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Chapter 1 

On joint modelling of random uncertainty and 
fuzzy imprecision 

Olgierd Hryniewicz 

Abstract The paper deals with the problem of the mathematical description of un­
certainties of different type. It has been demonstrated by many authors that the the­
ory of probability is not always suitable for the description of uncertainty related to 
vagueness. We briefly present some of the most promising theories which have been 
recently proposed for coping with this problem. Then, we concentrate our attention 
on the application of fuzzy random variables which seem to be very useful for the 
joint modelling of random uncertainty and fuzzy imprecision, and for the statistical 
analysis of imprecise data. The application of the statistical methodology for fuzzy 
data, called fuzzy statistics, is illustrated with a practical example, typical for the 
problems of making decsions using small amount of available data. 

1.1 Introduction 

Coping with uncertainty is an important problem in many areas of science, but in 
systems analysis and decision sciences it becomes a really crucial one. In both these 
branches of science uncertainty is always present, as systems analysts and deci­
sion makers have never full information about past, current and future "states of 
the world". Thus, they do not have precise and fully reliable information about 
consequences of proposed by them actions. They can never present descriptions 
of processes of their interes!, as - for example - physicists and astronomers could 
do. Therefore, they need to use a forma! language that could be used for sufficiently 
precise description of uncertain events, actions, etc. For many decades it appeared to 
the majority of scientists that the theory of probability and mathematical statistics 
is the only methodology that should be used for the forma! description of uncer­
tainty. However, during last few decades many scientists working in such areas like 
psychology, economic sciences, quantum physics, artificial intelligence . etc. have 
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raised questions about possible inadequacy of the classical (Kolmogorov) theory of 
probability when applied for solving their particular problems. 

This situation is far from being unexpected. If we look at any good dictionary 
of e.g. English we can find that the word 'pro babie', which definitely describes un­
certainty, has many synonyms and other related words. For example, such words 
like 'possible', 'plausible', and expressions like 'likely to be true', 'hopeful', 'to be 
expected'(and their antonyms) are used for the description of a state on uncertainty. 
One may expect, that they are used for expressing slightly different types of uncer­
tainty, and are not fully exchangeable with the word 'probable'. The differences be­
tween their meanings raised doubts among philosophers and mathematicians about 
the role of the classical theory of probability as the sole mathematical language for 
the description of uncertainty. 

Basic problems with the applicability of the classical theory of probability in­
spired mathematicians who proposed other, not necessarily equivalent, theories of 
probability. Some of them are described in a classical book of Fine [22]. Other 
doubts were raised by the founder of the theory of fuzzy sets L.A. Zadeh who 
claimed that the classical theory of probability can not describe uncertainty realated 
to innate imprecision of many notions and ideas expressed in a plain human lan­
guage. In his seminal paper [83] Zadeh proposed to use the formalism of fuzzy sets 
as the forma! language of the theory of possibility. Another criticism of the classi­
cal probability carne from economists and psychologists. The Nobel Prize winner in 
economics H.Simon in his book [ 67] noticed that people do not make their decisions 
according to the principle of expected utility which is based on the classical theory 
of probability. Another types of doubts were raised by other Nobel Prize winners 
Tversky and Kahneman who noticed in their works (see, for example, [73]) that 
probabilities evaluated by humans are not necessarily additive, as it is assummed 
in the classical theory of probability. An interesting description of theoretical and 
practical problems with the applicability of the classical theory of probability can 
be found in the paper by Bordley [5] who also noticed thai this theory is in a certain 
sense incompatible with the quantum physics. 

The existence of many extensions and modifications of the classical theory of 
probability creates problems for systems analysts and decision makers who are ex­
pected to model systems in presence of uncertainties of different types. In the second 
section of this paper we present a very brief description of severa! generalizations 
of classical probability. This has to be done in order to set borders between those ar­
eas where classical probability is stili the best (and probably the only)mathematical 
model of uncertainty and the areas where its generalizations are needed. We claim 
thai in the majority of practical cases the combination of classical probability and 
Zadeh's theory of possibility is sufficient for the descriptio n of complex systems and 
making decisions. We describe this methodology in the third section of the paper. 
An example of the apllication of fuzzy random models and fuzzy statistics is given 
in the fourth section of the paper. We show thai in case of information that has both 
random and imprecise nature some additional indices, like possibility and necessity 
measures, are indispensable for a correct description of decision making problems. 
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1.2 Generalizations of classical probability and their 
applications in decision making 

1.2.J Measures of uncertainty and criteria of their evaluation 

3 

Close analysis of the human perception of uncertainty reveals that this concept does 
not have one, unanimously approved, interpretation. Zimmermann (84] notes that 
any definition of uncertainty has to be to some extent arbitrary and subjective. He 
proposes the following one: 

Uncertainty implies that in a certain situation a person does not dispose about 
information which quantitatively and qualitatively is appropriate to describe, pre­
scribe or predict deterministically and numerically a system, its behavior or other 
characteristica. 

This definition is definitely technology-oriented. One may say that everything 
what prevents us to describe reality in a deterministic way may be considered as 
a facet of uncertainty. Thus, there exist many different causes of uncertainty. Zim­
mermann (84] lists the following: lack of information (quantitative or qualitative), 
abundance of information, conflicting evidence, ambiguity, measurement, and be­
lief. It is not surprising that he does not believe that the generał theory of uncertainty 
that is able to describe these completely different sources of uncertainty exists, and 
appropriate mathematical models should be context-dependent. They could be for­
mulated either as different generalizations of probability, or may be formulated in 
another way, such as Pawlak's rough set theory (see, e.g. [59]) or convex modeling 
proposed by Ben-Haim and Elishakoff [3]. 

