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Abstract 

This article introduces the imprecision approach to high-level graphical 
object interpretation. lt presents a step towards soft computing which sup­
ports the implementation of a content-based image retrieval (CBIR) system 
dealing with graphical object classification. Some crucial aspects of CBIR 
are presented here to illustrate the problems that we are now struggling 
with. The main motivation of these researches is to provide effective and 
efficient means for the semantic interpretation of graphical objects. The 
paper shows how the traditional feature vector method extends to match 
graphical objects, difficult to classify, by applying intuitionistic fuzzy sets 
and possibility theory. We consider the cases where both classification of 
objects and their retrieval are modelled with the aid of fuzzy set extensions. 

Keywords: content-based image retrieval system, graphical object, image 
indexing, image classification, intuitionistic fuzzy sets, possibility theory. 

1 Introduction 

In recent years, the availability of image resources on the WWW has increased 
tremendously. This has created a demand for effective and flexible techniques 
for automatic image retrieval, coupled with the fact that a lot of graphical in­
formation is available in an imperfect form only. Indeed, information is likely to 
be imprecise, vague, uncertain, incomplete, inconsistent, etc. For this reason, 
attempts to perform the Content-Based Image Retrieval (CBIR) in an efficient 
way, that is based on shape, colour, texture and spatial relations, have been 
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made for many years. Nevertheless, the CBIR system, for a number of reasons, 
has yet to reach maturity. A major problem in this area is computer perception. 
In other words, there remains a considerable gap between image retrieval based 
on low-level features, such as shape, colour, texture [12], [14], [19] and spatial 
relations, and image retrieval based on high-level semantic concepts, for exam­
ple, houses, windows, roofs, flowers, etc [5], [7],[15]. This problem emerges 
especially as challenging when image databases are exceptionally large. 

Given the above context, it comes as no surprise that fast retrieval in data­
bases has recently been an active research area. The effectiveness of the re­
trieval process from the start has been a motivation to develop more advanced, 
semantically richer system models. One of the numerous problems which CBIR 
system authors struggle with is the ability to deal with information imperfection. 
Here, we will focus on this issue, briefly introducing some other, related aspects 
of the main subject. 

In the literature, the fuzzy set theory [22] its related possibility theory [24] 
has been used as the underlying mathematical framework for enhanced ap­
proaches to integrate imperfection at the level of alphanumeric data in, what is 
usually called a "fuzzy" database [25]. However, we propose a fuzzy approach 
to graphical data in the CBIR structure. This problem has turned out specially 
challenging with graphical information gradually becoming predominant in 
modern databases [9], [13] . Application of the interval-valued fuzzy sets and 
Atanassov's intuituinistic fuzzy sets seems to be justified in terms of improve­
ment of the effectiveness of graphical object classification for image retrieval. 
We are aware that some problems remain and in this paper we will discuss a 
few of them, for example, feature selection for object classification. 

This paper is organized as follows. Section 2 presents the main concept of 
the CBIR system describing its principal elements. Section 3 quotes the defini­
tions of Atanassov's intuituinistic fuzzy sets. In Section 4 some indexing and 
classification mechanisms are introduced. In Section 5 numerical results are 
demonstrated and discussed in terms of using fuzzy sets for image retrieval, 
while Section 6 analyses possibility theory for graphical object classification. 
Section 7 concludes the presented methods. 

2 CBIR Concept Overview 

In content-based image retrieval, representation and description of the content 
of an image is a central issue. Among different structural levels, object level is 
considered the key linking the lower feature level and the higher semantic one 
[1]. In order to be effective in terms of the presentation and choice of images, 
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the system has to be capable of finding the graphical objects that a particular 
image is composed of. 

Figure 1 shows the błock diagram of our CBIR system. As can be seen, the 
left part of the diagram illustrates the image content analysis błock of our sys­
tem. In this approach we use a multi-layer description model [8]. The descrip­
tion for a higher layer could be generated from the description of the lower 
layer, and establishing the image model is synchronized with the procedure for 
progressive understanding of image contents. These different layers could pro­
vide distinct information on image content, so this model provides access from 
different levels as a multi-layer representation. 

