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Abstract: The methods of tolerance relation estimation on the basis of paiiwise comparisons with 

random errors, in the case of multiple comparisons of each pair are proposed in the paper. Each 

comparison expresses the number of conunon features of both elements or the number of their 

missing features. The assumptions made about distributions of comparisons errors are very weak, 

especially they may be unknown. Two approaches are discussed: the first one based on averaging 

of each pair comparisons and the second based on tlte median from comparisons. Results of 

estimation are obtained on the basis of discrete progranuning tasks. 1l1e properties of estimators 

are based on some probabilistic inequalities. An example of application of the estimators proposed 

is presented too. 

Keywords: tolerance relation estimation, multiple paiIWise comparisons, comparisons expressing 

the number of common features 

1. Introduction 

The tolerance relation is a relaxed form of the equivalence relation, i.e. without 

transitivity property. It divides a set of elements into a family of subsets with at least one non­

empty intersection. The relation is a model of many real-life phenomena, e.g. analysis of 

marketing data (purchasing patterns of customers, when comparisons are applied to some 

number of independent purchases of each customer and the number of patterns in not known); 

some other example - analysis of empirical functions shapes - is presented in Klukowski 

(2006). 

The methods of tolerance relation estimation presented in the paper are extensions of 

the approach introduced in Klukowski (2002) section 4, for the case of N>l independent 

comparisons. The methods exploit the idea of nearest adjoining order introduced by Slater 

(1961) for the preference relation (see also David (1988)). Two approaches are examined in 



the paper: the first one - based on averaged comparisons of each pair and the second - based 

on the median from comparisons. In both cases it is assumed, that each comparison expresses 

the number of subsets of an intersection including both elements (in other words a number of 

common features of both elements) or the number of subsets, which do not comprise both 

elements (a number of missing features ofboth elements). The estimated form of the relation 

is obtained on the basis of optima) solution of some discrete optimization problems. The 

properties of the estimators proposed are based on well known probabilistic inequalities: 

Hoeffding (see Hoeffding (1963)), Chebyshev (for expected value) and properties of the order 

statistics (see David (1970)). An important property of the first estimator - based on the 

averaging approach - is the fact, that the probability of errorless estimation result converges 

exponentially to one, for N• oo. The effectiveness of the median approach (evaluation of the 

probability of errorless result) is worse than those corresponding to the averaging approach, 

but optimization problem for this case is easier to salve. Empirical experience and some 

asymptotic properties of the median indicate, that the advantage may be not significant for 

some type of distributions of comparisons errors. For both approaches it is possible to obtain 

some approximations of the probability of errorless solution obtaining in the case of unknown 

distributions of comparisons errors. 

The papers consists of six sections. The second section presents basie definitions, 

assumptions and notations. In the third section the averaging approach is examined. The 

fourth section presents the median approach and an algorithm for determination the 

probability function of the median. In the fifth section an example of application of both 

approaches is discussed; the example is based on stochastic simulations. Last section sums up 

the results presented. 
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2. Basic definitions, assumptions and notations 

It is assumed, that there exists an (unknown) tolerance relation (reflexive, symmetric) 

in a finite set X={x1, ... , Xm} (m;?:3); the relation divides the set X into a family of subsets 

x:, ... , x:, 1 <n<m, with the following properties: 

ux:=x, 
q=l 

x: ;ć{0}, 3 q, s (q;ćS): x;nx>{0}. (1) 

Moreover, m purpose to avoid "degenerated" form of the relation it is assumed 

additionally, that in each subset x; cX there exists an element X;, which belong to the subset 

x; only, i.e.: x;e x; and X;!I: x: for #q. 

The basis for further considerations are two functions T10 and Ti(•), defined as 

follows Ti : X x X • D, T2: X x X • D, D= {O, 1, ... , n}, where: 

Ti(x;, x) = #(O: nn; ), 

where: 

O: - the set of the form O:={s I X;E x: }, 

'I'; - the set of the form 'I';={ 1, ... , n }-0:, 

#(E) - number of elements of the set E. 

(2) 

(3) 

Under the assumption about "non-degeneration" of the relation, each function 

T1(·) and T2(·) characterize the relation form. 

If an element X; is included in some subset x;, it can be interpreted, that it posses 

some feature; if it is included in a conjunction n x;, then the element posses some set of 
qER 

features. Thus, the function T1(·) express the number of common features of elements x, and 

3 



xh while the function T2(-) express the number oflacking features ofboth elements, from the 

features existing in the set X. 

It is assumed, that the basis for estimation of the relation are results of comparisons 

g:'>cx,,x1) or/and g:'\x,,x1) (19.gf; (x;, x;)EX x X; j#), corresponding to the form of the 

functions T1(·) and T20 respectively. The comparisons gV\x,,x,) observed instead of 

(unknown) values T;(x;, )0) are disturbed with random errors; they can be obtained, as a result 

of an application of statistical tests, expert opinions or other decisions functions. 

The comparisons are defined in the following way: 

(4) 

(5) 

where: 

aW (r-1, 2) is the assessment of the value T;(x;, x;), obtained in k-th comparison. 

