





Chapter 1
On joint modelling of random uncertainty and
fuzzy imprecision

Olgierd Hryniewicz

Abstract The paper deals with the problem of the mathematical description of un-
certainties of different type. It has been demonstrated by many authors that the the-
ory of probability is not always suitable for the description of uncertainty related to
vagueness. We briefly present some of the most promising theories which have been
recently proposed for coping with this problem. Then, we concentrate our attention
on the application of fuzzy random variables which seem to be very useful for the
joint modelling of random uncertainty and fuzzy imprecision, and for the statistical
analysis of imprecise data. The application of the statistical methodology for fuzzy
data, called fuzzy statistics, is illustrated with a practical example, typical for the
problems of making decsions using small amount of available data.

1.1 Introduction

Coping with uncertainty is an important problem in many areas of science, but in
systems analysis and decision sciences it becomes a really crucial one. In both these
branches of science uncertainty is always present, as systems analysts and deci-
sion makers have never full information about past, current and future “states of
the world”. Thus, they do not have precise and fully reliable information about
consequences of proposed by them actions. They can never present descriptions
of processes of their interest, as - for example - physicists and astronomers could
do. Therefore, they need to use a formal language that could be used for sufficiently
precise description of uncertain events, actions, etc. For many decades it appeared to
the majority of scientists that the theory of probability and mathematical statistics
is the only methodology that should be used for the formal description of uncer-
tainty. However, during last few decades many scientists working in such areas like
psychology, economic sciences, quantutn physics, artificial intelligence. etc. have
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raised questions about possible inadequacy of the classical (Kolmogorov) theory of
probability when applied for solving their particular problems.

This situation is far from being unexpected. If we look at any good dictionary
of e.g. English we can find that the word ‘probable’, which definitely describes un-
certainty, has many synonyms and other related words. For example, such words
like ‘possible’, ‘plausible’, and expressions like ‘likely to be true’, ‘hopeful’, ‘to be
expected’(and their antonyms) are used for the description of a state on uncertainty.
One may expect, that they are used for expressing slightly different types of uncer-
tainty, and are not fully exchangeable with the word ‘probable’. The differences be-
tween their meanings raised doubts among philosophers and mathematicians about
the role of the classical theory of probability as the sole mathematical language for
the description of uncertainty.

Basic problems with the applicability of the classical theory of probability in-
spired mathematicians who proposed other, not necessarily equivalent, theories of
probability. Some of them are described in a classical book of Fine [22]. Other
doubts were raised by the founder of the theory of fuzzy sets L.A. Zadeh who
claimed that the classical theory of probability cannot describe uncertainty realated
to innate imprecision of many notions and ideas expressed in a plain human lan-
guage. In his seminal paper [83] Zadeh proposed to use the formalism of fuzzy sets
as the formal language of the theory of possibility. Another criticism of the classi-
cal probability came from economists and psychologists. The Nobel Prize winner in
economics H.Simon in his book [67] noticed that people do not make their decisions
according to the principle of expected utility which is based on the classical theory
of probability. Another types of doubts were raised by other Nobel Prize winners
Tversky and Kahneman who noticed in their works (see, for example, [73]) that
probabilities evaluated by humans are not necessarily additive, as it is assummed
in the classical theory of probability. An interesting description of theoretical and
practical problems with the applicability of the classical theory of probability can
be found in the paper by Bordley [5] who also noticed that this theory is in a certain
sense incompatible with the quantum physics.

The existence of many extensions and modifications of the classical theory of
probability creates problems for systems analysts and decision makers who are ex-
pected to model systems in presence of uncertainties of different types. In the second
section of this paper we present a very brief description of several generalizations
of classical probability. This has to be done in order to set borders between those ar-
eas where classical probability is still the best (and probably the only)mathematical
model of uncertainty and the areas where its generalizations are needed. We claim
that in the majority of practical cases the combination of classical probability and
Zadeh’s theory of possibility is sufficient for the description of complex systems and
making decisions. We describe this methodology in the third section of the paper.
An example of the apllication of fuzzy random models and fuzzy statistics is given
in the fourth section of the paper. We show that in case of information that has both
random and imprecise nature some additional indices, like possibility and necessity
measures, are indispensable for a correct description of decision making problems.
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1.2 Generalizations of classical probability and their
applications in decision making

1.2.1 Measures of uncertainty and criteria of their evaluation

Close analysis of the human perception of uncertainty reveals that this concept does
not have one, unanimously approved, interpretation. Zimmmermann {84] notes that
any definition of uncertainty has to be to some extent arbitrary and subjective. He
proposes the following one:

Uncertainty implies that in a certain situation a person does not dispose about
information which quantitatively and qualitatively is appropriate to describe, pre-
scribe or predict deterministically and numerically a system, its behavior or other
characteristica.

