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Abstract: The methods of tolerance relation estimation on the basis of pairwise comparisons with
random errors, in the case of multiple comparisons of each pair are proposed in the paper. Each
comparison expresses the number of common features of both elements or the number of their
missing features. The assumptions made about distributions of comparisons errors are very weak,
especially they may be unknown. Two approaches are discussed: the first one based on averaging
of each pair comparisons and the second based on the median from comparisons. Results of
estimation are obtained on the basis of discrete programming tasks. The properties of estinators
are based on some probabilistic inequalities. An example of application of the estimators proposed

is presented too.
Keywords: tolerance relation estimation, multiple pairwise comnparisons, comparisons expressing

the number of common features

1. Introduction

The tolerance relation is a relaxed form of the equivalence relation, i.e. without
transitivity property. It divides a set of elements into a family of subsets with at least one non-
empty intersection. The relation is a model of many real-life phenomena, e.g. analysis of
marketing data (purchasing patterns of customers, when comparisons are applied to some
number of independent purchases of each customer and the number of patterns in not known);
some other example - analysis of empirical functions shapes - is presented in Klukowski

(2006).

The methods of tolerance relation estimation presented in the paper are extensions of
the approach introduced in Klukowski (2002) section 4, for the case of N>1 independent
comparisons. The methods exploit the idea of nearest adjoining order introduced by Slater

(1961) for the preference relation (see also David (1988)). Two approaches are examined in



the paper: the first one - based on averaged comparisons of each pair and the second - based
on the median fram comparisons. In both cases it is assumed, that each comparison expresses
the number of subsets of an intersection including both elements (in other words a number of
common features of both elements) or the number of subsets, which do not comprise both
elements (a number of missing features of both elements). The estimated form of the relation
is obtained on the basis of optimal solution of some discrete optimization probiems. The
properties of the estimators proposed are based on well known probabilistic inequalities:
Hoeffding (see Hoeffding (1963)), Chebyshev (for expected value) and properties of the order
statistics (see David (1970)). An important property of the first estimator - based on the
averaging approach — is the fact, that the probability of errorless estimation result converges
exponentially to one, for N—o. The effectiveness of the median approach (evaluation of the
probability of errorless result) is worse than those corresponding to the averaging approach,
but optimization problem for this case is easier to solve. Empirical experience and some
asymptotic properties of the median indicate, that the advantage may be not significant for
some type of distributions of comparisons errors. For both approaches it is possible to obtain
some approximations of the probability of errorless solution obtaining in the case of unknown

distributions of comparisons errors.

The papers consists of six sections. The second section presents basic definitions,
assumptions and notations. In the third section the averaging approach is examined. The
fourth section presents the median approach and an algorithm for determination the
probability function of the median. In the fifth section an example of application of both
approaches is discussed; the example is based on stochastic simulations. Last section sums up

the results presented.




2. Basic definitions, assumptions and notations

It is assumed, that there exists an (unknown) tolerance relation (reflexive, symmetric)

in a finite set X={xi, ..., X} (m>3); the relation divides the set X into a family of subsets

Zir e X, 1<n<m, with the following properties:

Uz,=X, £#), 3q,5 (g25) 7,y HD) . 1)

=1

Moreover, in purpose to avoid “degenerated” form of the relation it is assumed
additionally, that in each subset I;CX there exists an element x;, which belong to the subset
z, only, i.e.. xey, and x;e g, for szq.

The basis for further considerations are two functions 7)(-) and 73(-), defined as

follows 71 : X xX—>D, I, . XxX > D,D=(0, I, .., n}, where:

Ti(xi, %) = # ' n@))), 2)
Da(xi, %) = #0¥; N w)), 3
where:

«x - the set of the form ¢’ ={s|xc 5},
y; -the set of the form ¥, ={1, .., n}-q;,
#(E) - number of elements of the set Z.

Under the assumption about “non-degeneration” of the relation, each function

T1(?) and T»(-) characterize the relation form.
If an element x, is included in some subset y;, it can be interpreted, that it posses

some feature; if it is included in a conjunction N y;, then the element posses some set of
qeR

features. Thus, the function 71(-) express the number of common features of elements x; and



x;, while the function 73(-) express the number of lacking features of both elements, from the
features existing in the set X.