Each new image added to our CBIR system, as well as the user's query, 
must be preprocessed, as shown in the segmentation level frame of the image 
content analysis błock (top, Fig. 1). All graphical objects, such as houses, trees, 
a beach, the sky etc., must be segmented and extracted from the background at 
the stage of preprocessing. Although colour images are downloaded from the 
Internet (in the JPEG format), their preprocessing is unsupervised. Sirnilarly, an 
object extraction from the image background must be clone in a way enabling 
unsupervised storage of these objects in the DB. 

For this purpose, we apply two-stage segmentation, enabling us to extract 
accurately the desired objects from the image. In the first stage, the image is 
divided into separate RGB colour components which are next divided into lay­
ers according to three light levels. In the second stage, individual graphical ob­
jects are extracted from each layer. Next, the low-level features are deterrnined 
for each object, understood as a fragment of the entire image. These features 
include: colour, area, centroid, eccentricity, orientation, texture parameters, 
moments of inertia, etc. The segmentation algorithm and object extraction algo­
rithm, as well as the texture parameter-finding algorithm are presented in detail 
in an article by Jaworska [10). 

In generał, the system consists of 5 main blocks (fig. 1): 
1. the image preprocessing błock (responsible for image segmentation), 

applied in Matlab; 
2. the Oracle Database, storing information about whole images, their 

segments (here referred to as image objects), segment attributes and 
object location; 

3. the indexing module responsible for the image indexing procedure; 
4. the graphical user's interface (GUI), also applied in Matlab. 
5. the match engine responsible for image matching and retrieval. In this 

paper we would like to focus on the advanced mechanism, dealing 
with imprecision implemented in this engine. 

3 



New image 

Image content analysis 
Segmentation level 

Visual perception level 

c,--:a:i:}Ęo·,1c~::~i~:::, .. relations 

Object recognition Ievel 

User 

Graphical user's interface 
colour shape 

edges texture 

location 
spatial relations 

Match engine 

Indexes 

Match measures Quality functions 

Match results 

User 
Figure 1. Błock diagram of our content-based image retrieval system 
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The information obtained from the image content analysis is stored in the 
database. In the diagram the indexes błock is kept apart as an important element 
of the system, which prepares information to the matching engine. 

The next element of the system is the matching engine, which uses indexes 
based on the multi-layer description model and object pattems to search for "the · 
best matching images". Research on models which extend the flexibility of 
matching methods to obtain semantically profound retrieval, similar to human 
image understanding, leads us to experiments with interval-valued fuzzy sets 
and Atanassov's intuitionistic fuzzy sets. 

The bottom part of figure 1 is dedicated to users and presents the on-line 
functionality of the system. Its first element is the GUI błock. In comparison to 
the previous systems, ours has been developed in order to give the user the pos­
sibility to design their image which later becomes a query for the system. If us­
ers have a vague target image in mind, the program offers them tools for com­
posing their imaginary scenery. 

In 200 J a set of MPEG-7 descriptors was introduced. These descriptors are 
. more complicated, as they encompass colour descriptors (colour layout, colour 

structure, dominant colour and scalable colour), texture descriptors (edge histo­
gram and homogeneous texture) and shape descriptors (contour and region) 
[27], [28]. The MPEG-7 has been accepted as standard and is used in some ap­
plications . Unfortunately, it neglects important criteria for the assessment of 
image similarity, such as spatial information and spatial relationships. Addition­
ally, the MPEG-7 approach is inflexible and complex, and as such non extend­
able to the fuzzy methods. Hence, the fast changing experimental systems rarely 
use this standard. 

3 Basic Concepts of Extended Fuzzy Sets 

Definition 1 

A fuzzy set A over a universe of discourse U is defined by means of a member­
ship functión µA which associates with each element x of U a membership grade 
µA (u) E [0,1] [22]. 

In what follows, a fuzzy set A over a universe of discourse U is denoted by 
A={(x,µA(x)lxE U)}. (1) 

Two important concepts of core and support are related to a fuzzy set A: 
core(A) = {x I x E U /\µA (x) =1} 

and 
support (A)= {x I x E U /\µA (x) >0}. 
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In the literature various extensions of the concept of a fuzzy set have been 
proposed: interval-valued fuzzy sets (IVFSs), Atanassov's intuitionistic fuzzy 
sets (A-IFSs) and twofold fuzzy sets (TFSs). Fuzzy sets, as originally defined 
by Zadeh in [ref nr], are sometimes called 'regular' in order to distinguish them 
from these extensions. 