This definition is definitely technology-oriented. One may say that everything
what prevents us to describe reality in a deterministic way may be considered as
a facet of uncertainty. Thus, there exist many different causes of uncertainty. Zim-
mermann {84] lists the following: lack of information (quantitative or qualitative),
abundance of information, conflicting evidence, ambiguity, measurement, and be-
lief. It is not surprising that he does not believe that the general theory of uncertainty
that is able to describe these completely different sources of uncertainty exists, and
appropriate mathematical models should be context-dependent. They could be for-
mulated either as different generalizations of probability, or may be formulated in
another way, such as Pawlak’s rough set theory (see, e.g. [59]) or convex modeling
proposed by Ben-Haim and Elishakoff [3].

If we look at different theories of uncertainty we can notice that they can be di-
vided into two general groups: those based on methods of mathematical logics (such
as the rough sets theory) or those based on the theory of probability and its general-
izations. In this paper we restrict our interest only to the second one. This restriction
arises from a fact that in the majority of practical cases the classical theory of prob-
ability is sufficient for the mathematical description of uncertainty. This popularity
of classical probabilistic models of uncertainty makes many specialists to believe
that classical probability is the only mathematical theory that is sufficient for the
formal description of uncertainty. Insufficiency of this approach was noticed only
recently, mainly by specialists in decision-making or expert systems. Peter Walley,
who is the one of the most prominent persons representing that group of scientists,
presents the list of pertinent mathematical models, in order of their generality [77]
(in parentheses, there are given the most important, according to Walley, references,
and indicated by him typical areas of application).

e Possibility measures and necessity measures ({17),[83), vague judgements of un-
certainty in natural language).

e Belief functions and plausibility functions([11],{66], multivalued mappings and
non-specific information).

e Choquet capacities of order 2 ([8], [12], [42], some types of statistical neghbour-
hood in robustness studies, and various economic applications).
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o Coherent upper and lower probabilities ([42], [52], [68], personal betting rates,
and upper and lower bounds for probabilities)

e Coherent upper and lower previsions ([75], [76], [81], buying and selling prices
for gambles, upper and lower bounds for expectations, and envelopes of expert
opinions).

o Sets of probability measures ([4], [34], [54], partial information about an un-
known probability measure, and robust statistical models).

e Sets of desirable gambles({75], [80], [82], preference judgements in decision
making)

e Partial preference orderings ([32], [75], preference judgements in decision mak-

ing).
Walley [77] also notices

o partial comparative probability orderings ({23], [43], [45], qualitative judgements
of uncertainty).

In order to evaluate and compare all competing theories of uncertainty (including
classical probability) Peter Walley [76] proposes to take into account the following
criteria:

a) interpretation,
b) imprecision,
¢) calculus,

d) consistency,
e) assessment,
f) computation.

The proposed measure of uncertainty has to be sufficiently easy to understand
by its users. For example, conclusions inferred from the application of the theory
should be clear enough to be useful for making decisions. It should be able to model
partial or complete ignorance, reflected, for example, in imprecision of statements
of natural language. There should be rules for merging uncertainties, updating, and
using them in inferential processes. There should be methods for the evaluation of
coherence off all assessments formulated using the theory and its assumptions. A
useful theory of uncertainty should provide guidances how to make assessments
about uncertain events and handle imprecise judgements of different types. Finally,
it should be computationally feasible. More comprehensive interpretation of the cri-
teria presented above and their practical and theoretical importance can be found in
[76].

All these requirements may have different importance in different applications,
and none of the existing theories and measures of uncertainty fullfils them suffi-
ciently well. For example, the classical theory of probability does not meet suffi-
ciently well criteria b) and e), and for this reason philosophers, mathematicians,
economists, psychologists, and specialists in expert systems have been making a
lot of efforts in order to introduce more general, and more useful in specific ap-
plications, theories of uncertainty. In the following subsections of this section we
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present very brief description of some of these theories. This presentation is needed,
in our opinion, for the understanding of limits which still exist if we try to cope with
uncertainty inherent in the analysis of complex systems.

