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Abstract 

The paper deals with the problem of 
fuzzy optimisation in presence of flexi­
ble constraints that describe user pref­
erences. Fuzzy optimisation procedure 
is used to find a certain reference value. 
Then, the set of admissible solutions 
that are in a certain sense indistin­
guishable from the best attainable refer­
ence value is calculated using the known 
from the theory of possibility concept 
of the Necessity of Strict Dominance in­
dex. Admissible solutions are evaluated 
and ranked using methods developed for 
solving the flexi ble constraint satisfac­
tion problems. The proposed algorithm 
is applied for solving a practical problem 
of choosing a user-preferred inspection 
interval. Tbis problem is often encom1-
tered in statistical quality control and 
reliability testing. 

Keywords: Optima! inspection, Fuzzy 
optimality, Flexible constraint satisfac­
tion problem, User preferences. 

1 Introduction 

Optimisation problems a.re frequently encoun­
tered in many practical situations. Specialists in 
optimisation problems have developed powedull 
tools that are able to solve lru·ge ru1d complicated 
problems. However, all these tools a.re surpisingly 
seidom used in a real practice. One of the main 
rea.sous of this situation is an inadequate descrip­
tion of real proble1ns. Suppose, for example, that 

the problem under cosideration is stated as fol­
lows 

m:x f(x;w) (1) 

where x E X, f : R --+ R is the optimised, 
with respect to some x, objective function, and 
w = ( w1, w2, ... , Wm) is a vector of parameters. 
The solution of tbis unconstrained optimisation 
problem is not diflicult, even in the case of non­
smooth objective functions. When an additional 
set of constraints C : g; (x; we) ~ O, i= 1, ... , me, 
where We is a set of parameters, is given, the 
optimisation problem may be more complicated, 
but its solution is still not very diflicult. How­
ever, even in the case of well defined objective 
and constraints functions, the real practical prob­
lem consists very often in finding appropriate va.l­
ues of model's parameters, both for the objective 
function and the constraints. In addition, very 
often the user is not able to describe precisely 
the constraints for his/hers optimisation problem. 
It happens, when the constraints are formulated 
rather as vaguely defined user's preferences than 
rigorously described mathematical relations. All 
these problems result with difliculties in applying 
the results of classical optimisation procedures in 
a real practice. 

In the next section we present a typical exrun­
ple of the problem described above - the optima! 
choice of an inspection interval. The cboice of the 
inspection interval se.ems to be one of the most im­
portant problems in quality control and reliability 
testing. In the third section we describe cri tically 
some methods that might be used for finding the 
optima.I inspection interval. We assmne, that the 
objective function becomes a fuzzy objective func­
tion, and the satisfaction of user's preferences can 



be described as a simple flexible constraint satis­
faction problem. The fourth section of the paper 
is devoted to a newly proposed method that might 
be used for finding a user-preferred solution. We 
propose to use the possibility theory in order to 
find a set of satisfactory solutions, and then we 
use the fiexible constraint satisfaction methodol­
ogy to find the user-preferred solution. A numer­
ical example that illustrates the usage of the de­
scribed optimisation methods is given in the fifth 
section of the paper. Finally, we discuss the re­
sults and propose further extensions and general­
isations. 

2 Optimal choice of inspection 
intervals 

Finding of an appropriate inspection interval is 
one of the main problems of contemporary qual­
ity control and reliability testing. When the cur­
rent state of a system is not continuously mon­
itored it can be revealed only after performing 
some test procedures. Usually these test proce­
dures are . repeated cyclically, and the time be­
tween two consecutive tests is called an inspection 
interval. When failures of the monitored system 
appear randomly, and the monitoring procedure 
is not perfect (there is a positive probability that 
a failure of the system may not be detected dur­
ing the inspection) there is a need to peńorm tests 
rather frequently in order to reveal the failure as 
quickly as possible. On the other hand, how­
ever, frequent tests are costly. Moreover, when 
the test are not perfect there exists also a possi­
bility of many false alarms (when the inspection 
fasely reveals the failure of the system). There­
fore, it is possible to formulate an optimisation 
problem with the ahn to find a cost opthnal in­
spection interval. 