Definition 2 

An interval-valued fuzzy set (IVFS) A over a universe of discourse U [2] is de­
fined by two functions 

µ~,µ~ :U • [0,1] ( 2) 

such that 
( 3) 

and is denoted by 

A={< x,µ~ (x),µ~ (x) > I xE U} ( 4) 

The constraint (3) reflects that µ~ and µ~ are respectively interpreted as a 

!ower and upper bound on the actual degree of membership of x in A. Thus, a 
range of possible membership grades, determined by the interval defined by the 
!ower and upper bound membership grades, is associated with each element of 
the universe of discourse. This allows for more flexibility in the modelling of 
the ex tent to which an element belongs ( or does not belong) to the set. Consid-

ering the special case where µ~ = µ~ , it follows clearly that interval-valued 

fuzzy sets are a generalization of regular fuzzy sets. 

Definition 3 

Atanassov's intuitionistic fuzzy set (A-IFS) A over a universe of discourse U 
[20], [23] is defined by two functions 

µA, VA : U • [0,1] ( 5) 
such that 

( 6) 

and is denoted by 

( 7) 

For each x E U the numbers µA(x) and vA(x), respectively, represent the de­
gree of membership and the degree of non-membership of x in A. The A-IFS 
graphical iń.terpretation is presented in figure 2. The constraint (6) reflects the 
consistency condition. For each value x E U, the difference 

hA(x) = 1 - µA(x) - vA(x) ( 8) 
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is referred to as the hesitation margin. If for x E U, hA (x) = O, then there is no 
hesitation about x being an element of A or not, which implies that 

v A (x) = 1-µA (x) . On the other hand, if for x E U, hA (x) = 1, then there is full 
hesitation as µA (x) = O. In all other cases, the consistency condition guarantees 
that hA (x) E ]0,1[, which reflects partia! hesitation. 

1 1-li,,Jx) 

Yo,.Jx) 

: 
o 

Data 

Figure 2. Graphical representation of Atanassov's intuitionistic fuzzy set. 

Thus, as in the case of interval-valued fuzzy sets in Atanassov's intuitionis­
tic fuzzy sets there are also two grades associated with each element of the uni­
verse. Compared to interval-valued fuzzy sets, the semantics of these grades is 
however different. The grade µA (x) of x in A is interpreted as a membership 
grade, which is the same as the original interpretation of membership grades in 
fuzzy sets. The grade vA (x) of x in A is interpreted as a non-membership grade. 
Hereby, it is explicitly demonstrated that membership and non-membership do 
not necessarily complement each other, in other words they do not need to sum 
up to 1, as it is illustrated in fig. 2. 

4 Methods of Image Indexing and Classification 

Since the early 90's the effectiveness of classifiers has considerably improved 
which is strongly connected with fast development of machine learning meth­
ods, for example, nearest neighbour classifiers [26] , Bayesian classifiers, deci­
sion trees or support vector machines. 

In the case of image analysis we have tried to achieve categories strictly 
connected with the human perception of images. Before image set can be repre­
sented by the classifier, some form of representation must be chosen. Feature 
selection is a key task for the proper classification [21]. For graphical objects 
low-level features are as important as shape descriptors and object locations 
(mutually and in the whole image). If not enough features are used there is the 
possibility of confusing features that have a high information gain whereas us­
ing many features is troublesome due to space and computing time limitations. 
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4.1 Data Representation for Objects 

Each object, selected according to the algorithm presented in detail in [11], is 
described by some low-level features , also called attributes. The attributes de­
scribing each object include: average colour kav, texture parameters Tp, area A, 
convex area Ac, filled area A1, centroid {xc, YcL eccentricity e, orientation a, 
moments of inertia m11 , bounding box {b 1(x,y), ... , b., (x,y)} (s - number of verti­
ces), major axis length m 100g, minor axis length mshort, solidity s and Euler num­
ber E. These attributes are presented in the example window of the interface 
(Fig. 3) for a selected object. Let F be a set of attributes where F = {kav, Tp, A, 
Ac, ... , EJ. For ease of notation we will use F = {f1,f2, ... ,f,.}, where r - number 
of attributes. For an object, we construct a feature vector O containing the 
above-mentioned features - attributes: 

O(k0 v)l 0(/1)1 

O(T") 0(/2 ) 

O= O(A) = 0(/3 ) • . . . . . . 
O(E) LJ O(f,)LJ 

This feature vector is further used for object classification. 