If we look at different theories of uncertainty we can notice that they can be di­
vided into two generał groups: those based on methods of mathematical logics (such 
as the rough sets theory) or those based on the theory ofprobability and its general­
izations. In this paper we restrict our interest only to the second one. This restriction 
arises from a fact that in the majority of practical cases the classical theory of prob­
ability is sufficient for the mathematical descriptio n of uncertainty. This popularity 
of classical probabilistic models of uncertainty makes many specialists to believe 
that classical probability is the only mathematical theory that is sufficient for the 
forma! description of uncertainty. Insufficiency of this approach was noticed only 
recently, mainly by specialists in decision-making or expert systems. Peter Walley, 
who is the one of the most prominent persons representing that group of scientists, 
presents the list of pertinent mathematical models, in order of their generality (77] 
(in parentheses, there are given the most important, according to Walley, references, 
and indicated by him typical areas of application) . 

• Possibility measures and necessity measures ([ 17], (83], vague judgements of un­
certainty in natura! language). 

• Belief functions and plausibility functions([l l],(66], multivalued mappings and 
non-specific information). 

• Choquet capacities of order 2 ([8], [12], [ 42], some types of statistical neghbour­
hood in robustness studies, and various economic applications). 



4 Olgierd Hryniewicz 

• Coherent upper and !ower probabilities ([42], [52], (68], personal betting rates, 
and upper and ]ower bounds for probabilities) 

• Coherent upper and ]ower previsions ((75], (76], (81], buying and selling prices 
for gambles, upper and !ower bounds for expectations, and envelopes of expert 
opinions). 

• Sets of probability measures ([4], (34], [54], partia! information about an un­
known probability measure, and robust statistical models). 

• Sets of desirable gambles([75], [80], [82], preference judgements in decision 
making) 

• Partia] preference orderings ([32], (75], preference judgements in decision mak­
ing). 

Walley [77] also notices 

• partia! comparative probability orderings ([23], [43], [45], qualitative judgements 
of uncertainty). 

In order to evaluate and compare all competing theories of uncertainty (including 
classical probability) Peter Walley (76] proposes to take into account the following 
criteria: 

a) interpretation, 
b) imprecision, 
c) calcu Ius, 
d) consistency, 
e) assessment, 
f) computation. 

The proposed measure of uncertainty has to be sufficiently easy to understand 
by its users. For example, conclusions inferred from the application of the theory 
should be elear enough to be useful for making decisions. It should be a ble to model 
partia] or complete ignorance, reflected, for example, in imprecision of statements 
of natura! language. There should be mies for merging uncertainties, updating, and 
using them in inferential processes. There should be methods for the evaluation of 
coherence off all assessments formulated using the theory and its assumptions. A 
useful theory of uncertainty should provide guidances how to make assessments 
about uncertain events and handle imprecise judgements of different types. Finally, 
it should be computationally feasible. More comprehensive interpretation of the cri­
teria presented above and their practical and theoretical importance can be found in 
[76]. 

All these requirements may have different importance in different applications, 
and none of the existing theories and measures of uncertainty fullfils them suffi­
ciently well. For example, the classical theory of probability does not meet suffi­
ciently well criteria b) and e), and for this reason philosophers, mathematicians, 
economists, psychologists, and specialists in expert systems have been making a 
Jot of efforts in order to introduce more generał, and more useful in specific ap­
plications, theories of uncertainty. In the following subsections of this section we 
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present very brief description of some of these theories. This presentation is needed, 
in our opinion, for the understanding of limits which stili exist if we try to cope with 
uncertainty inherent in the analysis of complex systems. 

1.2.2 Probability 

The theory of probability is the best known, and the most frequently used in practice, 
theory of uncertainty. Despite its four hundred years lasting history its fundamentals 
are stili subject to different interpretations and controverses. In generał, there exist 
two different interpretations of the classical probability: an objective 'frequentist' 
interpretation based on the analysis of empirical observations of series of events, and 
subjective 'Bayesian' approach, based of subjective assessments of probabilities of 
events. It is interesting that even in the 1960s the second approach was dismissed as 
'non-scientific' by the majority of statisticians, and not present in nearly all popular 
textbooks. On the other hand, the supporters of the Bayesian approach presented in 
books of Savage [64] and de Finetti [24], [25] pointed out apparent incoherences 
inherent for the frequntist approach (see, for example, an excellent monograph by 
Lindley [55]). 

The basics of the theory of probability are well described in all textbooks on 
probability and statistics . Therefore, there is no need to present them in details in 
this paper. However, we are going to point out those assumptions of this theory 
which are criticised by some authors who see them as mai n reasons of discrepancies 
between theory and practice of coping with uncertainties. 

According to Kolmogorov's theory of probability there exists a sample space 
il consisting of disjoint elements, called elementary states, or simply states. These 
states need not be necessarily observable. Then, Kolmogorov postulates a Borel­
field set (an algebra) B consisting of some, but not necessarily all, subsets of il. 
The elements of B are called events and represent observable outcomes of actual or 
hypothetical experiments. Probabilities are assigned only to elements of B, so they 
are not asigned to those states of il that do not belong to B. The consequence of this 
assumptions is far-reaching. It means that every event can be precisely described us­
ing the elements of il. Another consequence refers to the feature which Walley [76] 
calls 'Bayes dogma of precision '. When probabilities are assessed by frequencies 
of observed precisely defined events there are no fundamental problems with the 
accuracy of their evaluation. However, w hen they are assessed subjectively (and we 
have to remember thai according to the followers of the Bayesian probability and 
statistics it is the only coherent way of doing this) it is assumed that they may be 
interpreted as precisely defined fair betting rates. The behavioral interpretation of 
probabilities in terms of fair betting rates was originally introduced by de Finetti 
(see [25]) who has shown that betting in favor of an event A against its complement 
Ac will not lead to sure loss only if betting odds are P(A) to 1 - P(A), where 
P(A) is equal to the probability of event A. Moreover, from the postulate of fair 
betting rates and some additional coherence requirements one can derive that prob-
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ability is nonnegative, normalised, and finitely-additive set function. In addition, 
Savage [64] proved that the theory of subjective probabilities constitutes tha basis 
for an axiomatized and coherent theory of decision-making. Despite of all these un­
questionable advantages, empirical observations show however, that in presence of 
partia! or full ignorance about events of interest such precise assessments of prob­
ability cannot be made. Moreover, the actual behaviour of decision-makers differs 
from that prescribed by the theory based on classical precise probabilities. This leads 
us (and many other researches working in the area of decision sciences) to the con­
clusion that in case of imprecisely defined states and events it is not possible to ob­
tain precise values of their probabilities, and hence to make precise prescriptions in 
decision-making processes. A counterargument to this opinion presented by rather 
dogmatic followers of the classical Bayesian approach to probability is the follow­
ing: their theory shall be considered as the normative one, and all the differences 
between the theory and the actual human behaviour are always due to human weak­
ness and shall be overcome by using more precise measurements and precise prob­
lem formulation. In many practical cases this is definitely true. However, even in 
principle this standpoint can be questioned using the results from quantum physics. 
Bordley [5] shows that as the consequence of the Heisenberg Uncertainty Principle 
some events cannot be precisely observed, and in such a case precise probability 
statements are simply impossible. Therefore, generalizations of c!assical probabil­
ity are necessary if we want to deal with imprecisely defined events and with partia! 
information about probabilities of their occurence. 