The probabilities of random errors of each comparison are determined with the use of 

the probability function: 

((x;, x;)E X x X;j=I, 2; -n:ó./91). (6) 

It is assumed, that comparisons g1>(x,,x,) and g'.1>(x •. x,) (,c;ćz) are independent, i.e.: 

and the probabilities aW(/) satisfy the conditions: 

:EaW<I)> ½, 
l<O 

(8) 
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/~O, 

(9) 

aV,'(I) ~aV,'(I -1), /<::,O. 

The conditions (8) - (9) guarantee, that: zero is the median of each distribution ( on the 

basis of median definition), each probability function is unimodal and assumes maximum in 

zero. The expected value of the any comparison error E(Tf..:)- gf\)) can differ from zero; it is 

typical for T/:)=O or T1(:)=n. 

Both types of comparisons gr\) and gi2)(-) can be used as a base of estimation of the 

relation form - separately or simultaneously. In the second case it is assumed, that 

comparisons gil)(·) and gf\) are not correlated, i.e. Cov( gi1)(·), gf\) )=O. Correlation of 

such comparisons means, that their content is similar. 

It should be emphasized, that comparisons of different pairs gf\x,,x1) and gf)(x„x,) 

(<i,J">F.<r, s>, kJ- fixed) are not assumed independent (in stochastic sense). 

For simplification of further considerations it is assumed, that the distributions of 

comparisons g;'\) are the same for each k (15,k<::,N); an extension for the case of different 

distributions for individual k is not difficult. 

Let us define for any tolerance relation x,, ... ,x, in the set X, the following sets of 

indices l(z,, .. ,x,) and J(z,, ... ,x,): 

l(z,, ... ,x,)={<i,J> I 3q, s (q=s not excluded) such, that x;, x1 E x,nx, ;1>i}, 

J(x,,--,X, )={ <i,J> I there do not exist q, s such, that x;, x1 E x,nx, ;J>i}. 

(10) 

(11) 

The set I(x, •.. ,x,) includes such pairs ofindexes <i,J>, that there exists an intersection 

x •" x, of some subsets comprising both elements (x;, x1); in the case q=s both elements 
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belong to the same subset. The set J(x,. ... ,xJ includes such pairs (x;, X;), that both elements 

belong to different subsets x., x, and the pair do not belong to the intersection x,rix,. 

It is obvious, that: 

I(x1 ••• ,x,)nJ(x1 ••• ,x,)={0} and I(x,. ... ,x,)vJ(x,. ... ,x,)={<i,J> l 1~ i,J5m;J> i}. (12) 

For any relation x,. ... ,x, in the set X the functions l1(x;, x1) and t2(x;, x;) characterizing 

this relation are defined (Tr O relates to the "true" relation x:, ... , x: ): 

where: 

n,= {slx,Ex,} and q,,= {l, ... ,r}-n,. 

(13) 

(14) 

(15) 

The properties of the estimators proposed below are based on the properties of random 

variables u~] ( xp--•, x,) and WJ> ( x,. ... , x,) defined, as follows: 

uJJ(x,. ... ,x,)= ltJ(x;,xJ-gy>(x„x1) I, 

wr><x,, ... ,x,) = r u<,t)(x,, ... ,x,). 
<i,j>El(z1, .... .f,)vJ(z1, ... , z,) 

(16) 

(17) 

For simplification of the notation, the symbols corresponding to the relation x:, ... ,x: 
will be denoted with asterisks (i.e. uW', t , f, etc.) while corresponding to any other relation 

x" ... , 'i, - with waves, e.g.: 

UJJ' = I Tj(x;, X1)- g;1\x,,x1) I, 

,-,(ł) - I ~ ( ) (/) ( ) I U/11- ff X1,X1 -g. Xt,Xj , 

(18) 

(19) 

It follows from (6) and (16), that the distribution function of each comparison error 

satisfies the conditions: 

(20) 
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3. The averaging approach 

In the case of the averaging approach, the basis for the problem of estimation of the 

relation are the averages of the random variables uW<x" .. . ,x,) , u1J", cf;;, w1><x" ... ,x,) , 

w1>· and w~>, i.e.: the variables: 

- _lN1. (/) I u 1u<x,, ... , x,l - -;:; ?:; r,<x, .x)- g, <x,.x1l , (21) 

(22) 

(23) 

w,= :E. _ff~1, 
<i,j>el V J 

(24) 

(25) 

The probabilistic properties of the difference: Wt -w 1 - the basis for the properties of 

estimation results - are determined on the basis of Hoeffding inequality (see Hoeffding 

(1963)): 

P(I.Y,- I,E(Y,) 2: Nt) S exp{-2Nt' l(b-a)'} , 
.ł= I ł==I 

where: 

fi (i=l, ... , N)- independent random variables satisfying the conditions: P(aśYiśb)=l, 

a, b, t - constants satisfying the conditions: t>O, b>a. 

They are determined in the following 

Theorem 1. 

(26) 

The random variables iVJ and w,, defined m (24) and (25) respectively, satisfy the 

conditions: 

(27) 
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(28) 

where: 

Tf...·)*Ti(·) is the set of the form {<i,J> I Tf...x;, x1)*T1 (x,,x1) }. 

