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Abstract 

The decision problems are considered when the prior probabilistic information about 

the state of nature and decision maker's utility function are imprecisely defined. In 

such a case the risks (or the expected utility) of considered decisions are also 

imprecisely defined. We propose two-step procedure for finding the optimal 

decision. First, we order possible decisions using the A-average ranking method by 

Campos and Gonzalez [I]. Then we use possibilistic Possibility of Dominance and 

Necessity of Strict Dominance indices proposed by Dubois and Prade [3) for the 

comparison of consequences of the most promising solutions. 

Key words: optimal decisions, imprecise information, fuzzy risks, possibility 

indices 

I. Introduction 

In decision making we deal with uncertainties related to an unknown state of nature. The 

behaviour of a decision maker may be described as a kind of game between him and a fictitious player 

who may be called "nature" or "chance". Decisions made by a decision maker are rational if they are 

derived from his knowledge about nature's behaviour and the knowledge of the consequences of his 

decisions. Mathematical theories of decision making are known for more than fifty years and are based 

on probabilistic models of nature's behaviour and utility functions. Their basic ideas and main results 

were published in a famous book by Raiffa and Schlaifer [6] that has been recently republished by 



J.Wiley & Sons. In the classical models of decision making it is assumed that the decision maker 

knows the joint probability distribution of all possible states of the nature and all possible results of 

experiments which provide him with some knowledge about the actual state of the nature. Moreover, it 

is assumed that there exists a precisely defined utility function which assigns decision maker's utility 

related to all possible pairs: decision and state of the nature . These premises have been recently 

relaxed by assuming that some parameters of decision models may be defined only with a certain 

degree of precision. As the consequence of such more general assumptions we arrive at mathematical 

models of imprecise risks. In this paper we present some results obtained under the assumption of the 

existence of imprecisely defined risks. In the second section we present a mathematical model of 

decision making in the presence of imprecisely defined probabilistic prior information about the 

possible states of the nature and imprecisely defined utility functions. The lack of precision we 

describe in the language of the fuzzy sets theory. We propose to find the best decisions by the 

defuzzification of imprecisely defined expected risks. For this purpose we propose the usage of the 

defuzzification method proposed by Campos and Gonzalez [I]. This method allows the user to take 

into account his attitude i.e. his level of optimism (or pessimism). In the third section we propose a 

possibilistic method for the comparison of different decision. By applying this method we provide the 

user with addition information about the real differences between the consequences of his decisions. In 

this comparison we take into account the impact of imprecise input information on the decision 

making. 

2. Mathematical model and the choice of optimal decisions 

There exist different methods for modelling decisions. In this paper we adopt the approach 

described in a form of a general by Raiffa and Schlaifer [5). The model proposed by Raiffa and 

Schlaifer consists of two parts: one part is dedicated to the choice of the final decision, and the second 

part is dedicated to the choice of the experiment whose ultimate goal is to provide the decision maker 

with some information about the actual state of nature. According to this model the decision maker 

can specify the following data defining his decision problem. 



I. Space of terminal decisions (acts): A = {a) . 

2. State space: e = {0). 

3. Familyofexperiments: E={e). 

4. Sample space: Z = {z}. 

5. Utility function: 11(-,-,-,-,) on Ex Z x Axe. 

The decision maker evaluates a utility 11{e, z, a, 0) of making a particular experiment e, obtaining the 

result of this experiment z, taking a decision a in case when the true state of nature is 0. In order to 

find appropriate (hopefully optimal) decisions the decision maker has also to specify a joinJ 

probability measure P0., { ·, I e) for a Cartesian product e x Z. The knowledge of this probability 

measure means that we know the joint probability distribution of observing in an experiment e the 

result z when the random state of nature is described by 0. Knowing this joint probability distribution 

we can calculate some important marginal and conditional probability distributions. In particular, for a 

given experiment e we are usually interested in three distributions. 

I. The marginal distribution on the state space e describing our prior information about 

possible states of nature. We assume that this distribution does not depend one. 

2. The conditional distribution on the sample space Z for given state of nature 0. 

3. The conditional distribution on the state space e for given result of the experiment z 

describing our posterior information about possible states of nature. 

Note, that may know only these particular distributions as their knowledge is equivalent to the 

knowledge of the joint probability distribution on e x Z . 

Let us consider the simplest case of the general model when there is no experiment e. In such a 

case the only information we need is the probability distribution 7r(0) defined on the state space e . 