It is assumed, that the basis for estimation of the relation are results of comparisons
g0 (. x) orfand gP(x,x) (1<k<N; (x;, x)eX x X; j=i), corresponding to the form of the
functions 71(-) and Ty(-) respectively. The comparisons g!”(x,x;) observed instead of
(unknown) values T(x;, x;) are disturbed with random errors; they can be obtained, as a result

of an application of statistical tests, expert opinions or other decisions functions.

The comparisons are defined in the following way:

& (nx) = d%, W eD, 'C))
8PGnx)= dP, d®eD, 5)
where:

a5 (=1, 2) is the assessment of the value T(x;, x;), obtained in k-th comparison.

The probabilities of random errors of each comparison are determined with the use of
the probability function:
P(Tx ) g3 (ai, X))=D)= () ((x, x)e X x X; f=1, 2; -n<l<n). (©6)

It is assumed, that comparisons g“(x;,x,) and g% (x,,x,) (x%1) are independent, i.e.:
P((gd (xi, )= a2 ) (g (xg, x:)=a$2 ))=P (8 (6i, )= aff2 YP( £ (g, x:)= D) M

x ix

and the probabilities {{’() satisfy the conditions:

Zaflf > )., ZaifP > ), ®)



dPOZaP+1), 0, |
i ©)
af OzaPU-0, I<0. )

The conditions (8) — (9) guarantee, that: zero is the median of each distribution (on the
basis of median definition), each probability function is unimodal and assumes maximum in
zero. The expected value of the any comparison error £(7(-)-g{() can differ from zero; it is
typical for T(-)=0 or T{-)=n.

Both types of comparisons g’(¢) and gP() can be used as a base of estimation of the
relation form - separately or simultaneously. In the second case it is assumed, that
comparisons ¢’() and gP() are not correlated, i.e. Cov(g (), ¢’())=0. Correlation of
such comparisons means, that their content is similar.

It should be emphasized, that comparisons of different pairs g7 (x;,xp and g{"(x,,x,)
(<i, j>#<r, s>, k, f - fixed) are not assumed independent (in stochastic sense).

For simplification of further considerations it is assumed, that the distributions of
comparisons g{”() are the same for each k (1<k<N); an extension for the case of different
distributions for individual k is not difficult.

Let us define for any tolerance relation y,,..7, in the set X, the following sets of
indices I( x,,...x,) and J( g,,..x.):

ICxyox, =<, > | 3q, 5 (g=s not excluded) such, that xi, x;€ y,nx,; />i}, (10)
J ez, y=4<E, 7> [ there do not exist q, s such, that x;, x;€ y, ny,; i} (11)

The set I( g,.....x, ) includes such pairs of indexes <7, />, that there exists an intersection

x40 x, of some subsets comprising both elements (x;, x;); in the case g=s both elements



belong to the same subset. The set J( y,,...x, ) includes such pairs (x;, x;), that both elements
belong to different subsets y_, y, and the pair do not belong to the intersection x,ny, .
It is obvious, that:
Kt IV et YD) a0 Ly, YOI e )={<5 2 11 joms j>0). - (12)
For any relation y,,..y, in the set X the functions #(x;, x;) and #(x, x)) characterizing

this relation are defined (7 (-) relates to the “true” relation g,,..., x, ):

1i(x, %) = #(QQ), (13)
tx;, X)) = #(P, "), a4
where:

o ={slxey,yand w,={1, ., r-q. (15)

The properties of the estimators proposed below are based on the properties of random

variables y®( x,,... x,) and W (y,, ..., x,) defined, as follows:

U8 (o 2.) = 140, 5) -2 G |, (16)
WP s 1,) = b UG, 2) a7

<d, J2el( gy 0 2T (Z) o 2y

For simplification of the notation, the symbols corresponding to the relation y, .., y.
will be denoted with asterisks (i.e. U4, I', J', etc.) while corresponding to any other relation

T 7, - with waves, e.g.:

o= T, %) g G |, (18)
(7(,:,)21 FrGenx) -8 (xinx) [ (19)