The proof of the inequality (27) for .f=l, under assumption, that the distributions of 

comparisons errors (see (6)) are the same for each k (k=l, ... , N). 

The difference: uft>' -ff.;> can be expressed in the following way: 

(ł)" c,{ł)_I < ) (I)( )I 1-( > (I)( >I U1ij - u,u-T1 Xt,Xj -gł X1,X1 -11 X1,X1 -gł Xt,Xj . (29) 

random variable g;'>o can assume values, which satisfy the conditions: 

For the values Kin O ::::CT10 (the case (i)) the difference uft>· -ff.;> equals : -T10+T,O ; 

the last value is negative, its probability satisfy the inequality (see (8)): 

LP(T,(·)-g;\·)=i)> ½ . In the case (iii) the difference (29) is equal to: T10-T,(·)>O with 
'" 
probability (see (8) and (9)) LP(T,(·)-g;'>(,) =I)< ½. The inequality (ii) indicates T10-

1:.iriC->-1ie-> 

,, O ::::c 2 and the difference (29) is equal to: T1(,)+710-2 g;'\·). Moreover, the 

values T1(·)+71 (·)-2g;IJ(,) (T, (·) < g;'>(,) <T1(·)) satisfy the condition: 

(30) 

and assume the values from the set {-T1(,)+7,0+2, ... , T10-T,0-2} with probabilities 

The expression 
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(T,(·)<g;1>o<T1(·)) assumes values placed symmetrically around zero; their probabilities 

satisfy the conditions: 

P(T, (·) + 7,(-)-2g;'> = -1) ~ P(T, 0 + 7, (·)-2g;'> = 1) (1 >O); 

last inequality results from the fact, that in the case T1(-)+ 71 (·)-2 g;'\) =-1 the value of the 

difference T1(·)-g;'\·) is smaller (closer to zero), than in the case T1(-)+7,(-)-2g;1>0=1. 

Assembling the facts concerning the case: T10 >7,0, i.e.: 

I,P(T, (·) - gf> =I)< ½, 
12r,(·)- i'i(-) 

P(T,(·) + 7,(·)-2g;'> = -1) ~ P(T, (-)+ 7, 0-2g;'> = 1) (1 >O), 

one can obtain: 

The inequality: 

corresponding to the case T1(·)<7,(·) is proved in similar way. 

The inequalities (34) and (35) indicate - for each k (k=I, .. . , N)- the inequality: 

which is sufficient for (27). 

Proof of the inequality (28). 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

The inequality (28) is proved on the basis ofHoeffding inequality (26). The difference: ~-

wf can be expressed in the following way: 

(37) 

The probability P(w.- w, <O) can be expressed in the form: 
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P(w.- w, <0)=1-P(w.- w,;;,, O). (38) 

The probability P( w. - w, ;;,, O) can be evaluated in the following way. It follows from (29), 

that: 

P(w.- w,~ O)= 

(39) 

Introducing the notations: 

(40) 

one can express the probability (39) in the form: 

P( -• - ) I N W, -w, ~O =P(-L LD11>(-);,;0)= 
N M T/·>••I·) 

= P(f L D11>(·)-N LE(Df'>O);,; N(- LE(Df'>(·)))). (41) 
ł=I r,(-).c7,(.) ri(.).t7i(-) T1(•)1t7i(·) 

The probability ( 41) can be evaluated on the basis of the inequality (26), in the following way: 

2N( LE(Dfll(·)))' 
P(f L D1ll(-)-N LE(Df'>(·));,;N(- LE(DfllO)))S: exp{ r,<Vi,<·> }. (42) 

ł=I r.C-),t71M r,<·>,.U·> r,C·)1"110 (2(m-1))2 

The expression in exponent results from the fact, that: each value Dfll(x;,x1) satisfy the 

condition 

-(m-l)S:Df'>(x,,x1) 911-l (because n<m and therefore the number of subsets generating any 

conjunction in the tolerance relation cannot exceed m-1), the expected values E(Dil)(x,,x1)) are 

equal for Is:ks:N and equal to E(Df'>(x,,x) ); the last component LE (Df'l(x;,x1)) is negative 
T,0'7,(-) 

and therefore the term: - LE(Df'>(x,,x1)) is positive. The inequality (42) is equivalent to the 
T1(·)>:7i(-) 

proved inequality (28). The proofforj=2 is similar. 
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The inequality (27) shows, that the expected value of the random variable WJ is less, 

than expected value of any other variable w, . Moreover, the evaluation (28) indicates, that 

probability P(WJ <w,) exceeds or is equal to the right hand side of the inequality (28) . Thus, 

it is rational to estimate the relation x:, ... ,z: with the relation i, , ... , i , , which minimizes the 

value of the random variable W1(x" .. . , x.). It is meaningful, that the evaluation of the lower 

bound of the probability P( WJ < w) converges exponentially to zero, for N• oo. In the case 

of non-identical distributions of comparisons errors (for different k) the expected value 

E(Df')(x„x)) have to be replaced with min { E(Dr)(x,,x) )}. The probability P( Wi - w <O) can 
ł I 

be also evaluated with the use of other probabilistic inequalities. 

