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Abstract: The problem of the Bayes estimation of the failure rate is considered 
when the reliability data is presented in a vague form. It is also assumed that the 
prior information about the estimated failure rate is given in the form of the gamma 
distribution with imprecisely defined parameters. Fuzzy sets are used to model the 
lack of precision. The formulae are given for the fuzzy Bayes estimator of the 
failure rate. 
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J. INTRODUCTION 
In reliability testing decision-makers are faced with data ofa random nature. Various 

statistical methods have been developed during the last 200 years in order to cope with 
random data. However, in nearly all cases it is assumed that available data are described 
precisely, usually by real numbers. Thus, in the majority of statistical papers it is assumed 
that the only source of uncertainty is the randomness of data. In many circumstances of a 
real life, however, the data is not precise, and we often have to analyse not only exact 
numbers, but vague statements as well. Thus, classical methods are sometimes not 
sufficient, and there is a need to apply some other theories which, at least in statistics, are 
considered as non-standard. The theory of fuzzy sets is a theory that has been 
successfully applied in many cases where we deal with vague data, and when the results 
of a rigorous mathematical analysis have to be presented to people in a plain language. 

In the majority of practical cases the available life-time data are not sufficient for 
precise estimation of reliability characteristics. Usually, however, there exists additional 
information that can be merged with the information obtained from reliability tests. In 
such a case Bayes statistical methods are used both for reliability estimation and decision 
making. The ready-to-use results are described in numerous books and papers for the case 
of precise information about reliability data, prior distributions, and related costs. 
However, in many cases this information is also imprecise. 

In the paper we consider the problem of Bayes analysis of life data when both 
statistical data and additional information may be expressed in a vague form. In the 
second section of the paper we present basic notions of the fuzzy statistical Bayes 
analysis. The general results from the second section we illustrate with the application 
from Bayes reliability analysis -the problem of the estimation of the constant failure rate. 
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2. BAVES STATISTICAL ANALYSIS OF REu'ABILITY DATA WITH IMPRECISE 

INFORMATION 

Bayes statistical analysis is a special case of a more general problem of making 
decisions presented in many textbooks such as e.g. Raiffa and Schlaifer [7], and DeGroot 
[2] . According to the basic model typically used for the problems of the reliability 
analysis the decision maker can specify the following data defining his decision problem: 

• 
• 

space of terminal decisions (acts): 

state space: e = {e} . 
sample space: Z = {z}. 

A= {a}. 

utility function: u(·.-.-) on Ax Z x e . 
Note, that in the case of the Bayes statistical analysis of reliability data it is usually 

assumed that the decision space is the same as the state space e. The decision maker 
evaluates a utility u(z, 0) of making a certain decision when the result of this experiment 

is z, and the true state of nature is 0. In order to find appropriate (hopefully optimal) 
decisions the decision maker has also to specify a joint probability measure P11,, (·.-) for a 

Cartesian product e x Z. The knowledge of this probability measure means that we know 
the joint probability distribution of observing the statistical data z when the random state 
of nature is described by 0. Knowing this joint probability d,istribution we can calculate 
some important marginal and conditional probability distributions. In particular, we are 
usually interested in three distributions: 

• the marginal distribution on the state space e describing our prior information 
about possible states of nature; 

• the conditional distribution on the sample space Z for given state of nature 0, 
• the conditional distribution on the state space e for given result of the 

experiment z describing our posterior information about possible states of 
nature. 

Note, that may know only these particular distributions as their knowledge is 
equivalent to the knowledge of the joint probability distribution on e x Z . 

Let us consider the simplest case of the general model when there is no statistical 
data. In such a case the only information we need is the probability distribution n-(0) 

defined on the state space e. We call this distribution the prior distribution of the 
parameter (parameters) describing the unknown state of nature. If we know the utility 
function u(a, 0) defined on Axe we may calculate the expected utility assigned to a 

particular action (decision) a from a simple formula 

u(a)= fu(a,0)7r{0)d0 . (1) 
0 

If we use a loss jimction L(a, 0) for the description of potential consequences of taking 

decision a we may calculate the expected loss (usually called a risk) from an equivalent 
formula 

,o{a)= f L(a, 0}tr(0)d0. (2) 

0 
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Having calculated the expected utilities for al/possible decisions we can find the optimal 
one which is related to the maximal expected utility (or the minimal risk). The expected 
risk associated with the optimal decision is called a Bayes risk. This procedure is in 
principle very simple. However, in many practical cases (when the number of possible 
decisions is sufficiently large) it may require the usage of sophisticated optimisation 
methods. 