1.2.3 Dempster-Shafer theory of evidence and possibility theory 

The notion of 'possibility' attracted attention of philosophers, economists, logicians 
etc. Dubois and Prade [ 19] notice that first attempts to formalize the concept of pos­
sibility were made in the late 1940s by the economist Shackle [ 65] who proposed a 
calculus of"potential surprise" as the base for decision-making. The works of many 
authors, who have noticed the defficiency of the theory of probability in dealing 
with many practical problems have led to a more or less independent formalizations 
of two similar theories of uncertainty: Dempster-Shafer theory of evidence and pos­
sibility theory. 

The concept of possibility can be understood either as an objective notion or as 
an epistemic and subjective one. For example, Zadeh [83) understands possibility as 
objective feasibility; an objective measure of physical easiness to achieve a certain 
goal. By his famous example of a possibilistic statement, 'it is possible for Hans to 
eat six eggs for breakfast', he shows an exemplary information which is difficult, or 
even hardly possible, to be formalized using theory ofprobability. This type of inter­
pretation of possibility is closely related to the idea of preference. Alternatives that 
are more easily achieved (more feasible) are usually more preferred. This relation 
has been described in details in the paper by Dubois, Fargier, and Prade [13]. Second 
interpretation of possibility is an epistemic one, and is given in terms of plausibility. 
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An event is fully plausible when its occurence does not create any surprise. This type 
of interpretation has subjectivistic nature and means that possibility may represent 
consistency of the observed event with available knowledge. Possibility, understood 
as plausibility of an event, may also have an objectivistic interpretation, and can 
be evaluated from the observations of upper bounds of frequency of its occurence 
[16]. There also exists a deontologie interpretation of possibility (something is pos­
sible when it is allowed by law), but satisfactory forma! description of this type of 
possibility has not been proposed yet. 

The basie notion of the possibility theory is a possibility distribution Junction 
1rx(w), defined on the possibility space D (a frame of discernment). The value of 
O ~ 1r x (w) ~ 1 represents the measure of possibility of the element w of the set 
D. It is usually assumed that sup{1rx(w) : w E D} = 1. A possibility measure of 
a subset A of n is defined as 1r(A) = sup{1rx(w) : w E A}. There exist many 
versions (extensions) of the possibility theory, but in all of them the axiom of finite 
additivity, characteristic for the probability theory, has been replaced by the axiom 
of maxitivity. Let A and B be two events, and ll(A) and ll(B) be, respectively, 
their possibilities. Then , 

ll(A u B) = max(ll(A), ll(B)) . (l.J) 

In his seminal paper [83] Lotfi A. Zadeh proposed to use the formalism of the fuzzy 
sets theory as the mathematical formalism of the possibility theory. According to 
this proposal the possibility distribution function that assigns measures of possibil­
ity to elements of a certain set (or equivalently, to values of a certain numerieal 
variable) may be interpreted as the membership function assigned to that set. This 
interpretation allows to use a well developed forma) mechanism of the fuzzy sets 
theory in many different applications. The book by Dubois and Prade [ 17] describes 
the links between these two theories, and presents methods for the calculation of 
numerical values of possibility and necessity measures, both typieal for the possi­
bility theory. Moreover, Dubois and Prade [ 17] pointed out possible Iinks between 
possibility and probability. The mutual relation between these two major theories 
of uncertaintity have been later explained and clarified using the Dempster-Shafer 
theory of evidence. The recent results published in papers ofWalley and de Cooman 
[78], and de Cooman [9] show that measures of possibility are the special case of 
imprecise probabilities, and thus have a well defined behavioural interpretation. 

The original motivation for the development of the possibility theory was to de­
scribe imprecise notions or imprecise pieces of information given as statements of 
a natura! Ianguage such as, e.g. 'costs are high', 'time to failure is about 5 hours' , 
etc. As a matter of fact, the founders of the possibility theory saw this theory as 
fundamentaly different from the probability theory. They considered the possibility 
theory as the formalism for the description of uncertain events or uncertain (par­
tia!) information in cases where the probability theory failed to provide satisfactory 
description . On the other hand, the theory of evidence (also known as the theory 
of belief functions) proposed originaly by Dempster [1 I] and further developed by 
Glenn Shafer [66] aimed at the generalization of the probability theory for deal-
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ing with such problems. The basie assumptions of the Dempster-Shafer theory of 
evidence look similar to the basie assumptions of the theory of probability. It is 
assumed that there exists a certain possibility space n, but probability measures, 
called in this theory 'probability mass assingments ', in contrast to the probability 
theory, are defined on its w hole power set 2n . This allows to assign probability to 
an event formed by combinations of the elements of the possibility space n who in 
the case of this particular event are indistingushable, as this is typical for imprecisely 
described notions. 