There are many papers devoted to the problem of 
the optima! choice of the inspection interval. In 
generał, mathematical models that are used for 
the optimisation of the inspection interval may 
be very complicated, and may involve many in­
put parameters of a different character (probabil­
ities, costs, parameters of probabilities distribu­
tions, etc.). Thus, in a generał case the optimisa­
tion procedure is not simple. However, in order 
to simplify it we may use the asymptotic result 

of Hryniewicz [10] who showed that the original 
optimisation procedure is equivalent to the min­
imisation of a simple objective function 

G(h) = b . h. (A - 0.5) + (.5 + S)~ (2) 
r h 

where 

h - optimised inspection interval, 

b - standardised (related to a cost of a false alarm) 
average profit from one renewal of the system, 

A - expected number of inspections while the sys­
tem is failed, 

r - expected time to the system failure, 

ó - probability of a false alarm, 

S - standardised (related to a cost of a false alarm) 
expected cost of one inspection. 

Parameters of the objective function (2) may be 
evaluated directly or calculated as functions of 
other parameters. More detailed description of 
the problem when applied in the statistical qual­
ity control may be found h1 Hryniewicz[9]. 

When the input parameters of G(h) are known it 
is possible to calculate the optima! value of the 
inspection interval h. Simple calcutations show 
that it is equal to 

h* = T 
.5+S 

b(A - 0.5) 
(3) 

It is easy to show that if we insert (:3) into (2) the 
minimal value of the objective function for any 
set of input parameters is equal to 

Gmin= 2Jb(A - o, 5) (.5 + S) (4) 

Tlms, the optima! inspection interval is very easy 
to calculate. Moreover, the expresion (4) shows 
how the values of input parameters influence the 
optima! cost. However, this apparently very sim­
ple result is hardly used in practice. One of the 
reasons for that is the lack of reliable input infor­
mation. In practically all cases the input parame­
ters (especially costs) of all optimisation models 
are very difficult to evaluate. This is also a case in 
the problem of the optima! choice of the inspec­
tion interval. Therefore, even in such a simple 



case, the optima! solutions a.re very seidom used 
in practice. 

The objective function in the considere<l optimi­
sation problem (2) has elear ecouomic iuterpreta­
tion. However, there exist also other 1·equirements 
whicli iuterpretatiou in te1ms of costs is difficult 
or even impossible. First of all, some va.lues of 
the iuspection interval a.re more preferred from an 
orgauisational point of view. For example, the iu­
spection interval equal to one hour is mucl1 more 
preferred than the iuspectiou interval equal to, 
say, 4 7 minutes. In certain circumstances, the 
inspection procedure is possible only duriug pro­
ductiou breaks (in the night, for example), etc. In 
some cases the requirements of such a type can be 
formulated as classical constraints. However, in 
many cases they a.re preseuted in te1ms of prefer­
reces, where some va.lues a.re more preferred than 
some other values. 

The preferences described above a.re formulate<l 
with respect to the optimised varia.ble - the in­
spection interval. There exist, however, other 
preferences that a.re related to some functions of 
the optimised varia.ble. In the cosidered case there 
exists also at least one sucli requirement. This re­
quiremeut is related to the expected urm1ber of 
false alarms duriug a giveu time period. It has 
been observed in practice, that false alarms have 
a negative impact on managers. Wheu they a.re 
too frequent, the managers begin to doubt in the 
efficiency of the iuspection proce<lures. It is easy 
to show that the expected number of false alarms 
during a certa.in time period T is given by 

(5) 

As the impact of false alarms on managers is 
rather a vague coucept it is not cleru· how to de­
scribe it in terms of a classical c,-onstrained opti­
misation problem. 

In generał, in practical opitimisatiou problems 
sometimes is difficult to define one objective for 
the optimisation procedure. When it is possible 
to define other objectives the multi-objective p1·0-
gramming may be applied. In other approaclies 
we try to represent the values of dilferent objec~ 
tive frmctions on the same scale in order to build 
one goal function whicl1 comprises dilferent objec:­
tives. In sucl1 a case for eacl1 considered objective 

we need to construct a utility function that as­

signs utility values from a given interval to all 
possible values of the objective function. In the 
considered case of cl1oosing an optima.I value for 
the inspection iuterval sucli approaclies a.re not 
natura!, as the va.lues of the objective function, 
and the preferences related to the values of the op­
timised varia.ble crumot be measured on the same 
scale. 