The estimated form ii , ... ,i, of the relation z;, ... ,z: can be obtained on the basis of 

the solution of optimization tasks: 

• N ,. (/) I mm[L L ~t<x, ,x1)-g, (x,, x1)), 
F x .ł= I XxX 

(f=l or2) (43) 

or 

(44) 

where: 

Fx - the feasible set of the problem (the set including all tolerance relations satisfying the 

conditions (1) and "non-degeneration" condition)). 

The feasible set of each problem (43) and (44) is finite and the optima( solution always 

exist; however the number of solutions of each task may exceed one. In the case of multiple 

solutions the evaluation (28) relates to whole set of solutions ( estimates). 

The evaluation of the probability of errorless solution obtaining (28) can be 

determined in the case of known probability distributions of the comparisons errors. In 
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opposite case, it is possible to determine some approximations of the evaluation. As the basis 

of the approximation can be used: 

• the estimated form of the relation i., ... ,i. (it allows to determine the estimates f 1 (•) and 

fi), the formulas (31)- (33) together with the conditions (8)- (9) or 

• the estimated form of the probability functions al/l (/) obtained on the basis of comparisons 

The first approach can be used for any value of N; however for N close to one such 

approximation may be of rough type. The second approach requires - for purpose of realistic 

estimates - an appropriate number of comparisons N (N>>n). 

Let us notice, that the right-hand side of the inequality (28) is based on the constraint -

(m-1):S:Df'>(x;,x;) :S:(m-1). Typically the value ±(m-1) is excessive (significantly greater, than 

n); especially in the case m-1> max{T,(x„x1)} the constraint ±(m-1) negatively influences 
X><X 

(decreases) the evaluation (28). Therefore, it is rational to replace the value m-1 with the 

estimate fi or max{f 1(x;,x1)}. 
XxX 

4. The median approach 

In the case of median approach the basis for estimation are the medians from 

comparisons of each pair and it is assumed, that N=2 i+ I ( r= 1, . .. ,). More precisely, each set 

of comparisons g(n(x;,x1), ... , g<jl(x;,x1) ((x;,xJEX x X) is replaced with their median 

gS[.~N(x,,x) and the variables uwcx, ..... x,), u~)"' ff;,}, W1(x, ..... x,), wi, W1 (f=I, 2) are 

replaced - respectively - with the variables: 

(45) 
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ce(- .N) J~ < > u, < >I U f,J = ff Xt,XJ -g __ N X1 , XJ , 

wc-.N)• = L u<me,N)' 
I <i,j >EJ"uJ• fil ' 

Wj-,N) = L_ JJ';'·N) . 
<.i, j >El u J 

where: 

(46) 

(47) 

(48) 

(49) 

statistics g)(,J. ,),i)(x; ,x) (g ){i\x„x), ... , g)~(x„x) - non-decreasing ordered results of 

comparisons). 

4. 1. The form of the estimator and its properties 

This problem considered in this point is similar to the single comparison case. 

However, the probability functions of the medians i :}.N (x„x1) ftom comparisons 

(x;,x1) EX x X are not the same, as the probability functions of individual comparisons 

gin(x,,x1) (15Jc~; therefore the properties of the tolerance relation estimated on the basis of 

the medians are also not the same, as in the single comparison case. The properties of the 

estimator based on medians are presented in the following 

Theorem2. 

The random variables w~-.N)· and wj-.N) defined in ( 48) and ( 49) satisfy the conditions: 

where: 

v- the number of elements of the set {(x;, xJEX x X I T,(x;,x1) ,;,71 (x; ,x1) ;J> i} . 
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Proof of the inequality (SO) for f=l, assuming the same distributions g\1\) for each k 

(k=I, ... , N). 

The inequality (50) is true for N=I (it results from the Theorem I, for N=l). For N=2rt-1 

(r-1, ... ,) it can be shown, that the probability function P(T1(x;,x1)-g~;.N(x;,x1))=l) (N=2rt-l; 

r-0, I, ... ,) satisfies for each pair (x;, x1)EX x X the inequalities: 

(/ct:-0). 

(52a) 

(52b) 

The inequalities (52a) and (52b) result from the following facts. The probabilities: 

P(T1 (x;,x1)- g~,;.N (x; ,x1) = I) can be expressed in the form (see David (1970), section 2.4): 

NI G\O) = . 1 J /N-1)/1(1-tiN-l)/ldt' 
(((N-1)/2)!) G(- 1) 

(53a) 

P(T, (x;,x1)- g~!.N (x;,x1) =I)= 

NI G(l) 
___ • -~2 j t<N- 1)12(!-t)(N-l)l2d/, 

(((N -1) / 2)!) G(l-1) 
(53b) 

where: 

The expressions (53a) and (53b) are determined on the basis of beta distribution B(p, q), with 

parameters p= q=(N+ I )/2. The expected value and variance of the distribution assume the 

form - respectively: ½ and ((N+I)/2)2/(N+I)2(N+2)=1/4(N+2). The variance of the 

distribution converges to zero for N• oo and the integrand in integrals (53a), (53b) is 

symmetric around ½. These facts guarantee, that: the distributions of the random variables: 

14 
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T,(x,,x1)-g~.N (x,,x1) ((x;, lj)EXxX) are for each N unimodal, their probability functions 

assume maximum in zero (i.e. for T,(x,,x1)- g~.N(x,,x1) =o) and satisfy the inequalities (52a), 

(52b ). Last two conditions are sufficient (see the assumptions (8), (9) and inequality (27) from 

the theorem l) for the inequality (50). 