In the Dempster-Shafer theory of evidence uncertainty is measured using belief 
functions. A belief function Bel, defined on all subsets of the possibility space n, is 
written in the form 

Bel(A) = L m(B), 
B<;;A 

(1.2) 

where m is a probability mass assingment function on all subsets of n, such that 
m(0) = O, m(B) 2: O for all B ~ n and LBcn m(B) = l. In the Dempster­
Shafer theory of evidence there exists also a notion-of plausibility which is conjugate 
to the notion of belief. The conjugate funtion to the belief function is called the 
plausibility function Pl, and is defined by 

Pl(A) = 1 - Bel(A0 ) = L m(B). (1.3) 
BnA,i0 

It has been shown that there exists a close relationship betweeen the Dempster­
Shafer theory of evidence and the possibility theory. When all elements of the set 
n form a nested set then there exists a direct relationship between the mass prob­
ability asingments of the Dempster-Shafer theory and the possibility distribution 
defined as a membership function of a certain fuzzy set (see [ 18) for more generał 
results). Thus, the possibility theory (for one of its possible interpretations) may 
be regarded as a special case of the mare generał Dempster-Shafer theory of ev­
idence. This relationship was used by severa! authors, who proposed methods for 
making probability - possibility transformations. As probability and possibility are 
not the same measures of uncertainty, unique one-to-one transformation does not 
exist. Thus, any transformation of this type can lead to loss of information ( espe­
cially from less precise possibility to mare precise probability), and transformation 
methods proposed by same authors differ in the methodology used to decrease that 
loss. One of these methods, proposed by Klir [44), [27) is based on the principle 
of information invariance. The other approach, based on the optimization of infor­
mation content, has been proposed by Dubois et al. [20). More information on the 
problem of probability - possibility transformation can be also found in [ 19). 

Despite their very close relations, the possibility theory and the Dempster-Shafer 
theory of evidence are used in different areas of application. The Dempster-Shafer 
theory is mainly used in building computer expert systems or, in a more generał 
setting, in computerized decision support systems. It is not used, however, in data 
analysis and in those instances of decision-making processes where statistical data 
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(precise or imprecise) have to be merged with subjective information. In this par­
ticular domain of application the possibility theory is used in practice much more 
frequently. We will discuss those applications of the possibility theory in the next 
section of this paper. 

1.2.4 lmprecise probabilities and their generalizations 

Possibility theory and its ma.in tool, the possibility distribution, have been found 
very useful for the forma! description of imprecise information. However, claims 
- expressed, for example, by Zadeh - that it is also useful for the formalization of 
imprecise descriptions of probabilities (in statements like 'event A is much more 
probable than event B ') have been questionned by Peter Walley [75). In one of 
his nice toy examples Walley considers the following information about possible 
outcomes (win(W), dra.w (D) or loss(L) of a football game [75], [76]: 

a) probably not W, 
b) W is more probable than D, 
c) Dis more probable than L. 

Walley convincingly explains that information of this type cannot be used, without 
ma.king some arbitrary assumptions, for the precise evaluation of the probability of 
e.g. the win P(W). The only consistent evaluation can be done in terms of imprecise 
probabilities: ]ower probability E(W) and upper probability P(W) . 

Imprecise probabilities have been introduced independently by many authors un­
der different names, such as interval probabilities or non-additive probabilities. The 
most comprehensive theory of imprecise probabilities, defined as !ower and upper 
probabilities, was proposed by Peter Walley [75) who introduced the notion of co­
herent !ower (upper) probability. Coherent !ower probability may be interpreted as a 
!ower envelope of a set of pro babi lity measures that fulfils certa.in coherence require­
ments. The similar interpretation exists for the upper probability. The behavioural 
interpretation of !ower probabilities was proposed by Walley [75). This interpreta­
tion is ba.sed on the generalization of a similar interpretation of subjective proba­
bilities introduced by de Finetti. According to Walley (see also [76)) the ]ower (or 
upper) probability of an event A can be interpreted by specifying acceptable betting 
rates for betting on (or aga.inst) A. If the betting odds on A a.rex to 1 - x one will 
bet on A if x ~ E(A) and against A if x 2 P(A) . The choice is not determined if 
x is between E(A) and P(A) . The basie properties of !ower and upper probabilities 
can be summarized as follows: 

a) E(0) = f>(0) = o, 
b) E(rl) = P(rl) = 1, 
c) P(A) = 1 - E(Ac), 
d) O ~ E(A) ~ P(A) ~ 1, 
e) E(A) = E(B) ::; E(A u B) ~ E(A) + P(B) ~ P(A u B) ~ P(A) + P(B, ), 

for disjoint events A and B 
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f) E.(A UB)+ E.(A n B) 2'. E.(A) + E.(B), for all events A and B. 

It is worth to note, that precise probabilities are the special case oflower and up­
per probabilities such that E.(A) = .P(A). Moreover, posibility and necessity mea­
sures of the possibility theory and belief and plausibility measures of the Dempster­
Shafer theory of evidence are !ower and upper probabilities. On the other hand, as 
it was noted by Walley (see e.g. [76) and [77)) not all !ower and upper probabili­
ties can be interpreted as possibility measures or measures of the Dempster-Shafer 
theory. 

In certain problems of decision-making !ower and upper probabilities are not 
sufficient for dealing with imprecise information. Their further generalization was 
proposed by Walley (see [75), [77)) in his theory of !ower and upper previsions. 
Below, we present the definition of these measures of uncertainty, as it was given in 
[77). 

Definition I (Walley [77)). A bounded mapping from D to JR (the real num­
bers) is called a gambie. Let K, be a nonempty set of gambles. A mapping E. : 
K, -> IR is called a /ower prevision or /ower expectation. A ]ower prevision is 
said to be coherent when it is the lowest envelope of same set of linear expec­
tations, i.e. when there is a nonempty set of probability measures, M, such that 
E.(X) = min{Ep(X) : P E M} for all X E K, where Ep(X) denotes the ex­
pectation of X with respect to P. The conjugate upper prevision is determined by 
.P(X) = -E.(-X) = max{Ep(X): PE M}. 