3 Optima} choice of the inspection 
interval - a fuzzy optimisation 
problem 

In the previo11S section we noticed that the ma.in 
rea.son of appareut difficulties with the practical 
implementatiou of the optima! inspection inter­
vals is a la.ck of knowledge about the va.lues of 
the opthuisation model parameters. These val­
ues a.re seidom kuown to users, and there exist, 
at least, two reasons for sucli a situation. First, 
they may randomly vary in time. In sucli a case, 
in the opthuisatiou procedure we may use their 
average values, as it is frequeutly used in prac­
tice. However, there exists also a second rea.son 
that seems to be mucli more important. The in­
put parameters (or their average values) a.re very 
often imprecisely defined. Sucli la.ck of informa­
tion has not, in our opiuion, a stocliastic nature, 
and has to be described in auother way. 

To describe imprecise information about the 
model parameters in (2 ) we propose to use the 
notion of fuzzy numbers. The fuzzy equivalents 
of the iuput parameters b, A, S, ru1d T we de­
scribe using the fuzzy sets b, A, S, and 'f with the 
following a-cuts: 

(b~,w,b::.ax) = {b E R+,µb(b) :2". a} (6) 

(A::Uu,A::.a,J={AER+,µA(A):2".a} (7) 

(S:;u,s:,.x) ={SE R+,µs(S) :2". a} (8) 

(r:,;u,r:,ax)={rER+,µ,,-(r):2':a} (9) 

where µb (b) ,µA (A) ,µs (S) ,µ,,- (r) a.re the mem­
bership functious of b, A, S, and 'f, respectively. 
The probability of a false alarm o is usually much 
easier to evaluate, so we will asswue that its crisp 
value is kuown. However, this parameter may be 



also fuzzified in case of a lack of reliable informa­
tion about its value. 

The initial optimisation problem (2) becomes now 
a fuzzy optimisation problem with the fuzzy ob­
jective function 

G(h) =i;. h. (A - o.5) +(o+ .9)~,- (lO) 
T l 

In the simplest, and naive, optimisation proce­
dure we can use the extension principle for the 
representation of the objective ftmction ( 10) in 
a fuzzy fonn, and then to defuzzify it using, for 
example, the method proposed by Fortemps and 
Roubens [8] or any other defuzzification method. 
This procedure, however, is not well justified, and 
usually does not provide us with the optima! in­
spection interval which is preferred by a user. ln­
stead, we propose to apply the result described in 
the paper of Canestrelli and Giove [2] that may 
be directly applied in the considered case. Ac­
cording to this result, the fuzzy-optimal solution 
to the w1constrainecl optimisation problem may 
be found by the application of Zadeh's extension 
principle to the non-fuzzy solution of the equiva­
lent crisp optimisation problem. In the considered 
case the fuzzy-optimal solution can be obtained 
by applying the extension principle to (:Jl: ~ oig 
case we assUllle that fuzzy parameters b, A, S, 
and 'i' are not interactive. This asswnption is not 
exactly true for b and f. There exist mathemat­
ical models that describe the link between these 
parameters in a crisp case. Using these ~odels 
we may evaluate the oonnection between b and 
'i'. We decided, however, to assUllle that they 
are not interactive in order to keep the model as 
simple as possible. Some n1llllerical experiments 
have shown, that in many cases this approxima­
tion is acceptable in practice. The fuzzy-optimal 
solution to our o~ilnisation problem is given as 
a fuzzy number h• defined by the set of a-cuts 
{h*~lin, h*~1a,J with 

b~ax (A::',ax - 0.5) 
(11) 

and 

1i•:iax = ,:.ax o +s;:,ax 
b:in (A~1in - 0.5) 

(12) 

A crisp optima! inspection interval may be found 
by applying one of many defuzzication methods to 
W. However, this value will probably be hardly 
preferred by the user. 