It follows from (6) and (16), that the distribution function of each comparison error
satisfies the conditions:

P8 =D =aPD+alD  (PO). (20)



3. The averaging approach

In the case of the averaging approach, the basis for the problem of estimation of the

relation are the averages of the random variables U%(x,....x), UW, T%, WP, ... 1),

w¢" and W"” i.e.: the variables:

— 1 ¥

T (X 2) = W—E ,ff(XhXj) -8 (x| 2D
U= [ Gix) 2 ()| (22)

i N& S Xy I3 1> X0 >

~ N

Ugy ™ E IN o)~ g, (x:,xj)| (23)
V= T T @4)

<i,j>el vJ
W/=<” el f—U-‘ﬁj. (25)

The probabilistic properties of the difference: 7 -7 , - the basis for the properties of
estimation results - are determined on the basis of Hoeffding inequality (see Hoeffding
(1963)):

P(ZY,~ FEW)2 NS exp(-anr (b-a)} (26)
where:
Y, (=1, ..., N) — independent random variables satisfying the conditions: P{as¥<b)=1,
a, b, ¢ — constants satisfying the conditions: £~0, b>a.
They are determined in the following

Theorem 1.

The random variables j7, and j7,, defined in (24) and (25) respectively, satisfy the

conditions:

EG7;-7,) <0, @7)




N E E(r0-g"0-F,0-g0p)»
T =T, ()

I3 (28)

P, -7, <0)z1-ewt 20m-)

where:
T{)%F, () is the set of the form {<i, /> | T{x;, x)#7 ,(x,.x)) }.
The proof of the inequality (27) for f=1, under assumption, that the distributions of
comparisons errors (see (6)) are the same for each k (=1, ..., N).
The difference: U{)"- 7% can be expressed in the following way:
U =78 =1 G %)~ £ G 2] - [Fi G ) - 85 Gr )] (29)
The fact Ti(-)#7,() indicates: T1(:)>7,() or Ti()<F,(). In the case Ti(:)>7,() each
random variable g’() can assume values, which satisfy the conditions:
O &’0=Ti();
(i) 7O<g’O<TNi();
(i) £’ O<T0.
For the values g{"()2T1(") (the case (i)) the difference v¥"~7¥ equals: -T1()+7,0);
the last value 1is negative, its probability satisfy the inequality (see (8)):

ZPTO- g(=n>"%.1In the case (iii) the difference (29) is equal to: 71(:)-7,()>0 with

probability (see (8) and (9)) ’ZT(§£STI(~)—gS)(-)=I)< V4. The inequality (ii) indicates 7i(-)-
71022 and the difference (29) is equal to: Ti(:)+7,(0-2gP(). Moreover, the
values T1()+7,0-2g°0 (7,0 <gP¢) <Ty(")) satisfy the condition:

N O<TOHRO2870 < Ti()-7,0 (30)
and assume the values from the set {-T1(:)*7,(00+2, ..., Ti(:)-7,(9-2} with probabilities

PO+F0-2g0=0=P@EP=(0+7,(0-n/2). The  expression  Ti()*+7,0-2¢"0)




(7,0<gPO<T(-)) assumes values placed symmetrically around zero; their probabilities

satisfy the conditions:
PO +F,0-28 = -0 2 P O+T,0- 28 =0) (1>0);
last inequality results from the fact, that in the case Ti(:)+7,()-2¢g"()=-1 the value of the

difference T1(-)-g() is smaller (closer to zero), than in the case T1(:}+7,()-2g"(=1.

Assembling the facts concerning the case: 71(-) >7,0), i.e..

ZPTO-80 =0 > %, @D
b0 -8 =D <, (32)
PO +T,0-28 =02 PO (I+T,0-28=1) (1>0), (33)
one can obtain:

Euy -1 1i() >7,0)<0. (€]
The inequality:

Eu -0 () <7.0)<0 (33
corresponding to the case 11(-)<7,() is proved in similar way.

The inequalities (34) and (35) indicate - for each k (k=1, ..., N) - the inequality:
EUy-))<0; (36)

which is sufficient for (27).
Proof of the inequality (28).