The !ower (upper) previsions seem to be generał enough for the description of 
subjectively perceived uncertainty. Classical (Bayesian) probabilities, measures of 
possibility, and Dempster-Shafer measures of evidence can be interpreted as special 
cases oflower (upper) previsions. From a theoretical point of view this theory is suf­
ficiently well developed. However, there exist same basie problems which require 
further investigations. For example, the problem of updating the values of impre­
cise probabilities when new pieces of information are available (i.e. the problem of 
conditioning) stili needs same investigations, as a single generalization of the Bayes 
updating rule has not been proposed yet. The existing problems with updating pro­
cedures are related, for example, to the problems of dealing with observations whose 
prior probabilities are equal to zero. Other problems arise in relation to concepts of 
independence or conditional independence. There exist also problems with mod­
elling (in terms of uncertainty) the concepts of preference and weak preference (for 
example, !ower previsions cannot distinguish preference from weak preference). 
All these problems (for more information, see [77)) motivate researchers to look 
for more generał mathematical models of uncertainty. Same of these models have 
been indicated in the first subsection of this section. It is interesting that the need to 
develop more generał models of uncertainty has been also recognized in the com­
munity of classical Bayesians. The concept of robust Bayesian inference (see, e.g. 
the paper by Berger [4]) seems to be closely related to the problems presented in 
this paper. Moreover, same concepts of frequency-based robust statistics (the notion 
of 1:-contamination) can be interpreted using the Jangu age of the theory of imprecise 
probabilities and its generalizations. 
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1.3 Fuzzy random variables and fuzzy statistics 

The brief description of the existing main theories of uncertainty presented in the 
preceding section shows thai neither of them is fully sufficient to cope with real 
problems where statistical data are both random and imprecise. The attempts to 
propose such a theory resulted with the introduction of the notion of a fuzzy random 
variable. This notion has been defined by many authors. Historicaly the first widely 
accepted definition was proposed by Kwakernaak [50], [51]. Kruse (48] proposed 
an interpretation of this notion, and according to this interpretation a fuzzy random 
variable Z may be considered as a ~rception of an unknown usual random variable 
Z : n --+ n, called an original of Z . Below, we present another, slightly modified, 
version of this definition presented in Grzegorzewski (35]. 

Let X be a fuzzy number, i.e. X is a norma!, fuzzy convex and bounded fuzzy 
subset of the real line n with an upper semicontinuous membership function µx : 
n --+ [O, 1] (see, e.g., Dubois and Prade (14]). A space of all fuzzy numbers will 
be denoted by FN(R) . We have FN(R) C F(R), where F(R) denotes a space 
of all fuzzy sets on the real line. Fuzzy numbers are completely defined by their 
a-cuts. The a-cut, a E {O, 1 ], of a fuzzy number X with its membership function 
µx is a closed crisp set defined as 

X °' = {t En : µx(t) 2: a} . 

In order to describe a-cuts !et us use the following notation: X°' 
where 

X~= inf{t En : µx(t) 2: a}, 

X;;= sup{t En: µx(t) 2: a} . 

(l.4) 

( 1.5) 

( 1.6) 

Definition 2 (Grzegorzewski (35]). Let (D, A, P) be a probability space, where 
n is a set of all possible outcomes of the random experiment, A is a Cl-algebra of 
subsets of n (the set of all possible events), and Pis a probability measure. 

A mapping X : n--+ FN (R), where FN (R) is the space of all fuzzy num­
bers, is called a fuzzy random variable if it satisfies the following properties : 

I. {Xo, (w) : a E [O, l]} is a set representation of X (w) for all w En, 
2. for each a E [O, l] both X[: = X[: (w) = inf X °' (w) and X[: = X[: (w) 

supX°' (w), are usual real-valued random variables on 
(D ,A,P). 

There exists also another popular definition of a fuzzy random variable proposed 
by Puri and Ralescu (60] and based on the notion of set-valued mapping and random 
sets. Below, we present this definition in a form given in (30]. 

Definition 3 (Gil et al. (30]). Let F N (R) be the space of all fuzzy numbers. 
Given a probability space (ft,A,P), a mapping X : n--+ FN('R.P) is said to 
be afuzzy random variable (also called.fuzzy random set) if for all a E [O, l] the 
set-valued mappings X °' : n --+ K:(JRP), where }C is the class of the non-empty 
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subsets of JRP, defined so that for all w E D Xa(w) = (X(w))a, are random sets 
(that is, Borel-measurable mapping with the Borel a-field generated by the topology 
associated with the Haussdorf metric on X::(JRP)). 

Fuzzy random variables may be used to model random and imprecise measure­
ments. First statistical methods for the analysis of such imprecise fuzzy data were 
developed in the 1980s. Kruse and Meyer [49] proposed a generał methodology 
for dealing with fuzzy random data. In case of their methodology fuzzy random 
data are described by fuzzy random variables defined according to Definition 2. 
This assumption has very important practical consequences. First of all it means 
that there exists an underlying non-fuzzy probability distribution that governs the 
origins of the observed imprecise fuzzy data. The parameters of this distribution 
have non-fuzzy values, but because of the fuzziness of observed data they cannot 
be precisely estimated. Their fuzziness comes directly from the fuzziness of sta­
tistical data and disappears when statistical data are precise. Therefore, fuzzy sta­
tistical methods developed according to the methodology proposed by Kruse and 
Meyer shall be regarded as straightforward generalization of classical (non-fuzzy) 
statistical methods. Using the aforementioned methodology Kruse and Meyer [49] 
proposed methods for the construction of estimators and confidence intervals for 
the parameters of the probability distributions of fuzzy random variables. Accord­
ing to the methodology proposed in [49] the estimators of the parameters of the 
probability distributions of fuzzy random variables are fuzzy. The same methodol­
ogy may be applied to the estimators of the limits of confidence intervals that are 
also represented by fuzzy numbers. The most important practical consequence of 
the adoption of the Kruse and Meyer's methodology is that all relevant formulae for 
fuzzy estimators and other fuzzy statistics can be obtained by fuzzification of well 
known formulae of classical non-fuzzy statistics. 