( 9) 

The average colour is a complex feature. It means that values of the red, 
green and blue components are sumrned up for all the pixels belonging to an 
object, and divided by the number of object pixels: 

(10) 

The next complex feature attributed to objects is texture. Texture parame­
ters are found in the wavelet domain (the Haar wavelets are used). The algo­
rithm details are also given in [10]. The use of this algorithm results in obtain­
ing two ranges for the horizontal object dimension h and two others for the ver­
tical one v : 

!h . ·h j T = ffiln1.2' max,.2 . 

P V "V 
min 1,2 ' max 1,2 

(11) 
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Figure 3. (Left) One colour layer from which the object was extracted. (Centre) 
An image of a separate object (element 13). (Right) Object attributes. 

4.2 Pattern Library 

The pattern library contains information about pattern types, shape descriptors, 
object location and allowable parameter values for an object [11]. We define a 
model feature vector Pk for each graphical element. We assume weights f/P 

characteristic of a particular type of element which satisfy: 
µP, (f;) E [0,1) (12) 

where: 1 $ i $ r, k - number of pattems. These weights for each pattern compo­
nent should be assigned in terms of the best distinguishability of patterns. 

First, each graphically extracted object is classified into a particular cate­
gory from the pattern library. For this purpose, in the simplest case, we use an 
L111 metric, where the distance between vectors O and Pk in an r-dimensional 
feature space is defined as follows: 

[
,. 7X,, 

d(O, pk) = tiµP, (f;)/O(f; )- pk (f;)/111~ (13) 

where: k - pattern number, l $ i $ r, m is the order of the metric. For ,n = 1 and 
form= 2, it becomes the Manhattan and the Euclidean distance, respectively. 

In the fuzzy set description our weights f/P correspond to a membership 
function. Then, for the most important attributes of a graphical object we can 
assume pp(f;) == I. For instance, if we compare objects with a similar shape we 
use the number of vertices s as one of the attributes. First, objects with the same 
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number of vertices s (or s - 1) of bounding boxes are presumed the most similar 
to each other. If the differences in vertices are greater, the weight decreases 
down to O, µp(b;) ;:::: O in the bounding boxes case, and it means that object shapes 
are not similar. 

5 Classification Results 

The first step in our task was defining patterns Pk for each graphical object cate- ~ 

gory. We chose patterns for door and glass pane models distinguished from 
other objects, as an example. For this experiment, we used thirty-five known 
graphical objects, previously extracted from some images. There were nine 
doors with object ID = (4,5,7,9,13,15,20,28,35] and nine panes with object 
ID= [3,6,14,16,17,27,29,30,34], respectively. 

From the above-mentioned method, we used the classification tree for data 
for 8 features of an object. These features are: eccentricity, moments of inertia, 
solidity, minor axis length, major axis length, orientation and average colour 
RGB components. 

Figure 4. Classification tree for data for 8 features without any modifications. 
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As we can see in fig. 4 the main distinguishing parameter is the major axis 
length . We had to normalize all data to [O, 1) to be able to compute distances of 
vectors from the particular pattern. The ratio of the minor axis length to the ma­
jor axis length is also a feature similar to the original data, but after applying it 
we obtain the simpler classification tree (fig. 5). 

Figure 5. Classification tree with ratio of minor to major axes. 

Table I: Patterns for the door and glass pane models based on the most distin­
guishable features. 