Proof of the inequality (51). 

Let us introduce the notations similar to those in the Theorem 1: 

(54) 

Thus, the difference (54) can be expressed in the form: 

and the probability P( wf~.N>· - 1vt·NJ ;,:O) can be evaluated on the basis of Chebyshev 

inequality for expected value, in the following way: 

P(wf~.N>· -wi~·NJ;,,O) =P( LD~;(,);,,O)= 
r.01-tk> 

=P( L(D~(·)+m-l);,:v(m-1)) (55) 
r,C•)-..7.(o) 

( v- the number of components of the sum LD~O ). 
T.1FP-T1C·) 

The probability (55) can be evaluated with the use the Chebyshev inequality: 

P( L(D~(·)+m-l};,:v(m-l))~-1-E( L(D~W+(m-l)))=l+-1-E( LD~(,)). (56) 
r,C·Vi,O v(m -1) r,O•T,O v(m -1) r,C·)•T,C·) 

The last expression in (56) is equal to the right-hand side of the in equality (51). 

The proofforj=2 is similar. 

o 

The expression - 1-E( LD~.N(,)) (in the right-hand side of the equality (51 )) is not 
v(m -1) T,(·)•T,O 

positive, more precisely - it is included in the interval (-1, O). Its numerical value can be 

determined in the case of known distributions of comparison errors P( T, 0- g~.N O). In 
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opposite case they can be approximated in some way. The approximation procedure based on 

the relationships (53a), (53b) (see David (1970), section 2.4) and some additional assumptions 

(quasi-uniform distribution with symmetry oftails) is proposed in the point 4.2 below. 

The evaluation (56) is typically significantly weaker, than (28). However, some 

asymptotic properties of the estimator based on the medians can be determined too. They 

result from the properties of beta distribution for N• oo (see relationships (53a), (53b)). They 

indicate, that the median g~_N(·) converges in stochastic sense to Ti(-), i.e. for any &>O it is 

valid: IimP(~;'.;.NO-T,(·)I > e) = o and the difference E( wf~.NJ• )-E(w(""·NJ) converges to some 
N• ~ 

negative value. The speed of the convergences is the problem for future investigations. 

The right-hand side of the inequality (51) is based on the fact, that -(m-

l):!>D~ (x,, x1)sm-I. Such constraint is typically (i.e. for m-l>max{T,(x,,x1)}) too excessive. 
x,x 

Therefore, it is rational to rep lace the value m-1 (in the right-hand side of inequality (51)) with 

the estimate i, . 

The optimization problems for the median approach, are similar to those formulated 

for the case of single comparison of each pair (see Klukowski (2002)), with that difference, 

that individual comparison g<[>(x1,x1) ((x,, xj)EX x X) is replaced with the median 

{/=l or2) (57) 

or 

(58) 

(Fx - the feasible set of the problem). 

The problems (57) and (58) are simpler to solve in comparison to the problems (43) 

and ( 44); the number of solutions may exceed one. 
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4.2. The procedure for an approximation of the distribution function P( T, (x;, ~)- g~.N (x;, x1)=l) 

The approximation procedure proposed in this point is especially useful for moderate 

N, namely N=S, 7, 9, 11; for N> I O the Gaussian approximation can be also u sed (see David 

(1970), point 2.5). 

The procedure is based on: some kind of "upper bound" distribution, the formulas 

(53a, b) and the estimated form of the relation. The "upper bound" distribution (a kind of 

evaluation) is obtained on the basis of: the conditions (8)-(9), some quasi-uniform (discrete) 

distribution and an assumption, that the values of tai Is of comparisons errors are symmetric, 

i.e. P(T,,(·)- g;/)(·) < O) =P(T1(,)- g;1\-) > O) - with except of extreme values of T 1 (-) (minimum 

and maximum). Estimated form of the relation, i.e. i ..... ,i., allows to determine the values 

f 1 (x„x1) ((x;, x1)EX x X) and ;, . The estimates can be also used for determination the 

extreme values f 1 (x;,x1) and the sets of admissible values (range) of comparisons gyi(x;,x1). 

It is suggested to determine the range of comparisons in the following way: to assume 

minimum equal to zero and maximum equal to i,. The minimum is natura( - because any 

comparison result cannot be negative. The maximum can be assumed in many ways, e.g.: 

max{ f 1 (x;,x1) I (x;, x1)EX x X} or ;, or m-1. The "compromise" value is the estimate i,, 

because max{ f 1 (x;,x1) I (x;, x1)EX x X} ś n ś m-1. The assumptions about symmetry oftails 

and quasi-uniform distribution of each taił allow to determine the distributions completely. 

Symmetry of tails is not unrealistic, because zero is the median of each distribution of 

comparison error T1 (-)-gV°\). The relationships (53a, b) allows to determine of the 

distributions functions of med i ans of comparisons errors for N> I. 