If we want to take into account user's preferences 
we 11111st introduce some oonstraints. As we have 
already noticed, usually such constraints cannot 
be precisely defined. To c-,ope with this situation 
we may use the c-,oncept of fl.exible constraints. 
The idea of fl.exible oonstraints has its origins in 
the paper of Bellman and Zadeh [1] on decision 
making in a fuzzy enviromuent. Since this semi­
nal paper many results on the flexible constraints 
satisfaction problem have becn published. For re­
cent references the reader is advised to consult, 
for example, the paper of Dubois and Fortemps 
[6]. 

In the problem of the optima! choice of the in­
spection interval the fuzzy constraiuts represent 
user's preferences. They may be also interpreted 
as fuzzy restrictions in a sense of Zadeh ( see [7] 
for discussion). Thus, a fuzzy constraint may be 
viewed as the association of a classical constraint 
( a set of admissible values of the decision vari­
able) and a preference-type criterion which rank­
orders solutions to the original optirnisation prob­
lem. To describe user preference requirements for 
the inspection interval we may u.se any ftrnction 
v: n+ -+ [O, 1]. As we have noticed in the previ­
ous section, preferences may be expressed in two 
different ways. First, a user may directly eval­
uate his/hers preference for specific values (set 
of values) of the inspection interval. Second, a 
user may evaluate his/bers preferences for the 
values of quantities that are funtions of the de­
cision variable. In this second case, the prefer­
ences for different values of the decision variable 
are given indirectly. In both cases, however, the 
finał result is sirnilar, the user defines one or more 
preference functions v(h) that can be interpreted 
as the membership functions of fuzzy restrictions 
representing flexible fuzzy constraints. The most 
preferred solution is eq1.iiv-dle11t now to the solu­
tion of the flexibe constraint satisfaction problem 
(FCSP). 

Severa! approaches to solve the constraint satis­
faction problem have been proposed. The most 
effective are described, for example, in the paper 



by Dubois, Fargier, Fortemps, and Prade [3]. Ac­
cording to the simplest and most popular maxmin 
approach to combiue different preference func­
tions v(h) i= 1, ... , k we use a fuzzy decision set 
D defined by the following membership function 

(l:J) 

It is worthy to note that this combination rule 
may be applied when all considered preferences 
v(h) are measui-ed on the same scale. Moreover, 
by assuming this type of aggregation we asswne 
that the global level of satisfaction of a set of fuzzy 
constraints is the level of satisfaction of the least 
satisfied one( s). The most preferred solution is 
uow defined as that which maximises µn (h). 

As for now, we have shown that there exist sound 
mathematical methods to cope with the problem 
of finding the fuzzy optima! solution to the orig­
inal optimisation problem and with the problem 
of finding the solution which is preferred by the 
user, separately. Unfortunately, we cannot aggre­
gate fuzzy decision set D represented by (13) and 
the fuzzy-optimal solution W defined by o-cuts 
given by ( 11) and ( 12) as these va.lues are not 
commensurable. A possible solution may be the 
following. We choose a certain o-cut of h* as a set 
of admissible values of h. Then, we choose such 
h that maximises µn (h) over the set of such de­
fined admissible values of h. This approach has, 
however, some disadvantages. First, the choice 
of o is arbitrary, and cannot be easily related to 
user's preferences. Second, we may wmecessarily 
restrict ourselves only to a relatively short inter­
val of admissible va.lues of h. To overcome these 
prob!elllS we propose in the next sectiou another 
metlmdi:mlmding user-prefened optima! iuspec-

4 User-preferred optimal inspection 
intervals 

In the second section of this paper we introduced 
the minimal value of the objective fuuction ( 4). 
When the input parameters are fuzzy the objec­
tive function is also fuzzy, and its fuzzy minimal 
value can be obtained by fuzzificatiou of ( 4). For 
further analysis we will define the following fuzzy 

refcrence valuc Gref using the following o-cuts: 

(-2Jb~ax (A~,ax - O, 5) (o+ S~ax), 
-2✓b~D (A~,in - o, 5) (o+ s~in)) 