Features Pattern_door Weight Pattern_pane Weight 
/.lp µp 

eccentricity 0,93 O, 1 0,85 0,1 
rnoments of inertia avera,ge 0,01 average 0,01 
solidity 0,8 0,3 0,9 0,19 
minor axis length 0,427 O, I 0,5 O, I 
/major axis length 
orientation 0,99 0,46 0,99 0,3 
avera_ge colour component R 0,33 0,01 O, 15 0,1 
average colour component G 0,217 0,01 0,22 0,1 
average colour component B 0,33 0,01 0,12 0,1 
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After some numerical experiments we chose two pattems, respectively, for 
the door and glass pane models based on the most distinguishable features (as it 
is shown in Table 1). 

Figure 6 illustrates the appropriateness of our decision. There are distances d 
(computed based on eq. (13) but without weights µp) for each object in its ID 
order. The figure presents overlapped distances for door and pane pattems on 
each other (see the legend). The majority of smallest d corresponds with the ID 
object numbers for pattem_door and pattem_pane, respectively. 

dis~c:es d ror door and g'.Jass pana pntte~s ~~oµt ~lg~ 

1.•~--~---~--~---~--~---~--r. ....... ::::;;-;d.;;;00;;--,-,I 
--o gi"ass_pane . 

1.6 ......... ······· ·· ··················•,··········· ·····•···········'······························•····························-i 

1.41- ··· ···· ·····················; ... ......•.. .. .• .•••.•........ , .............................. , .....• ..........•..... , •... . ; ..•...... .... .. . - t 

1.2 .. .. , .............. ... ..... .... , .............................. ; ........................ . ·····•f·•······ · .. ;--. , .... 

1 - ·· ...... ...... .. ,, , .... , ........ . •••••• ·•••••••••n•••"••••• ....... . .............................. ; ..... 

0.8 · · .. · ........ ... •, ... . , ... .. ····· 1···: 

0.6 

·.···.·.·.•·· 1 

l l + 1 l l 
... , ... ~,, .. ........ . . 

··l· 
10 15 20. 25 30 .35. 

ób~flct iiómbeirs 

Figure 6. Distances d for all graphical objects computed for pattem_door and 
pattem_pane, respectively without wights. 

Only for doors ID = [7, 15) and for glass panes ID = [ 17 ,27) we can notice 
misclassification. Hence, subsequently, we added weights µp for both pattems, 
respectively, and obtained distances d for each object according eq. (13). The 
results are present_ed in fig. 7 for pattem_door and in fig. 8 for pattem_ pane, 
respectively. Doors and panes in our experiment were varied, for instance, the 
panes carne from windows as well as doors, which means that not all objects 
classified as doors or panes gained the minimal values of d in comparison with 
other objects. But the weight introduction improved the classification when we 
compare pattems between themselves for each object separately. We can see it 
in fig. 7 and fig. 8, respectively. It is worth noticing that for the above­
mentioned doors and panes the distances for pattems Pdoor and Ppane with 
weights received better values . For example, d(7,Pdoo,) = 0.065 whereas 
d(7,Ppan,) = 0.067 or d(l5,Pdoor) = 0.051 whereas d(l5,Ppane) = 0.057, and 
d(27,P door) = 0.113 whereas d(27,Ppan,) = 0.104. This is a right tendency in the 
case when we have many pattems and we classify a new object. 
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.o~~~cl nurńbers 

Figure 7. Distances d for pattem_door with weight µP. . 
,Joor 

However, in reality, while misclassifications occur, the relationship is more 
complicated. The example for this is object ID = 17 which is a glass pane but 
dis tan ces values for the considered pattems are equal to d(l 7 ,P dt,or) = 0.1 and 
d(17,Ppane) = 0.166, respectively. 

0.3 

'.10 20 
object ··numbers 

25 

Figure 8. Distances d for pattem_pane with weight µp . 
pantt 
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6 Possibility theory for the best graphical object classifi­
cation 

We can assume that we have such imbalanced and misclassified data for which 
it is very problematic to achieve high accuracy by simply classifying some ex­
amples as negative. Many attempts have been made to address the imbalanced 
data problem. Some methods try to receive more balanced, relevant and irrele­
vant training data via up-sampling and down-sampling [6]. Unfortunately, in the 
case of overlapping classes or a lesser number of classes than required even the 
balance received in an artificial way does not solve the problem. 

As it has been shown in fig. 6, the commonly used methods of feature se­
lection (using the positive features only) may lead to misclassification of irrele­
vant objects. It may be even worse for the imbalanced data with dominating 
irrelevant objects. 