We call this distribution the prior distriblllion of the parameter (parameters) describing the unknown 

state of nature. If we know the utility function u(a, 0) defined on Axe we may calculate the 

expected utility assigned to a particular action (decision) a from a simple formula 



u(a)= fu(a,0)11"(0)d0. (I) 
0 

lfwe use a loss/unction L(a,0) for the description of potential consequences of taking decision a we 

may calculate the expected loss (usually called a risk) from an equivalent formula 

,o(a)= fL(a,0)11"(0)d0. (2) 
0 

Having calculated the expected utilities for all possible decisions we can find the optimal one which is 

related to the maximal expected utility (or the minimal risk). This procedure is in principle very 

simple. However, in many practical cases (when the number of possible decisions is sufficiently large) 

it may require the usage of sophisticated optimisation methods. 

When the decision maker has an additional information about the state of nature in a form of 

observations z = (z1, z2 , ••• ,z.) of a random vector described by a probability distribution /(z, 0) we 

may calculate the expected utility assigned to a particular action (decision) a from a formula 

u(a,z)= fu(a,0)g(0!z)d0, (3) 
0 

where 

g(0I z)= /(zl 0)11"(0) 
J /(z i 0)11"(0)d0 

(4) 

0 

is the posterior distribution of the parameter 0 which describes the state of nature. In such a case the 

expected utility attributed to each decision is calculated from 

u(a!z)= fu(a,0)g(0!z)d0, (5) 
0 

and the respective risk from the formula 

,o(a!z)= JL(a,0)g(0!z)d0, (6) 
0 

The procedure for finding the optimal decision is exactly the same as in the case described previously. 



Suppose now that the prior distribution 1r(0) and the loss (or utility) L(a,0) are functions of 

parameters sand If/, respectively, and that these parameters are known only imprecisely. Let us 

assume that our imprecise knowledge about possible values of sand If/ is represented by fuzzy sets 

~ and If, respectively. A fuzzy set X is defined using the membership function µx (x) which in the 

considered in this paper context describes the grade of possibility that a fuzzy parameter, say X, has a 

specified value of x. Each fuzzy set may be also represented by its a-cuts defined as ordinary sets 

(7) 

From the representation theorem for fuzzy sets we know that each membership function may be 

equivalently represented as 

µx (x)= sup{al x• (x): a e [0,1]/. (8) 

Now let us assume that imprecisely known parameters sand If/ are represented by their a-cuts, 

and that these a-cuts are given in a form of closed intervals kf ,s1~] and [lf/f., lf/i ], respectively. The 

knowledge of these a-cuts let us calculate fuzzy equivalents of the expected utility or the expected 

loss (risk). To make the presentation simple we assume that decision are based exclusively on the 

knowledge of the prior distribution ir(0) and the loss function L(a, 0). As these function are the 

function of imprecise fuzzy parameters, they are also fuzzy, and may be denoted as n'(e,-~) and 

l(a, 0; !f), respectively. 

Now, let us rewrite formula (2) as 

p(a)= Jl(a,0;~~(0; lf}d0. (9) 
e 

The risk calculated from (9) is now an imprecisely definedjitzzy number whose membership function 

may be calculated using Zadeh's extension principle (see Klir and Yuan[5], or any other textbook on 



fuzzy sets for a reference). It is easy to show that the fuzzy risk p(a) is now represented by its a-cuts 

[Pf, p,~], where 

and 

p f. = inf p(a) 
•·/.;~ . .;;_II 

,PE 1/'1.,'l'll 

pi = sup p(a). 
••/;;_:-.;;_II 

VJEV11.,Vl11 

( 10) 

(II) 

Thus, for every possible decision a we may find a fuzzy risk p(a) or a fuzzy expected utility u(a) 

which may be calculated in the same way. Moreover, if there exists an additional information in the 

form of observations z = (z1, z2 , ••• , z.) we may use exactly the same procedure in order to fuzzify the 

expected utility given by (5) and the risk given by (6). Note however, that in this case the respective 

calculations (especially for the fuzzy posterior distribution) may be much more complicated. 

In contrast to the non-fuzzy (crisp) case the univocal optimal solution of the decision problem for 

imprecisely defined input parameters does not exist. It stems from the fact that fuzzy sets are not 

naturally ordered. Thus in general, it is not possible to indicate the decision with lowest risk ( or the 

highest expected utility). In order to do this we must apply any of the many proposed in literature 

ranking methods. 

