If u e K = e we have PK = l­
PH· 

Let us denote by 1 a situation when we decide that the data do not support 
the considered hypothesis, and by O a situation when we decide to accept 
the hypothesis. According to Hryniewicz [11] we propose to evaluate the null 
hypothesis H by a fuzzy subset H of { 0, 1} with the following membership 
function 

{ 
min [1, 2pH] 

µPH (x) = 
min[l,2(1-pH)] 

if X = 0 

if X = l 
(13) 

which may be interpreted as a possibility distribution of H. It is worthy to note 
that sup (µPH (0) , µPH (1)) = 1, and µPH (l) = 1 indicates that it is plausible 
that the hypothesis H is not true. On the other hand, when µPH (0) = 1 we 
wouldn't be surprised if H was true. It is necessary to stress here that the 
values of µPH (x) do not represent the probabilities that His false or true, but 
only a possibility distribution of the correctness of alternative decisions with 
respect to this hypothesis. 

The same can be done for the alternative hypothesis K . We may evaluate 
the alternative hypothesis K by a fuzzy subset K of {O, 1} with the following 
membership function 

{
min[l,2pK] 

µPK (x) = 
min[l,2(1-pK)] 

if X = 0 

if X = l 

11 

(14) 



which may be interpreted as a possibility distribution of the correctness of 
alternative decisions with respect to K . 

To choose an appropriate decision, i.e. to choose either H or K Hryniewicz 
[11] proposes to use four measures of possibility defined by Dubois and Prade 
[5] . First measure is called the Possibility of Dominance, and for two fuzzy 
sets A and B is defined as 

PD=Poss(A't:_B)= sup min{µA(x),µB(y)}. (15) 
x,y:x~y 

PD is the measure for a possibility that the set A is not dominated by the set 
B. In the considered problem of testing hypotheses we have (see Hryniewicz 
[11]) 

PD= Poss (ii 't:. K) = max{µPH (0) ,µPK (l)}, (16) 

and PD represents a possibility that choosing Hover K is not a worse solution. 

Second measure is called the Possibility of Strict Dominance, and for two fuzzy 
sets A and B is defined as 

PSD = Poss (A>-- B) = sup inf min {µA (x), 1 - µ8 (y)}. (17) 
X y:y2:'. x 

PSD is the measure for a possibility that the set A strictly dominates the set 
B . In the considered problem of testing hypotheses we have 

PSD = Poss (ii>-- K) = min {µPH (0), 1 - µPK (0)}, (18) 

and PS D represents a possibility that choosing H over K is a correct decision. 

Third measure, called the Necessity of Strict Dominance, has been already 
introduced in the second section of this paper, and for two fuzzy sets A and B 
is defined by (5). The NSD index is related to the PD index in the following 
way 

NSD = Ness(A >-- B) = 1-Poss(B t A), (19) 

and represents a necessity that the set A strictly dominates the set B . In the 
considered problem of testing hypotheses we have 

NSD = N ess (ii>-- K) = 1 - max {µPH (1), µPK (0)}, (20) 
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and NSD represents a strict necessity of choosing Hover K. 

Close examinations of the proposed measures reveals that for all possibility 
distributions defined by (13) and (14) holds the following relation 

PD?. PSD ?_ NSD. (21) 

It means that according to the practical situation we can choose the appro­
priate measure of the correctness of our decision. If the choice between H and 
K leads to serious consequences we should choose the NSD measure. In such 
a case PH > 0, 5 is required to have NSD > 0. When these consequences are 
not so serious we may choose the PSD measure. In that case PSD > 0 when 
PK < 0, 5, i.e. when there is no strong evidence that the alternative hypothesis 
is true. Finally, the PD measure gives us the information of the possibility 
that choosing H over K is not a wrong decision. 

Another interpretation of the possibility and necessity indices can be found in 
the framework of the recently rapidly developing theory of preference relations. 
Let µ ( x, y) be a measure of the preference of x over y. The preference relation 
is complete ( see [4] for further references) when 

µ(x,y) + µ(y,x)?. 1 \/x,y (22) 

For a complete set of preference relations we may define the measure of the 
indifference between the alternatives x and y 

M(x,y) =µ(x,y)+µ(y,x)-l, (23) 

the measure that the alternative x is better than y 

µa (x,y) = µ(x,y)- µr (x,y), (24) 

and the measure that the alternative x is worse than y 

µw (x,y) = µ(y,x)- µr (x,y). (25) 

For the possibility and necessity measures defined above it is easy to show 
that 

µr(x,y)=PD-NSD 

µa (x,y) = NSD 

µw(x,y)=l-PD 
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(26) 

(27) 

(28) 



Thus, the knowledge of the indices PD and NS D is sufficient for the com­
plete description of preference relations for two alternatives: t.o choose the null 
hypothesis Hor to choose the alternative hypothesis K. 

7 Conclusions 

In this paper we propose another way of looking at the results of statistical 
tests. The proposed method allows a practitioner to evaluate the test results 
using intuitive concepts of possibility, necessity or indifference. The proposed 
method allows to use a language that is closer to a common language used 
by practitioners than the specialised language of statistics. This might be 
very valuable, especially for computerised decision support systems that are 
oriented on users who are not well trained in statistics. 

The main result of the paper is the new possibilistic interpretation of the 
well known concept of the observed test size p ( also known as p-value or 
significance). This new interpretation has allowed to generalise the concept of 
the observed test size p for the case of imprecisely defined statistical hypotheses 
and vague statistical data. 

For the evaluation of a single test we use the Necessity of Strict Dominance 
(NSD) index. This index generalises the concept of the observed test size 
p. In the case of fuzzy statistical hypotheses and fuzzy statistical data it is 
possible, however, to consider other possibilistic measures for the evaluation 
of the results of statistical tests. The interpretation of these indices, and their 
practical application, could be the subject of future research. 
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