The inequality (28) is proved on the basis of HoefIding inequality (26). The difference: 7 -

i, canbe expressed in the following way:

% z )(ITu(xnx,)—gil)(x/,x/)’"lrn(x/.x,)"gil)(xnx/)‘)< 37N

1
N k2l Ty o 1o,

Wi -,

The probability P(j7| - ji7, <0) can be expressed in the form:




P(7i- 7, <O)=1- P(- 7,2 0). (38)

The probability P(j7; - j7,2 0) can be evaluated in the following way. It follows from (29),

N
b L nGx) - gl Gox )il x ) - 88 G x ) 2 0). (39)

S |

= (__

N k=1 1y, x)2 T (xnxp)
Introducing the notations:

D (x;, X)) = ITx(x,.x,) -2 0xx, )I -7\ x) - gil)(x.,x,)J (40)

one can express the probability (39) in the form;

o —== = LN (l) =
P(i7y -y, 20) PN”;;l r;(* ()20)
=P 3 % pPO-—F TEOPOE-—% TEOPO)=
N i3 o0 N izt nosno N i noeho
=P(‘7A;‘l mg ()Di"() N §E(D"’())>N(-T ZE(Df‘)()))) 41

The probability (41) can be evaluated on the basis of the inequality (26), in the following way:

WNC ZEDO O

PE 3 DPO-N SEDPOD)2N TEQPONS expl-—TI0H0__ ) (42)
Bl 170 O T (2(m-1))

The expression in exponent results from the fact, that: each value p{®(x,x,) satisfy the
condition

-(m-1)<p®(x,,x,) <m-1 (because n<m and therefore the number of subsets generating any
conjunction in the tolerance relation cannot exceed m-1), the expected values E( p{(x;,x,) ) are

equal for 1<k<N and equal to E(D{(x,.x,)); the last component T E (p{(x,,x,)) is negative
T

and therefore the term: - ZE(D O (x,,x,) is positive. The inequality (42) is equivalent to the
FI0710]

proved inequality (28). The proof for /=2 is similar.
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0
The inequality (27) shows, that the expected value of the random variable j7, is less,
than expected value of any other variable ji7 . Moreover, the evaluation (28) indicates, that
probability P(j7; <u://) exceeds or is equal to the right hand side of the inequality (28). Thus,

it is rational to estimate the relation y|,..,z, with the relation %, .., #,, which minimizes the

value of the random variable ¥ ,(y,, ... x,). It is meaningful, that the evaluation of the lower
bound of the probability P(j7, <j7 ) converges exponentially to zero, for N—>eo. In the case
of non-identical distributions of comparisons errors (for different k) the expected value
E(D®(x,x, ) have to be replaced with min { £(DP (x.x)) )} The probability P(j7; - j7, <0) can

be also evaluated with the use of other probabilistic inequalities.

The estimated form 3,,.., 7, of the relation g}, ..., 7, can be obtained on the basis of

the solution of optimization tasks:

min[Z % lrx) -2 Gl (f~1or2) (43)
Fr k=l XX

or
min[Z 3 dCxx) - 0 G|+ o) - 80 G 1, (44)
Fr k1 XX

where:

F, —the feasible set of the problem (the set including all tolerance relations satisfying the
conditions (1) and “non-degeneration” condition)).

The feasible set of each problem (43) and (44) is finite and the optimal solution always
exist; however the number of solutions of each task may exceed one. In the case of multiple
solutions the evaluation (28) relates to whole set of solutions (estimates).

The evaluation of the probability of errorless solution obtaining (28) can be

determined in the case of known probability distributions of the comparisons errors. In

11




opposite case, it is possible to determine some approximations of the evaluation. As the basis

of the approximation can be used:

o the estimated form of the relation f,,.., 7, (it allows to determine the estimates #,() and
#), the formulas (31) — (33) together with the conditions (8) — (9) or

o the estimated form of the probability functions »{’() obtained on the basis of comparisons
8”0, ..., &0,

The first approach can be used for any value of N; however for N close to one such
approximation may be of rough type. The second approach requires — for purpose of realistic
estimates — an appropriate number of comparisons N (N>>n).