The quasi-uniform distribution is constructed for .f=l in the following way. The 

estimates f,(-) and ;, are used instead of the actual values Ti(-) and n (i.e. they are assumed 

constants, not realizations of the random variables). The probabilities P(Tj(-)- g;/)(·) <0) and 
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P(T10-gf\> > O) are assumed equal (for f 1(·) te-O and f ,(·)te-i,); the probabilities P(TJ·)­

gf'(·) = -/) are assumed equal for each (integer) />O and the probabilities P(Tl)- g;n (-) = I) are 

assumed equal for each (integer) />O (quasi-uniform distribution). For the case: f 1 ( ·) te-O, 

f 1 (-)te-i,, i, >2, i, - odd and f 1 (-) <i, /2 the "upper bound" distribution of comparisons errors is 

obtained for each pair (xi, xi) from the system of equations: 

In the case f 1 (·) > i, /2, the equation (62) is replaced with the equation : 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(the probability Pb( f 1 (·)- g;1'(·) = O) is equal to max{Pb(f1 (·) - g;1'c•) =I) , Pb(f1 (·) - g;1' ( ·) = -1) }). 

In the case f 1 ( · ) =O the system assumes the simple form: 

(65a) 

(/=!, .. . , ii), 

while in the case f 1 (-)=i,, the second relationship in (65a) is replaced with: 

(/=l, ... , i,). (65b) 
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In the case of even ;, (;, >2) it is necessary to take into account the equity f, O=;, /2. 

In this case the distribution of comparison errors is assumed in the form (an uniform discrete 

distribution): 

Pb(f.(-)-g~>(,)=/)=J/(n+l) (/=-n/2, ... ,O, ... , F,/2). 

In the case ;, =2, the system assumes the simplest form: 

for f,(-)=1 ~ 

Pb(f,(·)-g~>o =O)= 1/2; Pb(f,O-g\'\) = -))=Pb(f,(-)-g~\-) = -2) =)/4; for f,O =O.J 

(66) 

(67) 

Each probability function generated by above systems of equations can be considered, 

as a kind of a "conservative approximation" of the actual distribution function, because any 

other distribution (based on estimated relation form ,i., ... ,,i,; and a distribution function with 

symmetric tails) is mare concentrated (its variance is smaller). Ifthere exists same knowledge 

about asymmetry of tails, then the equation systems (59) - (67) ought to be modified, 

especially the equality (61). 

The distribution function obtained on the basis of the equation systems (59) - (67) 

allows to use the relationships (53a, b) for determination the "upper bound" approximation of 

the probability function p~m•.Nl(T1(x;,x1)-g~:!.N(x;,x1) =I) of the median in the following way: 

NI a,Ol 
----2 j /N- l)/ 2(l-/)(N- l)/ 2dl' (68) 
(((N -l)/2)!) a,0- 1) 

The approach presented above allows to determine same upper bound of the right­

hand side of inequality (5 I). 
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In the case N>> i, the upper bound distributions functions can be replaced with 

estimated distribution functions; especially nonparametric estimators can be used. 

5. Example of application of algorithms proposed 

A simple (simulated) example of an application of the estimators proposed is 

considered below. The relation under examination assumes the form x:={x1, x2, x3, x4 }, 

x; ={x3, X•, xs}, x; ={x•, x6}, x: ={x1}. Each pair (x;, x1) is compared five times (comparisons 

are independent); the results of comparisons (a result of stochastic simulation) are presented 

in the Table I, while the distribution functions of the comparisons are presented in the Table 

2. The function T10 assumes the following values: 

5. I. The algorithm based on averaging approach 

The estimated form of the relation x,, ... , x, is obtained on the basis of the 

optimisation task (43), for .f=i. It assumes the form i, ={x1, x2, X3, X•}, i, ={x3, X4, xs}, 

i,={x•,X6}, i,={x1}, i.e. is the same, as the errorless one; therefore i,=11=4. The minimal 

value of the function (43) equals 23, the solution is not multiple. The evaluation of the 

probability (28) is determined for the relation x, ={x1, x2, X3, X4}, x, ={x1, x3, x4, x5}, 

x, ={x1, X4, x6}, x, ={x1} - similar to errorless one. The difference between the relations 

x:, ... , x: and x,, ... , x, concerns the element x1; in errorless form of the relation it belongs 

(exclusively) to the set x:, while in the relation x,, ... , x, it belongs to the intersection /lx,. ~, 

The value of the function (43) corresponding to the relation x,, ... , x, equals 41. The 
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inequalities T1(•);q, (·) appear for the pairs: (x1, x1), (x1, X4), (x1, xs), (x1, X6); the values 7, (·) 

for these pairs are equal: 7, (x„x,) = 2, 7, (x, ,x,) = 3, 7, (x,,x,) = 1, 7, (x,,x,) = I. 