1.2.2 Probability

The theory of probability is the best known, and the most frequently used in practice,
theory of uncertainty. Despite its four hundred years lasting history its fundamentals
are still subject to different interpretations and controverses. In general, there exist
two different interpretations of the classical probability: an objective ‘frequentist’
interpretation based on the analysis of empirical observations of series of events, and
subjective ‘Bayesian’ approach, based of subjective assessments of probabilities of
events. It is interesting that even in the 1960s the second approach was dismissed as
‘non-scientific’ by the majority of statisticians, and not present in nearly all popular
textbooks. On the other hand, the supporters of the Bayesian approach presented in
books of Savage [64] and de Finetti {24], [25] pointed out apparent incoherences
inherent for the frequntist approach (see, for example, an excellent monograph by
Lindley [55]).

The basics of the theory of probability are well described in all textbooks on
probability and statistics. Therefore, there is no need to present them in details in
this paper. However, we are going to point out those assumptions of this theory
which are criticised by some authors who see them as main reasons of discrepancies
between theory and practice of coping with uncertainties.

According to Kolmogorov’s theory of probability there exists a sample space
{2 consisting of disjoint elements, called elementary states, or simply states. These
states need not be necessarily observable. Then, Kolmogorov postulates a Borel-
field set (an algebra) B consisting of some, but not necessarily all, subsets of (2.
The elements of B are called events and represent observable outcomes of actual or
hypothetical experiments. Probabilities are assigned only to elements of B, so they
are not asigned to those states of {2 that do not belong to B. The consequence of this
assumptions is far-reaching. It means that every event can be precisely described us-
ing the elements of £2. Another consequence refers to the feature which Walley [76]
calls ‘Bayes dogma of precision’. When probabilities are assessed by frequencies
of observed precisely defined events there are no fundamental problems with the
accuracy of their evaluation. However, when they are assessed subjectively (and we
have to remember that according to the followers of the Bayesian probability and
statistics it is the only coherent way of doing this) it is assumed that they may be
interpreted as precisely defined fair betting rates. The behavioral interpretation of
probabilities in terms of fair betting rates was originally introduced by de Finetti
(see [25]) who has shown that betting in favor of an event A against its complement
A€ will not lead to sure loss only if betting odds are P(A) to 1 — P(A), where
P(A) is equal to the probability of event A. Moreover, from the postulate of fair
betting rates and some additional coherence requirements one can derive that prob-
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ability is nonnegative, normalised, and finitely-additive set function. In addition,
Savage [64] proved that the theory of subjective probabilities constitutes tha basis
for an axiomatized and coherent theory of decision-making. Despite of all these un-
guestionable advantages, empirical observations show however, that in presence of
partial or full ignorance about events of interest such precise assessments of prob-
ability cannot be made. Moreover, the actual behaviour of decision-makers differs
from that prescribed by the theory based on classical precise probabilities. This leads
us (and many other researches working in the area of decision sciences) to the con-
clusion that in case of imprecisely defined states and events it is not possible to ob-
tain precise values of their probabilities, and hence to make precise prescriptions in
decision-making processes. A counterargument to this opinion presented by rather
dogmatic followers of the classical Bayesian approach to probability is the follow-
ing: their theory shall be considered as the normative one, and all the differences
between the theory and the actual human behaviour are always due to human weak-
ness and shall be overcome by using more precise measurements and precise prob-
lem formulation. In many practical cases this is definitely true. However, even in
principle this standpoint can be questioned using the results from quantum physics.
Bordley [5] shows that as the consequence of the Heisenberg Uncertainty Principle
some events cannot be precisely observed, and in such a case precise probability
statements are simply impossible. Therefore, generalizations of classical probabil-
ity are necessary if we want to deal with imprecisely defined events and with partial
information about probabilities of their occurence.

1.2.3 Dempster-Shafer theory of evidence and possibility theory

The notion of ‘possibility’ attracted attention of philosophers, economists, logicians
etc. Dubois and Prade [19] notice that first attempts to formalize the concept of pos-
sibility were made in the late 1940s by the economist Shackle [65] who proposed a
calculus of “’potential surprise” as the base for decision-making. The works of many
anthors, who have noticed the defficiency of the theory of probability in dealing
with many practical problems have led to a more or less independent formalizations
of two similar theories of uncertainty: Dempster-Shafer theory of evidence and pos-
sibility theory.