When the decision maker has an additional information about the state of nature in a 
form of observations z = (z1, z2 , • • • , zn) of a random vector described by a probability 

distribution J(z, 0) we may calculate the expected utility assigned to a particular action 

(decision) a from a formula 

where 

u(a,z)= fu(a,0)g(0iz)d0, 
e 

g(Biz)= J(zl0)1r(0) 
f f(z I 0)1r(0)d0 
e 

(3) 

(4) 

is the posterior distribution of the parameter 0 which describes the state of nature. In such 
a case the expected utility attributed to each decision is calculated from 

u(alz)= fu(a,0)g(01z)d0, (5) 
e 

and the respective risk from the formula 

p(alz)= fL(a,0)g(0iz)d0, (6) 
e 

The procedure for finding the optimal decision is exactly the same as in the case described 
previously. 

Suppose now that the parameter p of the prior distribution 1r(0; p) and the statistical 

data z are defined imprecisely. Let us assume that our imprecise knowledge about their 

possible values is represented by fuzzy sets. A fuzzy set X is defined using the 
membership function µ x (x) which in the considered in this paper context describes the 

grade of possibility that a fuzzy parameter, say X, has a specified value ofx. Each fuzzy 
set may be also represented by its a-cuts defined as ordinary sets 

(7) 

From the representation theorem for fuzzy sets we know that each membership function 
may be equivalently represented as 

µx (x)= sup{a! x. (x) : a E [0,11}. (8) 

Let us denote the imprecisely defined parameter p by p , and the vaguely described 

life data statistics z by z, respectively. Moreover, assume that fuzzy values of p and 

z are represented by their a-cuts, and that these a-cuts are given in a form of closed 
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intervals lpf., p1~ j and lzf., zf j, respectively. The knowledge of these a-cuts let us 

calculate fuzzy equivalents of the expected utility or the expected loss (risk). In general, it 
is possible to assume that the loss function L(•) may be ·also imprecisely defined. 

However, to make the presentation simple we assume that decision are based on the 
knowledge of the vague posterior distribution g(0 I z, JJ) and the precisely defined loss 

function L(0). As the posterior distribution function is the function of imprecise fuzzy 

parameters, it is also fuzzy, and may be denoted as g(0 I z, JJ). 
Now, let us rewrite formula (6) as 

p = f L(a, 0)g(0 I z, J5)d0. (9) 
e 

The risk calculated from (9) is now an imprecisely defined fuzzy number whose 
membership function may be calculated using Zadeh's extension principle (see Klir and 
Yuan[6], or any other textbook on fuzzy sets for a reference). It is easy to show that the 

fuzzy risk p is now represented by its a-cuts ~f., pi ] , where 

pf.= inf p(z,p) (10) 
ze[z~.•i. l 
pe[pl ,Pu.] 

and 

Pt= sup p(z,p). 
zel•~·•i. l 
pe P,. ,Pu-] 

(11) 

Thus, for every possible decision we may find a fuzzy risk p or a fuzzy expected utility 

u which may be calculated in the same way. 

3. BAYES ESTIMATOR OF THE CONSTANT FAILURE RATE IN THE PRESENCE OF 
IMPRECISE INFORMATION 

One of the most important problems of Bayes analysis of reliability data is the 
estimation of the constant failure rate. The constant failure rate characterises the 
exponentially distributed time to failure Z whose density function is given by 

( ) { 
0, z < 0 

fz;/4= ?,,,e-k, z~0 (12) 

Let n items be placed on a reliability test, and z 1 ~ z 2 ~ • • • ~ z d, d ~ n be the observed 

times to failure. In the simplest case of censored life time data the total time on test is 
given by 

T= L~=1 z; +(n-d)zd (13) 

It can be found in any textbook on the statistical analysis of life data that (d, Z) is the 

observed value of the test statistics that is sufficient for the estimation of the failure rate ?,,,, 
and the observed value of the maximum likelihood estimator of A is given by 