The evaluation (28) requires the probabilities functions of comparisons errors and the values 

T,(x,,x) ((x;, x1)eX x X). In the case ofunknown distributions and N=5 it is rational the use 

the approximation of probabilities functions Pb(f, (·) -g;'\·) =I), described in the point 4.2 (see 

(59) - (67)). For the pair (x1, x1) the system of equations assumes the form (the distribution 

functions P(g;'>(-) = 1) for all pairs satisfying the inequality T1(·)*1, (-) are presented in the 

Table 3): 

± P, ( f, (x,, x,) - g;'> (x,, x,) =-/)=Pb( f, (x,, x,) - g;'> (x,, x,) =I), 
l=I 

±P,(f,(x,,x,)-g;'>(x,,x,) =I)= I . 
/:-J 

(69a) 

The solution of the above system assumes the form: 

(69b) 

The expected value E(nł'1 (x1, x1)) corresponding to above "upper bound" distribution is 

equal: 

t< I 1-0 I+ I 1-1 I )+HI 1-2 I+ I 1-3 I+ I 1-4 I H < I 2-0 I+ I 2-1 I H < I 2-2 I+ I 2-3 I+ I 2-4 I )=-t. 
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Table 1. The results of comparisons (simulation) 

Pair g):(<·) g)~/) g):\o gl~i<-l gg\o g~(-) th~l)<·) 
(i,j) ,t::,) 

(I, 2) I I I I I I I 

(l, 3) I l 2 2 3 2 1,8 

(I, 4) I I I 2 2 I 1,4 

(I, 5) o o o o o o o 
(I, 6) o o o I l o 0,4 

(I, 7) o o o o o o o 
(2, 3) I I I I I I I 

(2, 4) o I I I 2 I I 

(2, 5) o o o o o o o 
(2, 6) o o o o o o o 
(2, 7) o o o o I o 0,2 

(3, 4) 2 2 2 2 2 2 2 

(3, 5) I I I I 2 I 1,2 

(3, 6) o o o I I o 0,4 

(3, 7) o o o o o o o 
(4, 5) o I I I 2 I I 

(4, 6) o I 2 2 2 2 1,4 

(4, 7) o o o o I o 0,2 

(5, 6) o o o o o o o 
(5, 7) o o o o o o o 
(6, 7) o o o I l o 0,4 

The expected values of remaining pairs are determined in similar way and their is 

equal: 

Thus the evaluations of the right-hand side of inequality (28) equals: 

1N( :[E(D}'1{,)))1 

exp{ r,CVi,O }= exp{-0,1037} = 0,9015 
(2(m-1))2 
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and the evaluation of the probability corresponding to m-1 (denoted Pi';/.. ,(w.-w, <O)) 

assumes the form: 

Pi';/..,(w.-w, <0)2:1 -0,9015= 0,0985 . (70) 

If the value m-1 is replaced with the estimate ii =4, then : 

Pi".,;>(w.-w, <O) 2: 1-exp{-0,1910}= 0,1739. (71) 

Table 2. The probability distributions functions P( g;'> (x;, x)=l) - the basis for simulations 

Pair P( g;I) (X;, Xj)=l) 

(i,}) L=O /=l /=2 /=3 /=4 

(I. 2) 0,2 0,6 0,1 0,1 o.o 
(1 , 3) 0,2 0,5 0,2 0,1 o.o 
(1 , 4) 0,1 0,6 0,3 o.o o.o 
(1, 5) 0,7 0,2 0,1 o.o o.o 
(1, 6) 0,8 0,2 o.o o.o o.o 
(1. 7) 0,9 0,1 o.o o.o o.o 
(2, 3) 0,1 0,8 0,05 0,05 o.o 
(2. 4) 0,2 0,75 0,05 o.o o.o 
(2, 5) 0,75 0,25 o.o o.o o.o 
(2, 6) 0,65 0,35 o.o o.o o.o 
(2, 7) 0,9 0,05 0,05 o.o o.o 
(3, 4) o.o 0,1 0,7 0,1 0,1 

(3, 5) o.o 0,7 0,2 0,1 o.o 
(3, 6) 0,8 0,2 o.o o.o o.o 
(3, 7) 0,9 0,1 o.o o.o o.o 
(4, 5) 0,3 0,6 0,1 o.o o.o 
(4, 6) 0,3 0,4 0,3 o.o o.o 
(4, 7) 0,9 0,1 o.o o.o o.o 
(5, 6) 0,85 0,1 0,05 o.o o.o 
(5, 7) 0,95 0,05 o.o o.o o.o 
(6, 7) 0,6 0,3 0,1 o.o o.o 

The evaluations obtained on the basis of the actual probability functions (see Table 2) 

assumes the form - for m-1 and ii respectively: 
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p~/(iG-u\ <O)~ l-exp(-0,5444} =0,4198, (72) 

P~~>(iG-w1 <O)~ l-exp(-1,2250}=0,7062. (73) 

The evaluations (70) and (71) assume low values (closer to zero, than one), but the 

relations x:, ... , x; and i,, ... , i, are similar and ditferences between the "upper bound" 

and actual distributions are not negligible (see tables (2) and (3)). If the relations i,, ... , z, 

and x:, ... , x: are "more distant" (i.e. the set {T,(-);,e7,(·)} includes more elements), then the 

expression ( ~ E(ni'>(x1, x3)))2 increases and the evaluation of the probability (28) also 
T1{·),.71(·) 

rises. The evaluations (72) and (73) based on actual probability functions are much better 

(especially (73)), than those "conservative". 