The concept of possibility can be understood either as an objective notion or as
an epistemic and subjective one. For example, Zadeh [83] understands possibility as
objective feasibility; an objective measure of physical easiness to achieve a certain
goal. By his famous example of a possibilistic statement, ‘it is possible for Hans to
eat six eggs for breakfast’, he shows an exemplary information which is difficult, or
even hardly possible, to be formalized using theory of probability. This type of inter-
pretation of possibility is closely related to the idea of preference. Alternatives that
are more easily achieved (more feasible) are usually more preferred. This relation
has been described in details in the paper by Dubois, Fargier, and Prade [13]. Second
interpretation of possibility is an epistemic one, and is given in terms of plausibility.
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An event is fully plausible when its occurence does not create any surprise. This type
of interpretation has subjectivistic nature and means that possibility may represent
consistency of the observed event with available knowledge. Possibility, understood
as plausibility of an event, may also have an objectivistic interpretation, and can
be evaluated from the observations of upper bounds of frequency of its occurence
[16]. There also exists a deontologic interpretation of possibility (something is pos-
sible when it is allowed by law), but satisfactory formal description of this type of
possibility has not been proposed yet.

The basic notion of the possibility theory is a possibility distribution function
wx (w), defined on the possibility space {2 (a frame of discernment). The value of
0 < wx(w) < 1 represents the measure of possibility of the element w of the set
£2. It is usually assumed that sup{mx(w) : w € 2} = 1. A possibility measure of
a subset A of 2 is defined as 7(A) = sup{rx(w) : w € A}. There exist many
versions (extensions) of the possibility theory, but in all of them the axiom of finite
additivity, characteristic for the probability theory, has been replaced by the axiom
of maxitivity. Let A and B be two events, and [1(A) and II(B) be, respectively,
their possibilities. Then,

II(AU B) = maz(l1(A), [1(B)). (1.1

In his seminal paper [83] Lotfi A. Zadeh proposed to use the formalism of the fuzzy
sets theory as the mathematical formalism of the possibility theory. According to
this proposal the possibility distribution function that assigns measures of possibil-
ity to elements of a certain set (or equivalently, to values of a certain numerical
variable) may be interpreted as the membership function assigned to that set. This
interpretation allows to use a well developed formal mechanism of the fuzzy sets
theory in many different applications. The book by Dubois and Prade (17} describes
the links between these two theories, and presents methods for the calculation of
numerical values of possibility and necessity measures, both typical for the possi-
bility theory. Moreover, Dubois and Prade [17] pointed out possible links between
possibility and probability. The mutual relation between these two major theories
of uncertaintity have been later explained and clarified using the Dempster-Shafer
theory of evidence. The recent results published in papers of Walley and de Cooman
[78], and de Cooman [9] show that measures of possibility are the special case of
imprecise probabilities, and thus have a well defined behavioural interpretation.
The original motivation for the development of the possibility theory was to de-
scribe imprecise notions or imprecise pieces of information given as statements of
a natural language such as, e.g. ‘costs are high’, ‘time to failure is about 5 hours’,
etc. As a matter of fact, the founders of the possibility theory saw this theory as
fundamentaly different from the probability theory. They considered the possibility
theory as the formalism for the description of uncertain events or uncertain (par-
tial) information in cases where the probability theory failed to provide satisfactory
description. On the other hand, the theory of evidence (also known as the theory
of belief functions) proposed originaly by Dempster [11] and further developed by
Glenn Shafer [66] aimed at the generalization of the probability theory for deal-
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ing with such problems. The basic assumptions of the Dempster-Shafer theory of
evidence look similar to the basic assumptions of the theory of probability. It is
assumed that there exists a certain possibility space {2, but probability measures,
called in this theory ‘probability mass assingments’, in contrast to the probability
theory, are defined on its whole power set 22, This allows to assign probability to
an event formed by combinations of the elements of the possibility space {2 who in
the case of this particular event are indistingushable, as this is typical for imprecisely
described notions.