Despite the fact that the generalization of well known statistical methods to the 
fuzzy case is relatively straightforward, the construction of fuzzy statistical tests 
and making statistical decisions is far from being trivia!. Fuzzy statistical tests may 
be developed for testing both non-fuzzy (precise) and fuzzy (imprecise) statistical 
hypotheses, and for fuzzy (imprecise) and non-fuzzy (precise) statistical data. For 
example, statistical methods for testing fuzzy hypotheses have been considered in 
the papers by Saade and Schwarzlander [63], Saade [62], Watanabe and Imaizumi 
[79], Arnold [2], Taheri and Behboodian [70], and Grzegorzewski and Hryniewicz 
[37]. When the data are also fuzzy interesting solutions have been proposed in the 
papers by Arnold [I], Casals et al. [6], Kruse and Meyer [49), Saade [62], Saade 
and Schwarzlander [63], Son et al. [69), Watanabe and Imaizumi [79), Romer and 
Kandel [61 ], and Montenegro et al. [57]. Grzegorzewski [35) has proposed a unified 
approach for testing statistical hypotheses with vague data which is a direct gen­
eralisation of the classical approach. Below, we present his definition of the fuzzy 
statistical test. 

Let Z1, ... , Zn denote a fuzzy sample, i.e. a fuzzy perception of the usual ran­
dom sample Z1, ... , Zn from the population described by the probability distribu­
tion Pe, and Jet ó be a given number from the interval (O, 1). Grzegorzewski [35] 
has defined a fuzzy test as follows: 
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Definition 4 (Grzegorzewski [35)). A function ({) : (:F N (R) t --> :F ( {O, 1} ), 
where :F ( { O, 1}) is the set of possible decisions, is called a fuzzy test for the hy­
pothesis H, on the significance level li, if 

where ({Jo is the cx-Jevel set (cx-cut) of({) ( .Z1 , ... , Zn) . 
When we test statistical hypotheses about the values of the parameters of prob­

ability distributions we utilize a well known equivalence between the set of values 
of the considered probability distribution parameter for which the null hypothesis is 
accepted and a certain confidence interval for this parameter. The same equivalence 
exists in the case of statistical tests with fuzzy data. 

When statistical data are precise (crisp), for testing the null hypothesis H : B :S 
Bo, and the alternative hypothesis I< : B > Bo we use a one-to-one correspondence 
between the acceptance region for this test on the significance level li and the one­
sided confidence interval [Ki, +oo) for the parameter Bon the confidence level 1- li, 
where Ki = Ki (Z1 , .. . , Zn; li) . This equvalence was utilized by Kruse and Meyer 
[49] who introduced the notion of a fuzzy confidence interval for the unknown pa­
rameter 0, when the data are fuzzy. In the considered case, a fuzzy equivalent of 
[1!:1, +oo) can be defined by the following a-cuts (for all ex E (O, 1 ]): 

L L ( - - ) [Jo = Il 0 Zł, · · · , Zn ;ó 

= inf { t E R : '<li E { 1, . . . n} :lz; E ( Z; t 
such that K1 (z1, . .. , Zn; o) '.'ó t} 

(1.7) 

Similaiily, we can define a fuzzy equivalent of the one-sided confidence interval 
(- oo, 7i' ul, as given in Grzegorzewski [35] : 

-U -U{- - ) Ilo=Ilo Z1, .. . ,Zn;ó 

= sup t E 1?, : '<li E {l, ... n}:lz; E (z;t 
such thai n',. ( z1, .. . , Zn; li) ;::: t} 

where 1ru (z1, . . . , Zn ; o)= K1 (z1 , .. . ' Zn; 1 - o). 

(1.8) 

The notion of the one-sided fuzzy interval can be used to define a fuzzy test. In 
the considered case of one-sided statistical hypothesis, a function ({) : ( :F N (R)) n --> 

:F ( { O, 1}) with the following a-cuts: 
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{ 
{l} if 0o E (II0 \ (,II) 0 ) , 

- - _ {O} if 0o E ((,II)c, \II0 ), 

'Po ( Zi, ... 'Zn) - {O, l} if 0o E (II0 n (,II)"'), 
0 if 0o r/:. (II 0 LJ (,II)c,) 

(1.9) 

is a fuzzy test for H : 0 :S 00 , against K : 0 > 00 , on the significance level b 
(Grzegorzewski (35]). In a similar way, we can define fuzzy tests for testing other 
one-sided hypotheses such as H : 0 2: 0o, against K : 0 < 00 , and for testing 
two-sided hypotheses about 0. 

It is worthy to note that in certain cases the application of the fuzzy test defined 
above does not lead to a clearly indicated decision. This feature is far from being 
unexpected because, unless we make some additional assumptions, we should not 
expect precise answers to questions presented in a form of statistical hypotheses if 
we infer these answers from the analysis of imprecise data. Let us note, however, 
that we face the similar situation when we use classical statistical methods. In that 
case a decision cannot be made without setting in advance an appropriate signifi­
cance level of test. In case of fuzzy statistical data the knowledge of the significance 
level is not enough, so we have to use some additional indicators that would be help­
ful in making decisions. There exist several approaches that are suitable for solving 
this problem. One of these approaches which is formulated in the language of the 
possibility theory has been proposed by Hryniewicz (40] . 

In order to present a poosibilistic approach to the problem of statistical test­
ing when both data and statistical hypotheses are imprecise let us consider a fuzzy 
equivalent of testing the hypothesis H : fJ :S fJ H w hen we observe a random sam­
ple (Xi, ... , Xn)- In case ofprecisely formulated hypotheses and precise statistical 
data we can use a well known method (for reference, see, e.g., the book of Lehmann 
[53]) and calculate a one-sided confidence interval on a confidence level 1 - b from 
the formula [1rL (Xi, . .. , Xn; 1 - b), oo). We reject the null hypothesis on the sig­
nificance level b if the observed value of 1r L (Xi, ... , Xn; 1 - b) is larger than fJ H, 

i.e. when the inequality fJ H < 7rL (xi, ... , Xn; 1 - b) holds. Similarly, we reject 
the hypothesis H : fJ 2: fJ H on the significance level b when the inequality f) H > 
1ru ( xi, . . . , Xn; 1 - b) holds, where 1ru ( xi, ... , Xn; 1 - b) is the observed value 
of the upper limit of the one-sided confidence interval (-oo, 1ru (Xi, . .. , Xn; 1 - b)] 
on a confidence level 1 - 8. When we test the hypothesis H : fJ = fJ H on 
the significance le vel 8 we reject it if either fJ H < 7rL (xi, . . . , Xn; l - 8 /2) or 
fJH > 1ru (xi, ... , Xn; 1 - 8/2) holds, where 7rL (xi , ... , Xn; 1 - 8/2) is the ob­
served in the sample value of the !ower limit of the two-sided confidence interval 
7rL (Xi, . . . ,Xn; 1- 8/2) on aconfidencelevel 1-8, and theobserved valueofits 
upper limit 1ru (Xi, ... , Xn; 1 - 8/2) is given by 1ru (xi, . . . , Xn; 1 - b/2). Thus, 
when we test a hypothesis about the value of the parameter fJ we find a respective 
confidence interval, and compare it to the hypothetical value. 