Table 3. The "upper bound" distributions functions P(g;'\) = ,) 

P(g;'\·) = t) 

Pair <i,J> I= 0 I= 1 1= 2 I= 3 1=4 

<l, 3>, <l, 4> 1/3 1/3 1/9 1/9 1/9 

<l, 5>, <l, 6> ½ 1/8 1/8 1/8 1/8 

The empirical results confirm usefulness of the averaging approach. They suggests 

also, that the evaluation (71) based on the estimate n and "upper bound" distribution can be 

used in practice, as a rough approximation, albeit its value may be significantly below the 

probability resulting from the actual distributions. 

5.2. The algorithm based on median approach 

The medians from comparisons g):((x„x1), .. , g);>(x,,x1) ((x;, X,)EX x X) are presented 

in the Table I. The optimal solution of the task (57), for f=l, is the same, as errorless one and 

those based on averaging approach. The minimal value of the function (57) equals 2, the 

solution is not multiple. The approximation of the right-hand of the probability (51) is 

deterrnined with the use ofalgorithm described in the point 4.2 (see (59)- (67) and (68)). The 
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first step of the median approach - determination of the probabilities Pb( f, (-) -g;'\) = I) - is 

described in the point 5 .1. The second step - determination the values of the formula ( 68) - is 

performed, as follows. The expression for the distribution of the median (for conservative 

distributions) of comparisons errors assumes the form (see (53a, b )): 

51 a,(I) a , (I) 3 (/) 
---· --2 J ,<5- l) tl(J-1i'- 1l' 2d1=JO J 12 (1-1) 2dt=30/ ( l-1/2+1 2 /5) / a, . (74) 
(((5 - I)/ 2)!) a,(1 - I) a,(1 - I) J a ,(1 - 1) 

For the pair (x1, x3) the distribution of the median of comparisons errors obtained on 

the basis of: the probability function resulting from the relationships (69a), the estimate 

f 1 (x1,x3) and the expression (74) assumes the following form: 

Thus, the expected value Eb(lf1 (x1,x3)-g~,(_5 (x1,x3 )/-/T,(x,,x,)-g!_,(x,,x,)/) assumes the 

form: 

Eb(lf,(x, ,x,)- g::!_,(x,,x,)/-/Ti<x,,x,)- g~_,(x, ,x,)/)= 

=0,0112c I 1-41-12-4 I )+0,0632( i 1-31-12-3 I )+o,13o5( i 1-21-12-2 I)+ 

+o,5901c I 1-1 I- I 2-1 I )+0,2050( I 1-01-12-0 I )=-o,5901. 

and: 

The remaining components of the sum E( I D/2~(-)) are determined in similar way 
T1(·),.71(·) 
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The evaluation of the probability corresponding to the value m-1 (denoted 

Pi;:, (wf-·'>' -1vi~·•> <O)) assumes the form: 

Pin;;_'?cwf-·'>'<wt·'>) <'.--1-E< rn~ .. rn=-(1/(4*6))*(-2, 1866)=0,0911. 
v(m -1) r,C·>•7,0 

(75) 

If the value m-1 is replaced with ii, then: 

Pi:,;'·'>(wf=·•r < wi-·•>) <'.-~E( LD~,.(,)) =-(1/4*4)*(-2, 1866)=0, 1367. 
m r,(•),,T1fl 

(76) 

Both evaluations (75) and (76) are rather poor, but they are based on rough 

probabilistic inequality (51) and "conservative" distributions functions Pb( f, (·) -gi'> (,) = /) . 

However, in the example under consideration, both approaches (averaging and median) 

indicate the same estimation result and therefore the evaluations of the probabilities obtained 

for the averaging approach are valid also in the median case. 

6. Summary and conclusions 

The methods of the tolerance relation estimation presented in the paper are often 

essential in practice, but seidom discussed in the literature of the subject. The idea of the 

methods proposed is the same, as in earlier author's papers in this area (Klukowski (1990, 

1994, 2000, 2002, 2006)). The results obtained are especially meaningful in the case of 

averaging approach, when N• oo; they indicate, that the probability of errorless result of 

estimation converges exponentially to one. The estimator based on the comparisons median 

also posses some asymptotic stochastic properties and is simpler from computational point of 

view. The range ofstatistical properties ofboth estimators can be extended. 

The important features of the estimators proposed are weak assumptions about 

stochastic properties of the comparisons. Especially, the distributions functions of 

comparisons errors may be unknown, the comparisons of different pairs may be not 

independent in stochastic sense and the number of the subsets in the relation is not required. 
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Such features of comparisons are typical, when they are obtained with the use of statistical 

tests or other decision functions, generating random errors. 

The estimated form of the relation is obtained on the basis of the optimal solution of 

appropriate discrete programming tasks. Therefore, the number of solutions may exceed one; 

each of them can be regarded, as estimated form of the relation. It is not a negative feature of 

the methods proposed; the unique estimate can be selected with the use of additional criteria, 

e.g. number of elements in intersections (maxi mal or minimal). 

Empirical experience confirms usefulness of both estimators proposed, however it 

seems rational to perform also a broader simulation experiment. 
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