There are many methods for ranking fuzzy numbers that are based on different defuzzification 

methods. Gil and Lopez-Diaz [4] have noticed that the A-average ranking method proposed by 

Campos and Gonzalez [I] is especially useful in decision making. Let X be a fuzzy number (fuzzy 

set) described by the set of its a-cuts [xf , x,~ ], and S be an additive measure on [O, 1 ]. Moreover, 

assume that the support of X is a closed interval. The A-average value of such a fuzzy number X is 

defined by Campos and Gonzalez [I] as 

I 

v/ (Ji)= J[tr,~ +(l--t)Xf.)dS(a), -tE[0,1] . (12) 
0 



In the case of continuous membership functions the integral in (12) is calculated with respect to 

da. Thus, the ;,.-average value of X can be viewed as its defuzzified value. 

The parameter;,. in (12) is a subjective degree of decision maker's optimism (pessimism). In the 

case of fuzzy risks J = 0 reflects his highest optimism as the minimal values of all a-cuts 

(representing the lowest possible risks) are taken into consideration. On the other hand, by taking 

A. = I the decision maker demonstrates his total pessimism, as only the maximal values of all a-cuts 

(representing the highest possible risks) are considered. In the case of fuzzy expected utilities the 

situation is reversed, i.e. J = 1 represents decision maker's optimism, and J = 0 reflects his total 

pessimism. If the decision maker takes A= 0,5 his attitude may described as neutral. Thus, by varying 

the value of A the decision maker is able to take into account the level of his optimism (pessimism) 

which may arise e.g. from having some additional information that has not been reflected in the prior 

distribution. Some interesting features of the ;,.-average ranking method have been discussed in Gil 

and Lopez-Diaz [4]. 

Having a simple ranking method given by ( 12) we may calculate defuzzified values of fuzzy risks 

(expected utilities) related to all considered decisions. The optimal decision has the lowest defuzzified 

.risk (or the highest defuzzified expected utility). Moreover, the decision maker can order all 

considered decisions with respect to their risks (or expected utilities). 

3. Possibilistic analysis of optimal decisions 

The procedure described in the previous section allows the decision maker to find the optimal 

decision. It has to be noted, however, that the ranking method gives only a partial information about 

the differences between competitive decisions. Therefore, we claim that it is necessary to perform an 

additional analysis that provides the decision maker with an additional information about the 

considered decisions. Such an analysis is especially interesting when the consequences of different 

decisions are similar, and when exist other decision maker's preferences that are not reflected in the 

optimisation model. To analyse the consequences of different decision we propose to use the 



methodology known from the theory of possibility, namely the Possibilily of Dominance and Necessily 

ofSlrict Dominance indices proposed by Dubois and Prade (3] . 

For two fuzzy numbers A and B the Possibilily of Dominance (PD) index is calculated from the 

formula 

PD= Poss(A ~ ii)= sup min{,uA(x),µii(y)}. (13) 
x,y:x'i?.y 

The PD index gives the measure of possibilily that the fuzzy number A is not smaller than the fuzzy 

number B. Positive value of this index tells the decision maker that there exists even slightly evidence 

that the relation A <'. B is true. 

The degree of conviclion that the relation A> B is true is reflected by the Necessily of Strict 

Dominance (NSD) index defined as 

NSD=Ness(A>B)=1- sup min{uA(x),µ 8(y)}=l-Poss(B~A). (14) 
x,y:x::s:y 

The NSD index gives the measure of necessily that the fuzzy number A greater than the fuzzy number 

B . Positive value of this index tells the decision maker that there exists rather strong evidence that the 

relation A > B is true. 

According to Cutell and Montero [2] we may use the PD and NSD indices to evaluate mutual 

relationship between two considered decisions. Let us describe the evaluation procedure for two 

decisions a 1 and a2 with associated fuzzy risks p(a1) and p(ai), respectively. The value of 

NSD = Nec(p(a1) > p(a2 )) indicates to what extend decision a 1 is inferior in comparison to decision 

a2• On the other hand, I-PD= 1-Poss(p(a1)<'.p(a2 )) indicates to what extend decision a 1 might be 

considered superior in comparison to decision a2• If instead of fuzzy risks we compare fuzzy expected 

utilities the conclusions are reversed, i.e. the value of NSD = Nec(u(a1 )> u(a2 )) indicates to what 

extend decision 01 is superior in comparison to decision a 2, etc .. The value of PD- NSD may be 

viewed upon as the measure of indifference between the consequences of the considered decisions. 

If the decision maker has the ordered sequence of his possible decisions he should always 

consider a possibility of performing pairwise comparisons between the best two (or more) competitive 



solutions. High values of the indifference indices reveal that the consequences of considered decisions 

are rather insignificant due to the lack of precision of the optimisation model. In such a case the 

decision maker may use some additional criteria for choosing an appropriate decision. This is also the 

signal that it is advisable to make the optimisation model more precise. 