In the Dempster-Shafer theory of evidence uncertainty is measured using belief
functions. A belief function Bel, defined on all subsets of the possibility space {2, is
written in the form

Bel(A)= Y m(B), (1.2)

BCA

where m is a probability mass assingment function on all subsets of {2, such that
m(@) = 0, m(B) > 0forall B C 2 and ) zc,m(B) = 1. In the Dempster-
Shafer theory of evidence there exists also a notion of plausibility which is conjugate
to the notion of belief. The conjugate funtion to the belief function is called the
plausibility function P/, and is defined by

Pl(4) =1-Bel(A%)= > m(B). (1.3)
BNA#0

It has been shown that there exists a close relationship betweeen the Dempster-
Shafer theory of evidence and the possibility theory. When all elements of the set
{2 form a nested set then there exists a direct relationship between the mass prob-
ability asingments of the Dempster-Shafer theory and the possibility distribution
defined as a membership function of a certain fuzzy set (see [18] for more general
results). Thus, the possibility theory (for one of its possible interpretations) may
be regarded as a special case of the more general Dempster-Shafer theory of ev-
idence. This relationship was used by several authors, who proposed methods for
making probability - possibility transformations. As probability and possibility are
not the same measures of uncertainty, unique one-to-one transformation does not
exist. Thus, any transformation of this type can lead to loss of information (espe-
cially from less precise possibility to more precise probability), and transformation
methods proposed by some authors differ in the methodology used to decrease that
loss. One of these methods, proposed by Klir {44], [27] is based on the principle
of information invariance. The other approach, based on the optimization of infor-
mation content, has been proposed by Dubois et al. [20]. More information on the
problem of probability - possibility transformation can be also found in [19].

Despite their very close relations, the possibility theory and the Dempster-Shafer
theory of evidence are used in different areas of application. The Dempster-Shafer
theory is mainly used in building computer expert systems or, in a more general
setting, in computerized decision support systems. It is not used, however, in data
analysis and in those instances of decision-making processes where statistical data
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(precise or imprecise) have to be merged with subjective information. In this par-
ticular domain of application the possibility theory is used in practice much more
frequently. We will discuss those applications of the possibility theory in the next
section of this paper.

1.2.4 Imprecise probabilities and their generalizations

Possibility theory and its main tool, the possibility distribution, have been found
very useful for the formal description of imprecise information. However, claims
- expressed, for example, by Zadeh - that it is also useful for the formalization of
imprecise descriptions of probabilities (in statements like ‘event A is much more
probable than event B ’) have been questionned by Peter Walley [75]. In one of
his nice toy examples Walley considers the following information about possible
outcomes (win(W), draw (D) or loss(L) of a football game [75], [76]:

a) probably not W,
b) W is more probable than D,
¢) D is more probable than L.

Walley convincingly explains that information of this type cannot be used, without
making some arbitrary assumptions, for the precise evaluation of the probability of
e.g. the win P(W). The only consistent evaluation can be done in terms of imprecise
probabilities: lower probability P(W) and upper probability P(W).

Imprecise probabilities have been introduced independently by many authors un-
der different names, such as interval probabilities or non-additive probabilities. The
most comprehensive theory of imprecise probabilities, defined as lower and upper
probabilities, was proposed by Peter Walley [75] who introduced the notion of co-
herent lower (upper) probability. Coherent lower probability may be interpreted as a
lower envelope of a set of probability measures that fulfils certain coherence require-
ments. The similar interpretation exists for the upper probability. The behavioural
interpretation of lower probabilities was proposed by Walley [75]. This interpreta-
tion is based on the generalization of a similar interpretation of subjective proba-
bilities introduced by de Finetti. According to Walley (see also [76]) the lower (or
upper) probability of an event A can be interpreted by specifying acceptable betting
rates for betting on (or against) A. If the betting odds on A are z to 1 — z one will
beton A if z < P(A) and against A if z > P(A). The choice is not determined if
z is between P(A) and P(A). The basic properties of lower and upper probabilities
can be summarized as follows:

a) P(0) = P(#) =0,

b) P(2) = P(22) =1,

¢) P(A) =1- P(A%),

d) 0 < P(4) < P(4) <1,

¢) P(A) = P(B) < P(AU B) < P(A) + P(B) < P(AUB) < P(A) + P(B,).
for disjoint events A and B
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fy P(AUB)+ P(ANB) > P(A)+ P(B), forall events A and B.