Let us notice, that the right-hand side of the inequality (28) is based on the constraint -

(Mm-DEDP (xi, x,) S(m-1). Typically the value #(m-1) is excessive (significantly greater, than
n); especially in the case m-1>max{T:(x,,x,)} the constraint +(m-1) negatively influences
XxX

(decreases) the evaluation (28). Therefore, it is rational to replace the value m-—1 with the

estimate 4 or max{f,(x;.x,)}
XxX

4. The median approach

In the case of median approach the basis for estimation are the medians from
comparisons of each pair and it is assumed, that N=2r+1 (7=1, ...,). More precisely, each set
of comparisons g(x;,x), ..., 8 (ix) ((xix;)€X x X) is replaced with their median
g4, (xi.x)) and the variables UG ), US S T Woltianx), Wy, W, (F1,2) are
replaced - respectively - with the variables:

UG s 2) =t Gt x)— 80 (i x)| (45)

12




UG =|T () - 880 G )5 (46)

T =, G x) — 8L G (47)
W= x o ugenr, (48)
<i, f>ef Uy
W([M!-N): ZL ~(.7(ﬁ';""N)' (49)
<i,jreluJ
where:
g% (x.x) - the median from comparisons g (x,x,), ..., g(x.x), i.e. the XL _th order
——~ 7 P ) 7 N 7 3

statistics gﬁ{,\}+,),2)(x;,x,») &P Gnxp, - gﬁf,),(x,,x,) - non-decreasing ordered results of

comparisons).
4.1. The form of the estimator and its properties

This problem considered in this point is similar to the single comparison case.
However, the probability functions of the medians g% (x,x) from comparisons
(x,x) €X x X are not the same, as the probability functions of individual comparisons
8 (x,x,) (1<k<N), therefore the properties of the tolerance relation estimated on the basis of

the medians are also not the same, as in the single comparison case. The properties of the
estimator based on medians are presented in the following
Theorem 2.

The random variables w{"" and ™" defined in (48) and (49) satisfy the conditions:
E(w ~p7™) <0, (50)

EC T Tl x) - 8o wlrnx)| = i x ) — 8oy (i x))]), Gn

P <My > -
(w7 ) vim-1)" neeno

where:

v~ the number of elements of the set {(x;, x)eX x X | Ti(xinx) = 1) (xinx )3 20}

13



Proof of the inequality (50) for f=1, assuming the same distributions g{’() for each #

k=1, ..., N).

The inequality (50) is true for N=1 (it resuits from the Theorem 1, for N=1). For N=2r+1

(=1, ...,} it can be shown, that the probability function P(Ty(x;,x)- g% yCeinx ) =1) (N=27+1,

=0, 1, ...,) satisfies for each pair (x;, x;)eX x X the inequalities:

PTGt ) = 8o pan (e x) = 0) > P(T1 (1 x )~ 8 (00 %) = 00 (52a)
PTG 2 )89 w2 (i x) = D) <P G x )= g (riox ) =D (120). (52b)

The inequalities (52a) and (52b) result from the following facts. The probabilities:

P(Ti(x;x) - g% v (xi,x)=1) can be expressed in the form (see David (1970), section 2.4):

PTG x) — g8 (o x ) = 0)=
=P(T|(xnx])_gf,l.:,u(xl:x1)50) —P(Tn(x,,x;)—gf,l.:v,,,(x/,xj)s—l)=

= M g ooy 53
«(N—l)/z)»’a(}-u’ a-o="d, (53a)

PTG x) = g5 (riox) = D=
=P Grix )~ €0y (i x) €D = PT1 (i x)) ~ g8 ix,) ST~ D) =

N o (N-1)/2 (N-1)/2
- 1-¢ dt 53b
N =D/ 20 ciis 4= ’ (535)

where:

G = P(T(xiox,) - g8 (xinx )1 -

The expressions (53a) and (53b) are determined on the basis of beta distribution B(p, ¢), with
parameters p=q=(N+1)/2. The expected value and variance of the distribution assume the
form — respectively: 2 and  ((N+1D/2)2/(N+1)2(N+2)=1/4(N +2). The variance of the
distribution converges to zero for N—w and the integrand in integrals (53a), (53b) is

symmetric around Y2 These facts guarantee, that: the distributions of the random variables:
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