Hence, we suggest the application of intuitionistic fuzzy sets for the graphi­
cal object classification. For our example, when we look at fig. 6, it is easy to 
see that for some objects problem will become spatially complicated when we 
introduce k > 2 patterns. 

Then we can use, the apparently distant from our discussion possibility the­
ory and introduce Baldwin's model developed by Baldwin [3], [4] and Szmidt 
[16], [17], [18] which so far has been employed only for votings. The basie rep­
resentation .of uncertainty in the Baldwin' s model contains necessity n and pos­
sibility p. Following these authors we can cite equality of the parameters for 
Baldwin's model and IPS model (Table 2). 

Table 2: Equality of the parameters for Baldwin's model and IPS model. 

Baldwin's model IPS model 
Voting for n µ 

V oting against 1-p V 

Abstaining p-n h 

In the case of graphical object classification, we propose to use the notions 
necessity and possibility to a support the estimation of an object assignment to a 
particular class. As it was explained in Section 4, the assignment of object x into 
k-class is based on distances d(O(x),Pk) E [0,1] between an object feature vector 
and patterns. 

We can assume that the necessity for an object to belong to a class is repre­
sented by the differences values d. An object is attributed into this class for 
which value dis the smallest. For a given object x, its distances from a particu­
lar patterns Pk we can denote as a distribution of possibility 
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p (x,Pk) = 1 - d (x,Pk), (14) 
then the possibility that x belongs to class Pk is equal top (x,Pk). Therefore, ne­
cessity that x belongs to class Pk is given in the form: 

n(x,Pk)=max(l-d)-maxp(x,P) (15) 
J ;,t,k 

where 1 5,j,k 5, n. This formula means that we subtract the value of d(x,Pk) from 
the maximum value of other ds without the distance for k-pattem, which is pre­
sented in fig. 9 (the case for xk) . 

d 
p=ł n=O 1 - ............... .... ..... ...... ··· ··lj'h'dc_lJ ... . .. ........ ....... ··•··! ~- 'p'~'Q 

o 

' -
;;: 
>·f 

-----~ n(x,Pt) o 

łii, 

Xk I 

h=O 

n=ł 

n=O 
p=l 
h=l ... 

II III X 

Figure 9. The interpretation of the degree of necessity, possibility and hesitation 
for the distances of object feature vector from a particular pattem. 

Under the above assumptions, we can consider the extremal cases: 
I. If dk = O and di= 1 then p (x,Pk) = 1 and n (x,Pk) = 1, respectively. Thus, the 

degree of hesitation h (x,Pk) = p (x,Pk) - n (x,Pk) = O. 
II. If dk = O and di= O thenp (x,Pk) = 1 and n (x,Pk) = O, respectively. Thus, the 

degree of hesitation h (x,Pk) = I. 
III. If dk = 1 and di= 1 then p (x,Pk) = O and n (x,Pk) = O, respectively. Thus, the 

degree of hesitation h (x,Pk) = O. In this particular case we can infer there 
should be a new more class should be introduced. 

IV. This approach seems to be useful in any cases of problem with assigning a 
new object to particular class introduced distinguishing the objects more 
precisely. 
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7 Conclusions 

The construction of a CBIR system requires combining some systems: an image 
processing module for automatic segmentation, a database to store the generated 
information about images and their segments, and a module for image 
classification with predefined pattems. Having built these elements of the 
system, we faced the problem of image retrieval. We attempt to deal with it by 
introducing an intuitionistic fuzzy set as well as constructing and describing an 
object pattern library. Object pattems are used for optimum object distinction 
and identification. 

The application of intuitionistic fuzzy sets in generał, gives the opportunity 
of the introduction of another degree of freedom (non-memberships) into a set 
description. Such a generalization gives us an additional possibility to represent 
imperfect knowledge which leads to describing many real problems in a more 
adequate way. 

To classify a new graphical object, we used already known method of 
comparison object feature vector with patterns. However, we suggest the 
application of possibility theory and introduce Baldwin's model with its notions 
of necessity, possibility and IFSn for imbalanced and uncertain data. This 
approach seems to be important for unsupervised analysis of large image 
databases. 
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