Now, denote by Gx the fuzzy equivalent of the 
function -G(x), where G(x) is given by (2) with 
x = h/r. We will look now for i:_uch admissible 
values of x, for which the value of Gx is not signif­
icantly worse than the reference value Gref • To 
quantify the differeuce between these two fuzzy 
sets we prnpose to use the Necessity of Strict 
Dominance index (NSD) defined by Dubois and 
Prade [7] as follows 

NSD = Ness (A> B) 
= 1- sup min{µA (x) ,µB(y)} (l4) 

X,JliX:SJI 

where µA (x), and µB(Y) are_ the m~mbership 
functions of the fuzzy sets A and B, respec­
tively. In the considered case, we define a -y-NSD­
admissible set of values of x, as the set of all values 
of x for which the following inequality holds: 

For a fixed value of x the requirement (15) is 
equivaleut to the following inequality 

[b i~')' (Al-')' O 5 · + o ~,I-')' ! _> 
- min min - ' X + umiu x 

2: -2 b!~ (A!~ -o,5)(o +s~~) 
(16) 

Solving this inequality with respect to x we obtain 
the -y-NSD-admissiblc set (Xmin, Xmax), where 

Xu1ax = 

and 

~= 

(17) 

2 b!,-;;1(A!;;-.i-o,5)(o+S~~)+/K 

2b!:J ( A!:J - O, 5) 

4b!;;J (A!;;-.1- o, 5) (o+ s~~) 
I-')' (A 1-'l' 0 5) (o c,l~'Y) -4bwiu udu - ' + 0 u.iin 

(18) 

(19) 



Having the -y-NSD-admissible set of values of x 
we may define the -y-NSD-admissible set ofvalues 

of h as the interval ( XminT~iin'1, XmoxT,!,~). The 
values of the inspection interval h that belong to 
the set of -y-NSD-admissible values will be fur­
ther analysed with respect to other user prefer­
ence measures. lt has to be strongly stressed, 
however, that the set of 7-NSD-admissible val­
ues of h is not the same as the ( 1 - 'Y )-cut set of 
the fuzzy set obtained by the fuzzification (by the 
application of the extensiou principle) of h* given 
by (3). The set of-y-NSD-admis.,ible values of h 
is definitely larger as it contains not only optima! 
values of h, but also those values of the inspec­
tion interval for which the values of the objective 
function cannot be clistinguished (in the sense of 
the NSD concept) from the optima! ones. 

The inspection interval h which may be accept­
able for a user has to fulfil his/bers preference 
requirements. We will further assume that the 
costs connected with the application of the user­
preferred iuspection interval should be sufficiently 
close to the costs connected with the application 
of the optima! inspection interval. The notion 
of the -y-NSD-admissible set of values of h iutro­
duced in this section !et us inclicate all these val­
ues of h for which the economic consequences, due 
to the imprecise values of input parameters, are 
clifficult to be clistinguished, and are - more or less 
- equivalent. Thus, we propose to choose the user­
preferred inspection interval from this specific set 
of values of h. In such a case, for choosing an 
appropriate inspection interval we may take into 
account all other preference requirements hąving 
in mind that for all -y-NSD-admissible values of h 
economic consequeuces are indistinguishable. 

Let's denote by ll'Y the -y-NSD-admi.•sible set of 
values of h. lf we assume, as previously, that 
the user desCI·i hes his /hers preferences by defin­
ing preference functions v; : l['Y • [O, 1], i = 
1, ... , m, and if we apply the FCSP teclmique de­
scribed in the previous section, then the user­
preferred optima! inspection interval may be cal­
culated as 

1i; = arg ma~ . min v;(h) (20) 
hEH • t=l, ... ,m 

Thus, the user-preferred optima! inspection inter­
val maximises the minimal prefereuce for the set 

of the cousidered criteria. 