?,,,. = :!_ (14) 
T 
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When the prior information about the actual value' of ,1, is available in a form of a prior 
distribution ,r(,1,) we can apply the Bayes methodology described in the previous section 

and find the Bayes estimator of A. In the classical book of Raiffa and Schlaifer [7] it has 
been shown that the most appropriate prior distribution of ,1, is the gamma distribution 
given by the density function l 0, 

,r(,1,) = r/j A,6-1 e-r-< 0 t5 0 ,1,;,>:0' y;;>:' <': 
r(o) 

(15) 

The gamma distribution with the parameters (r,o) is the conjugate distribution to the 
exponential distribution. Thus, the posterior distribution of -1 is also the gamma 
distribution with the parameters (r+T.t5+d). 

In the Bayes estimation we assume that the space of decisions A is the same as the 
space of parameters. Therefore, the Bayes estimator of ,1 is such a decision a= -18 that 

minimises (6) for a given loss function L(,1,8 , -1). This is a well known fact (see, e.g., 

DeGroot [2] for a reference) that for a quadratic loss function, i.e. when 

L(..l. 13 , ..l.) = c(J- ..l.8 )2 , c > 0, the Bayes estimator of the constant failure rate A is equal to 

the expected value in the posterior distribution of -1, i.e. 

A- _d+t5 
n - T+r, (16) 

and the associated Bayes risk is equal to the variance in the posterior distribution of -1, i.e. 
d+t5 

p=--. (17) 
(r + r )2 

Let us assume now that both the life time data and the prior distribution are described in a 
vague form. The vagueness of life time data coming from the users has, as it has been 
pointed out in Grzegorzewski and Hryniewicz [3], many different sources. We could 
divide these sources into three groups: 

• vagueness caused by subjective and imprecise perception of failures by a user, 
• vagueness caused by imprecise records of reliability data, 
• vagueness caused by imprecise records of the rate of usage. 
First source of vagueness is typical for so called parametric failures . A parametric 

failure occurs when at least one value of functional parameters of an item under 
investigation falls beyond specification limits. In practice, however, a user has only a 
perception of the values of these parameters, and is not able to define precisely the 
moment of a failure. For example, if there exists a requirement for an admissible level of 
noise it usually cannot be measured by a user, but only assessed in a subjective, and 
therefore imprecise, way. As the result, we obtain an imprecise information about the real 
lifetime. Moreover, this type of vagueness causes situations in which even at the end of a 
test (i.e. at a censoring time) a user is not sure whether the tested item has failed or not. In 
such a case, we have not only imprecise values of lifetimes, but we have imprecise 
information about the number of observed failures as well. This type of imprecise 
reliability data was considered in Hryniewicz [5], and Grzegorzewski and Hryniewicz [4]. 
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Second source of vagueness is typical to ret'rospective data. Users do not record 
precisely the moments of failures, especially when they are not sure if they observed a real 
failure (see above). So when they are asked about failures which occurred some time ago, 
they sometimes provide an imprecise information. Another case of vagueness of this type 
arises when a user knows exactly the time of a failure but does not know the precise 
length of the time to failure. 

Third source of vagueness is related to the fact that users, who report their data in 
days (weeks, months), use the tested items with different intensity. Depending on the 
value of this intensity two items that failed after the same period of time may have 
completely different time to failure expressed in hours of continuous work. In practice, the 
users are asked about the intensity of usage (for example, in hours per day), and their 
responses are usually imprecise. 

Let us assume that instead of exact time to failures z 1, z 2 , ... , z d we observe a fuzzy 

times z1, z2 , ... , zd (note that an exact time to failure is a special case of a fuzzy one}. 