Dubois et al. [21] proposed to use statistical confidence intervals of parameters 
of probability distributions for the construction of possibility distributions of these 
parameters in a fully objective way. According to their approach, the family oftwo­
sided confidence intervals 
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[7rL (x1, ... ,xn; 1- o/2) ,1l"U (xi, ... ,xn; 1- o/2)] ,o E (O, 1) (1.10) 

forms the possibility distribution J of the estimated value of the unknown parameter 
rJ. In a similar way it is possible to construct one-sided possibility distributions based 
on one-sided nested confidence intervals. Hryniewicz [40] proposed to compare this 
possibility distribution with a hypothetical value of the tested parameter. For this 
purpose he proposed to use the necessity of strict dominance measure introduced by 
Dubois and Prade [ 15] for measuring the necessity of the strict dominance relation 
A )- B, where A and B are fuzzy sets. This measure, called the Necessity of Strict 
Dominance index (N SD), is defined as 

NSD=Ness(A)-iJ) =1- sup min{µA(x),µB(y)}. 
x,y;x~y 

(l. 11) 

Hryniewicz [ 40) has shown that in the classical case of precise statistical data and 
precisely defined statistical hypotheses the value of the NSD index is equal to the 
p-value of the test. 

In case of fuzzy data the confidence intervals used for the construction of the 
possibility distribution of the estimated parameter 0 can be replaced by their fuzzy 
equivalents, calculated according to the methodology proposed by Kruse and Meyer 
[49). In his paper Hryniewicz [40] assumes that the value of the significance level 
of the corresponding statistical test o is equal to the possibility degree a that defines 
the respective a-cut of the possibility distribution of J. He also assumes that in the 
possibilistic analysis of statistical tests on the significance Ievel o we should take 
into account only those possible values of the fuzzy sample whose possibility is 
not smaller than o. Thus, the a-cuts of the membership function µp ( rJ) denoted 

by [µ~i, ft~&] are equivalent to the a-cuts of the respective fuzzy confidence 

intervals on a confidence level 1 - a. 
In order to consider the most generał case !et us also assume that the hypothetical 

value of the tested parameter may be also imprecisely defined by a fuzzy number 0 H 

described by the membership function µH ( 0). Possibilistic evaluation of the results 
of statistical fuzzy test consists now in the comparison of the possibility distribution 
of the estimated parameter 0, and the possibility distribution of the hypothetical 
value of this parameter. Let us illustrate this procedure by assuming that our fuzzy 
hypothesis is given as H : 0 :s; 0 H. In the case of crisp data we compare the !ower 
limit of the one-sided confidence interval on a given confide~e level 1 - o with the 
respective a-cut of the membership function that describes 0 H. In the possibilistic 
framework described in [40] it means that we compare the possibility distribution 
of JL based on the left-hand sides of the confidence intervals with the fuzzy value 
of BH. This distribution is defined by the membership function 

(a) - . f JJ1 (x- X- · 1 ') µFL-m L 1, ... , n, -u , 
' 1=?'.0< 

(1.12) 

where 
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IIl = Ilf ( x\, ... , Xn; 1 - b) 

=inf{tER : 'viE{l, .. . n}3x; E (X;),, (1.13) 

such that 7rL (x1, ... , Xn; 1- b) :S: t}, 

and 7rL (x1 , .. . , Xn; 1 - b) is the left-hand side limit of the classical confidence 
interval. In a similar way we can define a fuzzy equivalent of the upper limit of the 
one-sided confidence interval (-oo, rru (X1, . . . , Xn; 1 - b)] . 

In the presence offuzzy data we have to compare the possibility distribution iJ F,L 
of the estimated value of the unknown parameter 0 represented by its a-cuts given 
by (1.12) with the fuzzy value of 0 H. In such a case we have to find the intersection 
point of the membership function µF,L ('19) and the left-hand side of µH (0). The 
N SD index of the relation iJ F,L :>- iJ H is equal to one minus the ordinate of this 
point, i.e. 

Ness (iJF,L r BH)= 1-supmin(µF,L('l?),µH (0)). (1.14) 

The N SD index defined by ( 1.14) can be regarded as the generalisation of the ob­
served test size p (also known as p-value or significance) for the case of imprecisely 
defined statistical hypotheses and vague statistical data. In exactly the same way we 
can find the N SD index for other one-sided and two-sided statistical hypotheses. 

Statistical analysis of fuzzy random data can be also done in the Bayesian frame­
work. First results presenting the Bayesian decision analysis for imprecise data were 
given in papers by Casals et al. [6], [7], and Gil [28]. In these papers the authors 
described fuzzy observations using the notion of the fuzzy information system by 
Zadeh [83] and Tanaka et al. [72]. As this approach seems to be not very effective 
in practical applications, other approaches have been proposed by such authors as 
Viertl [74], Frtihwirth-Schnatter [26], and Taheri and Behboodian [71]. Compre­
hensive Bayesian model comprising fuzzy data, fuzzy hypotheses, and fuzzy utility 
function has been proposed in the paper by Hryniewicz [39]. 