5 Numerical example 

Let us find the inspection interval for a produc­
tion machine which works lfi hours per day during 
two eight-hours workiug sltlfts. To find the user­
preferred inspection interval we need the input in­
formation described in the second section of this 
paper. Suppose now that the input information 
is imprecise, and is described by fuzzy numbers 
of a triangular fonu with the membersltlp fnnc­
tion µ(z) such that µ(z*) = 1, µ(wLz•) = O, and 
µ (w Rz*) = O. The left arm of such a triangle is, 
tlms, described by the function 

µL(z) = ((l 1 ) .) z--1 WL , z E [wLz*,z*] 
-WL Z -WL 

(21) 
and the right arm is described by the function 

µR (z)= ((l 1 ) .) z--1 WR , z E [z*,wRz*) 
-WR Z -WR 

(22) 
We can use tltls representation when the input 
information is given in a form of imprecise state­
ments like 'the value of z is about z*'. 

Suppose now, that for the considered machine the 
expected time to failure r is described by the 
statement "r equals a.bont 2000 hm.us". To model 
this fuzzy number we use (21) and (22) ta.king 
z•= r• = 2000, WL = 0,8, and WR = 1,2. The 
inspection cost S (with the cost unit equal to the 
cost of a false alarm) is expressed as "S equals 
about O, 02 cost mtlts". Also in this case to model 
this imprecise number we use (21) and (22) with 
z*= s· = 0,02, WL = 0,8, and WR = 1,2. The 
standarclised average profit from one renewal of 
the system b is evaluated as "b equals about 20 
cost mtlts". The membersltlp functiou in this 
case may be described by (21) a.ud (22) with 
z*= b* = 20, WL = 0,8, and WR = 1,2. To 
find the expected nmnber of iuspections while the 
system is failed A we need to ana.łyse the prob­
ability that the failure is revealed during the in­
spection wltlch can be evaluated only imprecisely. 
Suppose, that after such an ana.lysis we arrive at 
the fuzzy version of A described by (21) and (22) 
with z* = A* = 1, 1, WL = O, 95, and wn = 1, 07. 
Note, that in thls case the membershlp fuuctiou is 
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not symmetric. It stems from a fact that A must 
not be smaller than 1. The value of the remaining 
parameter namely, the probability of a false alarm 
8, usually can be estimated rather precisely, and 
in our case is set to O, O 1. 

Having the input information in the form de­
scribed above Jet us find the 7-NSD-admis.,iblc 
set of values of h. Assmne that 'Y is equal to 
O, 5. Hence, we can find the following input val­
ues for ( 17) and ( 18): b~;fu = 18, b~:. = 22, 
S'~fn = O, 018, 8~;!. = O, 022, A!~u = 1, 0725, 
A~!. = 1, 1385, and ,5 = O, Ol. When we insert 
these values into (17) , (18) and (19) we find that 

Xmiu = O, 026, Xmax = O, 104 

Taking in mind that r~~ 1800, and 
r2;~ = 2200 we arrive at the following O, 5-
NSD-admissiblc set of values of h: !.!°•5 = 
( 46, 8hr.,.,228, 8hrs.,). It is worth noting that the 
simple fuzzification of (:3) gives the following a­
cut set for the fuzzy-optimal inspection interval 

~ax{A~ax-0.5)' 

Hs;:;.. ) 
~In { A:,ln -0.5) 

When we take a = l - 'Y = O, 5 and insert the 
other input data into (23) we obtain the interval 
{8lhrs.,123, 2hr.,.). We can see that this interval 
is much narrower than the O, 5-NSD-admi.,sible 
set of values of h. It means th aking the 
values of h from a wider O, 5-NSD-admissiblc set 
we admit such values of h that may not be opti­
ma!. However, the values of the objective function 
fm those non-optima! values of h cannot be dis­
tingushed (in the sense of the NSD index) from 
the values of this function for the fuzzy-optimal 
values of h. 

Let us consider now other preference requirements 
that may be expressed for the inspection inter­
vals. First, Jet us notice that in the considered 
case some values of h are definitely more preferred 
than the others. It see1ns rather obvious that in­
spections performed after 16 hours of work, i.e. 
during the night break, are much more prefer­
able than the inspections perfonned every, say, 1 
hour. To describe formally the preferences of tltls 

type denote by iJ E IO, l], j = 1, ... , k the prefer­
ence assig:ned to the values of h that fulli! certain 
req,ńrements. Denote by I ( *) the set-indicator 
fu:nction that indicates those values of h that ful­
fil a certain requirement. The overall prefere:nce 
function may be now expressed as follows 

v1(h) = 
sup (v1 I(h mod /iC1l =O), v2 I(h mod Ji<2) =O),.) 