Suppose that the membership function of the observed fuzzy time to failure Z;, i =I, ... , d 

is defined using the set of a-cuts (z f,., z fc, J i = I, ... , d. The total time on test T becomes 

now a fuzzy number T whose membership function µ(T) may be defined using the set of 

a-cuts (rt, Tif) where 

rt= inf {"d-Z; +(n-d)z;} = "d- Z;,L +(n-d)z,,l (18) 
( " ,, ) L.,,_I L.,,_I 

z1e z1,1.,z,,u 

and 

Tcf = sup {"d- Z; +(n-d)z;} = "d-z;,u +(n-d)z;,u (19) 
( " " ) L.,,_1 L.,,_\ 

z1e z1,1,,z,,v 

Now, let us discuss the second source of vagueness considered in this paper, namely 
the vagueness of the prior distribution. One can argue that the prior distribution itself is 
the only possible description of this vagueness. However, in order to define a prior 
distribution we have to indicate exact values of its parameters. Then a new problem 
arises, how to evaluate the values of these parameters when we do not know them 
precisely. According to an orthodox Bayes approach we have to define their prior 
distributions, and to proceed this way till the moment when all necessary values are 
exactly known. Another way to cope with this problem is to find a natural interpretation of 
these parameters or their functions, and to assess them subjectively. In such a case we 
often face problems of the precise assessment of subjectively perceived quantities. In the 
considered in this paper case of the gamma distribution we have to give the values of two 
parameters o and y. Knowing any two characteristics of the prior distribution of the 
parameter A such as the expected value, the mode, the coefficient of asymmetry or the 
variance we can easily write two equations whose solution gives us the required values of 
oand y. However, when at least one of those characteristics is known imprecisely we may 
arrive at vague values of o and y. 

In the general case we may assume that the parameters of the prior distribution are 

described by fuzzy numbers J and y whose a-cuts are given in a form of closed intervals 

• 
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(of A~) and ~f, ,y(J ), respectively. We can now define the fuzzy version of the Bayes 
estimator of the failure rate as 

- d+'J 
A, 8 = =--:::- , 

T+y 
(20) 

The membership function of I8 can be found using Zadeh's extension principle. In the 

simplest case, when both parameters c5 and y are assessed independently, the membership 

function µ(1 8 ) of I 8 may be defined using the set of a-cuts (ii.1,, ii,u), where 

1a - d+of (21) 
B,l - a a 

Tu +ru 

1a - d+o(J (22) 
8 ,U - a a 

T,, + Yt, 

Let us consider the case when the shape parameter c5 of the gamma prior distribution 
is known exactly. The shape of the prior distribution is not directly related to any vague 
concept, so we can assume that the decision maker is able to give the exact value of o. 
Now, let us assume that the decision maker has some vague opinion either about the 

expected value of the failure rate E i or about the most plausible value of the failure rate 

equal to the mode of the prior distribution denoted by D" . The fuzzy Bayes estimators of 

the failure rate are now given either by 

orby 

- d+o 
A-a= - J1 , 

T+ -
E,. 

- d+o 
1a = f +(o-l)l, 

/ Di 

, o>I,, 

(23) 

(24) 

respectively. Using Zadeh's extension principle it is possible to find the a-cuts for the 

fuzzy Bayes estimator I8 also in these cases. 

When the exact value of the estimated hazard rate is needed we can use one of many 
methods for the defuzzification of fuzzy numbers. One of these methods, 1-average, has 

been proposed by Campos and Gonzalez [I]. When X is a fuzzy number (fuzzy set) 

described by the set of its a-cuts [x~, X 1~] such that the support of X is a closed 

interval, then its A-average value is defined by Campos and Gonzalez[!] as 
I 

v/ (x)= f[trt +(1-i)xf]da, ie[o,1] . (25) 
0 

Thus, the A-average value of X can be viewed as its defuzzified value. The parameter A 
in (25) is a subjective degree of decision maker's optimism (pessimism). [n the case of 

fuzzy risks A= 0 reflects his highest optimism as the minimal values of all a-cuts 
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(representing the lowest possible risks) are taken ihto consideration. On the other hand, 
by taking /4 = I the decision maker demonstrates his total pessimism. If the decision 

maker takes /4 = 0,5 his attitude may described as neutral. 

SUMMARY 

In the paper we have described the methodology of the Bayes estimation of the 
failure rate when the life time data are given in a vague form. This situation may happen 
when times to failure are expressed in a common language. We model such a vague 
information using fuzzy sets. Moreover, we assume that the prior knowledge about the 
estimated failure rate is modelled by the gamma prior distribution with imprecisely 
defined parameters. We combine the imprecise information from both sources in a form of 
the fuzzy Bayes estimator of the failure rate. When the exact value of the fuzzy estimator 
of the failure rate is needed we may adopt a simple defuzzification method presented at 
the end of the paper. 
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