4. Decisions with two possible outcomes - a numerical example 

Let us consider the simplest situation when each action from a set of alternatives {a1, ... ,aM} leads to 

two possible outcomes w(m) ,m = I, ... , Mand v("'l,m = I, ... , M , respectively. The outcome w(m) appears 

with probability p(ml, m = l, . .. ,M, and the outcome v(m) appears with probability 1- p("'l . Suppose 

that the expected outcome is equivalent to the expected utility. Thus the expected utility associated 

with the action a., is given by 

(15) 

Thus, the optimal action is a such one which maximises (15) when the outcomes are given in terms of 

profits or minimises (15) when outcomes are expressed in terms of losses. 

Let us assume that all information about the outcomes and respective probabilities are imprecise and 

are given by fuzzy numbers described by a trapezoidal membership functions. In general , any 

trapezoidal membership function of a fuzzy number X = x(x1 ,xo.1 ,x0_, ,x,} is given by the following 

formula: 

µ x (x) = 

0 X 5: XI 

x1 <x5:x01 

Xo,1 < X :$; Xo,r . 

x0., < x :S x, 

x > x, 

(16) 

The a-cuts of the fuzzy number described by the membership function given by (16) have the 

following form : (x, + a(xo.1 -x1 ),x, -a(x, - x0,, )) . 



Denote by ;;j{m), m = I .... , M, and ii("'l, m = l, .... M the fuzzy counterparts of the crisp outcomes w(m) 

and v(m), respectively. Moreover, let p("'l, m = l, ... , M be the fuzzy counterpart of the crisp probability 

p(m). Assume now, that for each a-cut we have wt;)> vt;.}. It means that despite their imprecision 

both possible outcomes are separated. When this assumption does not hold we have either to assume 

that the outcomes are interactive in a special way or to assume that they are indistinguishable to some 

extent. In both cases, this leads to severe complication of the optimisation procedure. 

Now, we can define a fuzzy expected utility as follows 

(17) 

Using the extension principle of Zadeh we can find the membership function of the fuzzy expected 

utility u("'l,m = l, ... ,M. In further calculations in order to simplify the notation we omit the upper 

index (m) that indicates the undertaken action. Denote by (u1(a),u,(a)) the a-cut of u. By simple 

calculations we can show that 

and 

u1(a)= p1w1 +(1- p1 )v, +a[(Po.1 - p1 )w, + p1(w0,1 -w1 }-(p0_, - p1 p1 +(1- p1 Xvo,1 -v1 }]+ 
+a2 [(p0 .1 - pJwo,1 -w1 }-(p0 ,1 - pJv0 ,1 -v1 }] 

u, (a)= p, w, +(1 - p, )v, + a[(p, - Po., p, -(1 - pJv, -v,,0 }- p,(w, -w0,, }+(p, - Po., }w, ]+ 
+ a2 [(p, - Po,, Xw, - wo., }- (p, - Po,, Xv, -vo., }] 

The ,l..average value of u calculated from ( 12) is now given by 

V.i(u)= ,{½(v, +v0_, }+½ (p,(w, -v,)+ Po,,(w0 , -v0,,}}+¾(p,(w0_, -v0,, }+ Po,,(w, -vJ]+ 

+(1-i{f (v, +vo,1 }+½ (p1(w1 -v, )+ PoAwo,1 -voJ}+¾(p,(w0,1 -v0 ,1 }+ Po,,(w1 -v, )}} 

(18) 

( I 9) 

(20) 

Having A-average values of the fuzzy expected utilities for all considered actions we can find the 

optimal one that has the maximal value of V.i (u(m) ). 

Let us assume that all considered actions are numbered in such a way that 

v.i (u(1l )2: v.i (u(2) )2: ... 2: v .i (u(M)). The next step of the possibilistic analysis consists in the 

comparison of fuzzy expected utilities zi(i) and 11(2). The analysis of (14) shows that 



NSD(u(i) > 1,(2) )> 0 if the relation holds u;2l(1)< u/1l(1). In such a case NSD(u(1) > 1,(2) )=I-a', where 

a' is the solution of the equation 

Let 

XI= P!WI +(I-pl )v1 

Y1 =p,w,+(1-p,)v, 

Yi = (p, - Po,,~' -(1- P,Xv, -v,.o)- P,(w, -wo,, )+(p, - Po,,)w, 

YJ = (p, - Po., Xw, -wo., )- (p, - Po.,) 