Assm:ne that in our case we have 
(v1 =1,ll1l=l6), (v2 =0,8,h(2)=8), and 

(v3 = 0,2,h(3) = 4). Thus, the san1pling i:nter­

vals equal to ( 48, 64, 80, ... , 224) hours are equally 
preferred with v1(h) = 1. 

Consider second reqnireme:nt for the inspection 
interval that was mentioned in the second section 
of the paper. Tltls requirement is related to the 
expected nm:nber of false alan:ns during a give:n 
time period. As any false alarms are undesir­
able we may assm:ne that the preference function 
v( A I) is a non-increasing function of A I. Thus, 
the respective preference function v,z(h) is a non­
decreasing function of h. In the considered case 
tltls infornmtio:n, together with the k:nowledge of 
Vt (h), is suflicient to choose the user-preferred 
inspection interval wltlch is equal to 224 hours. 
Thus, we should i:nspect the machine every 14 
working days. 

6 Conclusions and open problems 

In the paper we have found a relatively simple 
solutio:n to an important practical problem. Tltls 
was the goal of the re.search. Despite the apparent 
simplicity of this problem the solution appeared 
to be not obvious. Both optinńsation problems 
considered, i.e. the optinńsation of a fuzzy objec­
tive fu:nction and the solution of the flexible con­
straint satisfaction problem treated separately are 
well described in literature. However, when these 
two approaches have to be dealt with together 
there are stili problems to be solved. 

The methodology for finding the user-preferred 
optima! inspection interval can be viewed as an al­
ternative method for treating two aforementioned 
optimisation problems together. The proposed 
method for the evalnation of the possible solu­
tions by comparing them to the be.st attainable 



has its origins in the approa.ch proposed by Bell­
man and Za.deh [l]. Therefore, it seems to be 
consistent with the flexible constraint sa.tisfaction 
problem tha.t was used for choosing the most pre­
ferred solution. 

Numerical example considered in this papei· ex­
plains - in some way - the proble1ns with the ap­
plication of "optimal" solutions in practice. It is 
clearly seen tha.t even in a case of relatively small 
imprecision in setting the values of model's pa­
rameters the interval which conta.ins admissible 
values is - from a practica.l point of view - so wide 
tha.t it is sufficient to look only for the most pre­
fened solution. In practice it means that expe­
rienced users choose the most preferred solutions 
iguoring possible optimisation problems. 

The proposed method ca.n be easily generalised. 
For example, in the majority of optimisation 
probleins the optima! solution is not explicitly 
given as in the case cosidered in this paper. In a 
forthcoming pa.per of łfryniewicz [llja simple al­
gorithm is proposed to find the -y-NSD-admissible 
set of va.lues of the optimised variable in such a 
case. A further generalisation to a multid.ime­
sional case is possible, but nmnerically not efli­
cient. 

In the considered case the preference structure 
is very simple, and the maxmin a.pproa.ch to 
solve the flexible constraint satisfaction problem 
is quite natura!. In more complica.ted cases with 
many preference relations it ma.y be useful to 
consider some other approaches. For example a 
discrimin a.pproach, described in the paper of 
Dubois, Fargier and Prade [51 ma.y be used to 
choose a better solution. When the preference 
constra.ints ha.ve different priorities we may use 
the concept of prior-itizcd constraints proposed by 
by Dubois, Fargier a.ud Prade [4]. Finally, the 
concept of -y-NSD-admissibility tha.t was iutro­
duced in this pa.per may be used to ra.nk differ­
ent solutions. In sucliµlin t ma.y be viewed 
upon as an a.dditional flexible constra.int. Th.is 
approa.ch, however, ma.y be too complica.ted nu­
merically to be effectively used in practice. 
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