It is worth to note, that precise probabilities are the special case of lower and up-
per probabilities such that P(A) = P(A). Moreover, posibility and necessity mea-
sures of the possibility theory and belief and plausibility measures of the Dempster-
Shafer theory of evidence are lower and upper probabilities. On the other hand, as
it was noted by Walley (see e.g. [76] and [77]) not all lower and upper probabili-
ties can be interpreted as possibility measures or measures of the Dempster-Shafer
theory.

In certain problems of decision-making lower and upper probabilities are not
sufficient for dealing with imprecise information. Their further generalization was
proposed by Walley (see [75], [77]) in his theory of lower and upper previsions.
Below, we present the definition of these measures of uncertainty, as it was given in
[771.

Definition 1 (Walley [77]). A bounded mapping from §2 to R (the real num-
bers) is called a gamble. Let K be a nonempty set of gambles. A mapping P :
K — R is called a lower prevision or lower expectation. A lower prevision is
said to be coherent when it is the lowest envelope of some set of linear expec-
tations, i.e. when there is a nonempty set of probability measures, M, such that
P(X) = min{Ep(X) : P € M} forall X € K, where Ep(X) denotes the ex-
pectation of X with respect to P. The conjugate upper prevision is determined by
P(X) = -P(~X) = maz{Ep(X): P& M}.

The lower (upper) previsions seem to be general enough for the description of
subjectively perceived uncertainty. Classical (Bayesian) probabilities, measures of
possibility, and Dempster-Shafer measures of evidence can be interpreted as special
cases of lower (upper) previsions. From a theoretical point of view this theory is suf-
ficiently well developed. However, there exist some basic problems which require
further investigations. For example, the problem of updating the values of impre-
cise probabilities when new pieces of information are available (i.e. the problem of
conditioning) still needs some investigations, as a single generalization of the Bayes
updating rule has not been proposed yet. The existing problems with updating pro-
cedures are related, for example, to the problems of dealing with observations whose
prior probabilities are equal to zero. Other problems arise in relation to concepts of
independence or conditional independence. There exist also problems with mod-
elling (in terms of uncertainty) the concepts of preference and weak preference (for
example, lower previsions cannot distinguish preference from weak preference).
All these problems (for more information, see [77]) motivate researchers to look
for more general mathematical models of uncertainty. Some of these models have
been indicated in the first subsection of this section. It is interesting that the need to
develop more general models of uncertainty has been also recognized in the com-
munity of classical Bayesians. The concept of robust Bayesian inference (see, e.g.
the paper by Berger [4]) seems to be closely related to the problems presented in
this paper. Moreover, some concepts of frequency-based robust statistics (the notion
of e-contamination) can be interpreted using the language of the theory of imprecise
probabilities and its generalizations.
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1.3 Fuzzy random variables and fuzzy statistics

The brief description of the existing main theories of uncertainty presented in the
preceding section shows that neither of them is fully sufficient to cope with real
problems where statistical data are both random and imprecise. The attempts to
propose such a theory resulted with the introduction of the notion of a fuzzy random
variable. This notion has been defined by many authors. Historicaly the first widely
accepted definition was proposed by Kwakernaak [50], [51]. Kruse {48] proposed
an interpretation of this notion, and according to this interpretation a fuzzy random
variable Z may be considered as a perception of an unknown usual random variable
Z : {2 — R, called an original of Z. Below, we present another, slightly modified,
version of this definition presented in Grzegorzewski [35].

Let X be a fuzzy number, i.e. X is a normal, fuzzy convex and bounded fuzzy
subset of the real line R with an upper semicontinuous membership function px :
R — [0,1] (see, e.g., Dubois and Prade [14]). A space of all fuzzy numbers will
be denoted by FA(R). We have FA(R) C F(R), where F(R) denotes a space
of all fuzzy sets on the real line. Fuzzy numbers are completely defined by their
a-cuts. The a—cut, @ € (0, 1], of a fuzzy number X with its membership function
px is a closed crisp set defined as

Xo={teR:pux(t) > a}. 1.4)

In order to describe a-cuts let us use the following notation: X, = [XL, XU,
where

X[l;=inf{t€72:,ux(t)2a}, (1.5)
Xg:sup{teR:,ux(t)Za}. (1.6)

Definition 2 (Grzegorzewski [35]). Let ({2, A, P) be a probability space, where
{2 is a set of all possible outcomes of the random experiment, A is a g-algebra of
subsets of {2 (the set of all possible events), and P is a probability measure.