Hence, the solution of (21) is given by 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

To illustrate these theoretical results let us consider a numerical example. Suppose, that there are four 

possible actions described by the following sets of their fuzzy parameters: 

• Action a 1: j,(1) = j}(1l(o.2;0,2s;0,3;0,35) , ;;;<1l = ;;;<1)(80;90;100;110), v<1l = v<1l(20;25;30;35) 

• Action a2: j,(2) = p(2l(o,2;0,2s;0,25;0,25) , ;;;(z) = ;;;(2l(60;70;80;90), v(2J = v 2 (15;20;20;25) 

• Action a3: j,(3) = j}(3l(o,2;0,2s;0,25;0,3) , ;;;(3) = ;;;(3)(60;70;80;90), v(3) = v(3l(-10;20;20;25) 

• Action a4: i•J = j}(4l(o,2.-o,2.-o,2.-o,4) , ;;;(4) = ;;;(4)(30,60;60;70), v(•) =v(•l(-10;0;10;20) 

The expected utilities associated with each action are given as fuzzy numbers whose A-averages 

calculated according to (20) are the following (for A= 0,5, i.e. for a neutral decision maker): 



Thus, action a1 is visibly better than the others. However, if we compare the fuzzy utility of a1 with the 

fuzzy utility of the second best action a2 we arrive at the following results. For a1 from (21)-(24) we 

get: x 1 = 32, x 2 = 9, x 3 = 0,25 , and for a2 from (25)-(27) we get: y 1 = 41,25, y2 = -6,25, y3 = 0. Hence, 

from (28)-(30) we get: A 1 = -9,25, A2 = 15,25, A3 = 0,25. Thus, from (31) we obtain a'= 0,6, and the 

Necessity of Strict Dominance index is the following Nso(;,(i) > ;,(2) )= 0.4. It means that there exists 

only limited necessity that a1 is better than a2, and - to some extent - their results are 

indistinguishable. This is especially true, when the parameters of the decision model come from 

different sources. 

5. Conclusions 

In the paper we present a generalisation of a classical Bayes decision model. In this generalised model 

we assume that all input parameters describing prior probabilities, costs, and statistical data may be 

expressed in an imprecise way. lfwe apply a fuzzy description of those vague data we arrive at fuzzy 

risks or fuzzy expected utilities associated with each possible action (decision). Unfortunately, a 

method for a unique ordering of fuzzy numbers does not exist. Therefore, we propose to use the 

defuzzification method of Campos and Gonzalez [1] in order to find two possibly best actions. 

Imprecise consequences of these decisions we compare using possibility and necessity indices. This 

approach gives us a better insight in the process of decision making. We illustrate the proposed 

procedure with a numerical example when each action (decision) may result with two possible 

outcomes. 

Bibliography 

(1) L.M. Campos, A. Gonzalez, "A subjective approach for ranking fuzzy numbers", Fuzzy Sets and 

Systems, vol.29, pp.145-153, 1989. 

[2] V. Cutell, J.Montero, "An Extension of the Axioms of Utility Theory Based on Fuzzy Rationality 

Measures" in Fodor J., De Baets P., Perny P. (eds), Preference and Decisions under Incomplete 

Knowledge, Heidelberg: Physica-Verlag, pp. 33- 50, 1999. 



[3] D. Dubois, H. Prade, "Ranking fuzzy numbers in the setting of possibility theory", Information 

Sciences, vol.30, pp. 184- 244, 1983. 

[4] M.A. Gil, M. Lopez-Diaz, "Fundamentals and Bayesian Analyses of decision Problems with 

Fuzzy-Valued Utilities", International Journal of Approximate Reasoning, vol.IS, pp. 203-224, 1996. 

[5] G.J . Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic. Theory and Applications. New-York: Prentice­

Hall, 1995. 

[6] H. Raiffa, R. Schlaifer, Applied Statistical Decision Theory. New York: J.Wiley, 2000. 



Prof. Olgierd Hryniewicz is a professor at the Polish Academy of Sciences, Director of the Systems 

Research Institute of PAS, and Head of the Laboratory of Stochastic Methods. He received his MSc 

degree from Warsaw University of Technology (1970). The PhD degree he received from the Institute 

of Management and Automatic Control of PAS ( 1976,), and the DSc degree from Cracow Academy of 

Economics (1986). Since 1996 he is a full professor at the Polish Academy of Sciences. He published 

over 150 books, papers, and reports on reliability, quality control and decision support systems. He is 

also a professor of Warsaw School of Information Technology and Management. 