When we interprete fuzzy random variables according to the definition proposed 
by Puri and Ralescu (see Definition 3 above) the statistical analysis of fuzzy data is 
unfortunately not so simple. The reasons for this difficulty stem from the fact that 
in that case the underlying classical probability distribution does not exist anymore. 
For example, it is difficult to formulate fuzzy equivalents of the Central Limit The­
orem, as the concept of asymptotic norma! distribution cannot be directly applied. 
Thus, the statistical procedures have to be constmcted on a different theoretical ba­
sis. Some authors, see [30] for an overview of the problem, define statistical tests 
in terms of distances, in different metrics, between the observed fuzzy value of a 
test statistics and the hypothetical value of a certain characteristic of the fuzzy ran­
dom variable, e.g. its fuzzy expected value. From among few papers devoted to this 
problem one can mention the papers by Korner [46], Korner and Niither [47], and 
Montenegro et al. [57]. The problem of lacking underlying probability distribution 
can be overcome by using a bootstrap methodology, as it has been recently proposed, 
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in the papers by Gil et .al (31], Gonzalez-Rodrfguez et al. (33], and Montenegro et 
al. [58] . In the case of the Bayesian analysis of fuzzy random variables interesting 
results have been proposed in the paper by Gil and López-Dfaz [29]. 

1.4 Applications of fuzzy statistics in systems analysis 

Systems analysis is oriented on solving complex problems where precise mathemat­
ical models are used for a simplified (and sometimes even oversimplified) descrip­
tion of reality. The mai n problem of every researcher who has to apply the methods 
of systems analysis in real applications is related to coping with uncertainties of 
different kinds. What is important, not all of these uncertainties can be described by 
well developed methods like theory of probability and mathematical statistics. The 
methodology of fuzzy statistics, presented in the previous section, gives possibility 
to describe phenomena where probabilistic randomness is merged with possibilistic 
imprecision (fuzziness). In this section we present an application of this methodol­
ogy which seems to be useful in solving real problems. The character of this paper 
does not allow us to present too many details that may be necessary to fully under­
stand this application. The details will be presented in forthcoming papers dedicated 
to particular problems. 

As a possible application of the fuzzy statistical methodology in the systems 
analysis we may consider the problem of testing a hypothesis about the mean value 
of a random variable described by a norma! distribution when sampling costs are 
high, and we are forced to observe as few sample items as possible. This situation 
often happens when we have to control costs of a large project consisted of many 
individually assessed partia! costs. If the number of partia! costs is relatively large, 
we can assume - following the Central Limit Theorem - that the observed total 
cost, say X is distributed according to the norma! distribution N(µ, o-). Suppose 
now that we are interested in keeping the total costs constant for a certain period of 
time at a level µo . A simple, and the most effective statistical test for verification 
of the statistical hypothesis H0 : µ = µo against the alternative H 1 : µ = p 1 is 
the sequential probability ratio test proposed originally by Wald (see the book by 
Lehmann (53] for more information) for the case of the know n value of the standard 
deviation o. The test statistic, based on a sample (x 1 . .. xn) is, in that case, a simple 
sum of re-scaled observations 

n 

Sn = I)x;/o) . (I.I 5) 
i=l 

Let a be the probability of the type-I error (probability of an erroneous rejection 
of H0 ), and /3 be the probability of the type-II error (probability of an erroneous 
acceptance of H 1). We accept the null hypothesis H0 if 
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A n 
Sn ?. --- + -2 (J.t1 + µo), 

µl - j.lQ 

where A= (3 / (1 - a). We reject Ho in favour of H1 if 

B n 
Sn ::,'. --- + -2 (µ1 + J.to), 

µ1 - µo 

( 1.16) 

( 1.17) 

where B = (1 - (3) /a. If neither of these inequality holds we have to increase the 
sample size by one, and repeat the same procedure. 

In the sequential test described above we have assummed that the value of Cf 

is known. In practice, we never know this value in advance, but when the amount 
of historical data is large enough we can estimate Cf, and take this estimated value 
as the known one. However, when the available amount of data is scarce, as it is 
usually the case in the analysis of large systems, we cannot proceed this way. A 
possible way out is to use a procedure proposed by Hryniewicz [41) for the analysis 
of reliability data. 

Having some historical data we can estimate the value of Cf . When the available 
sample size is equal tom, and the estimated value is given by Cf:'n , we can calculate 
the two-sided confidence interval for the unknown value of Cf : 

(C!L('y) = 
(m - l)(C!;;:,)2 _ 
;,_l ((1 + "Y)/2) 'C!R("Y) -

(m - l)(C!;;:,)2 ) 
x;,_ 1 ((1 - "Y) / 2) ' 

(1.18) 

where x:n- l ("Y) is the quantile of order "Y of the chi-square distribution with m - 1 
degrees of freedom. The confidence intervals defined by ( 1.18) can be used for the 
construction of the possibility distribution of Cf defined by its b'-cuts (we use here 
the symbol of ó because the symbol a, traditionally used in this context, has been 
used for the description of the type-1 error of the sequential test). The left-hand side 
limits of this possibility distribution are given by 

6 (Cl) _ { Cl L( 1 - b') jf ó ?_ óo 
µL - C!L(l - óo) ifb' < óo' (1 .19) 

where 50 is a small number close to O (e.g. O.Ol). Similarily, the rigt-hand limits are 
given by 

6 ( ) = {C!n(l-b') ifb' ?. óo 
µR Cf C!R(l - óo) if ó < óo . (1.20) 

If we assume that Cf is a fuzzy number defined by this possibility distribution we 
immediately find that the test statistic Sn becomes also fuzzy. Thus, we cannot di­
rectly verify if inequa!ities ( 1.16) and ( 1. 17) are fulfilled . However, we may assume 
that they are fulfilled if the N SD index for respective fuzzy relations is greater than 
a prescribed value. 
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In this example of the application of fuzzy statistics we haven't used any sub­
jective imprecise fuzzy info1mation. The fuzziness has been introduced in a purely 
objective way using some historical statistical data. We can also generalize this prob­
lem by allowing imprecise hypotheses about the values of fto and µ 1 . The method­
ology for dealing with such a problem is the same, but the necessary calculations 
become much more complicated. 
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