A mapping X : 2 — FN (R), where FN (R) is the space of all fuzzy num-
bers, is called a fuzzy random variable if it satisfies the following properties:

1. {Xa (W) : a €[0,1]} is a set representation of X (w) forall w € £2,
2. foreach @ € [0,1] both X% = XI(w) = inf X, (w) and XV = XU (w) =
sup X, (w), are usual real-valued random variables on

(92, A,P).

There exists also another popular definition of a fuzzy random variable proposed
by Puri and Ralescu [60] and based on the notion of set-valued mapping and random
sets. Below, we present this definition in a form given in [30].

Definition 3 (Gil et al. [30]). Let ZA (R) be the space of all fuzzy numbers.
Given a probability space (§2,.4, P), a mapping X:0- FN(RP) is said to
be a fuzzy random variable (also called fuzzy random set) if for all « € [0, 1] the
set-valued mappings X, : 2 — K(RP), where K is the class of the non-empty
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subsets of RP, defined so that for all w € 2 X,(w) = (X(w))a, are random sets
(that is, Borel-measurable mapping with the Borel o-field generated by the topology
associated with the Haussdorf metric on (RP)).

Fuzzy random variables may be used to model random and imprecise measure-
ments. First statistical methods for the analysis of such imprecise fuzzy data were
developed in the 1980s. Kruse and Meyer [49] proposed a general methodology
for dealing with fuzzy random data. In case of their methodology fuzzy random
data are described by fuzzy random variables defined according to Definition 2.
This assumption has very important practical consequences. First of all it means
that there exists an underlying non-fuzzy probability distribution that governs the
origins of the observed imprecise fuzzy data. The parameters of this distribution
have non-fuzzy values, but because of the fuzziness of observed data they cannot
be precisely estimated. Their fuzziness comes directly from the fuzziness of sta-
tistical data and disappears when statistical data are precise. Therefore, fuzzy sta-
tistical methods developed according to the methodology proposed by Kruse and
Meyer shall be regarded as straightforward generalization of classical (non-fuzzy)
statistical methods. Using the aforementioned methodology Kruse and Meyer [49]
proposed methods for the construction of estimators and confidence intervals for
the parameters of the probability distributions of fuzzy random variables. Accord-
ing to the methodology proposed in [49] the estimators of the parameters of the
probability distributions of fuzzy random variables are fuzzy. The same methodol-
ogy may be applied to the estimators of the limits of confidence intervals that are
also represented by fuzzy numbers. The most important practical consequence of
the adoption of the Kruse and Meyer’s methodology is that all relevant formulae for
fuzzy estimators and other fuzzy statistics can be obtained by fuzzification of well
known formulae of classical non-fuzzy statistics.

Despite the fact that the generalization of well known statistical methods to the
fuzzy case is relatively straightforward, the construction of fuzzy statistical tests
and making statistical decisions is far from being trivial. Fuzzy statistical tests may
be developed for testing both non-fuzzy (precise) and fuzzy (imprecise) statistical
hypotheses, and for fuzzy (imprecise) and non-fuzzy (precise) statistical data. For
example, statistical methods for testing fuzzy hypotheses have been considered in
the papers by Saade and Schwarzlander [63], Saade {62], Watanabe and Imaizumi
[79], Amold [2], Taheri and Behboodian [70], and Grzegorzewski and Hryniewicz
[37]. When the data are also fuzzy interesting solutions have been proposed in the
papers by Arnold [1], Casals et al. {6], Kruse and Meyer [49], Saade [62], Saade
and Schwarzlander {63], Son et al. [69], Watanabe and Imaizumti [79)], Rémer and
Kandel [61], and Montenegro et al. [57]. Grzegorzewski [35] has proposed a unified
approach for testing statistical hypotheses with vague data which is a direct gen-
eralisation of the classical approach. Below, we present his definition of the fuzzy
statistical test.

Let 73, ..., Zy, denote a fuzzy sample, i.e. a fuzzy perception of the usual ran-
dom sample Z4, ... , Z, from the population described by the probability distribu-
tion Pg, and let § be a given number from the interval (0, 1). Grzegorzewski [35]
has defined a fuzzy test as follows:













































