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Abstract

The paper deals with the problem of
fuzzy optinisation in presence of flexi-
ble constraints that describe user pref-
erences. Fuzzy optimisation procedure
is used to find a certain reference value.
Then, the set of adnissible solutions
that are in a certain sense indistin-
guishable from the best attainable refer-
ence value is calculated using the known
from the theory of possibility concept
of the Necessity of Strict Dominance in-
dex. Admissible solutions are evaluated
and ranked using methods developed for
solving the flexible constraint satisfac-
tion problems. The proposed algorithm
is applied for solving a practical problem
of choosing a user-preferred inspection
interval. This problem is often encoun-
tered in statistical quality control and
reliability testing.

Keywords: Optimal inspection, Fuzzy
optimality, Flexible constraint satisfac-
tion problem, User preferences.

1 Introduction

Optimisation problems are frequently encoun-
tered in many practical situations. Specialists in
optimisation problems have developed powertull
tools that are able to solve large and complicated
problems. However, all these tools are surpisingly
seldom used in a real practice. One of the main
reasous of this sitnation is an inadequate descrip-
tion of real problems. Suppose, for example, that

the problem under cosideration is stated as fol-
lows

max f (z;w) (1)

where ¢ € X, f : R — R is the optirnised,
with respect to some z, objective function, and
w = (w1, wy, ...,Wn) is & vector of parameters.
The solution of this unconstrained optimisation
problem is not difficult, even in the case of non-
smooth objective functions. When an additional
set of constraints C : g; (z; we) 2 0, i=1,..,mq,
where w, is a set of parameters, is given, the
optimisation problemn may be more complicated,
but its solution is still not very difficult. How-
ever, even in the case of well defined objective
and constraints functions, the real practical prob-
lem consists very often in finding appropriate val-
ues of model’s parameters, both for the objective
function and the constraints. In addition, very
often the user is nol able to describe precisely
the constraints for his/hers optinisation problen.
It happens, when the constraints are formulated
rather as vaguely defined user’s preferences than
rigorously described mathematical relations. All
these problems result with difficulties in applying
the results of classical optimisation procedures in
a real practice.

In the next section we present a typical exam-
ple of the problemn described above - the optinal
choice of an inspection interval. The choice of the
inspection interval seems to be one of the most in-
portant problems in guality control and reliability
testing. In the third section we describe critically
some methods that might be used for finding the
optimnal inspection interval. We assuine, that the
objective function becomes a fuzzy objective func-
tion, and the satisfaction of user’s preferences can




be described as a simple flexible constraint satis-
faction problem. The fonrth section of the paper
is devoted to a newly proposed method that might
be used for finding a user-preferred solution. We
propose to use the possibility theory in order to
find a set of satisfactory solutions, and then we
use the flexible constraint satisfaction methodol-
ogy to find the user-preferred solution. A numer-
ical example that illustrates the usage of the de-
scribed optimisation methods is given in the fifth
section of the paper. Finally, we discuss the re-
sults and propose further extensions and general-
isations.

2 Optimal choice of inspection
intervals

Finding of an appropriate inspection interval is
one of the main problems of contemporary qual-
ity control and reliability testing. When the cur-
rent state of a system is not contimiously mon-
itored it can be revealed only after performing
some test procedures. Usually these test proce-
dures are repeated cyclically, and the time be-
tween two consecutive tests is called an inspection
interval. When failures of the monitored system
appear randomly, and the monitoring procedire
is not perfect (there is a positive probability that
a failure of the system may not be detected dur-
ing the inspection) there is a need to perform tests
rather frequently in order to reveal the failure as
quickly as possible. On the other hand, how-
ever, [requent tests are costly. Moreover, when
the test are not perfect there exists also a possi-
bility of many false alarms (when the inspection
fasely reveals the failure of the system). There-
fore, it is possible to formulate an optimisation
problem with the aim to find a cost optimal in-
spection interval.

There are many papers devoted to the problem of
the optimal choice of the inspection interval. In
general, mathematical models that are used for
the optimisation of the inspection interval may
be very complicated, and may involve many in-
put parameters of a different character (probabil-
ities, costs, parameters of probabilities distribu-
tions, etc.). Thus, in a general case the optimisa-
tion procedire is not simple. However, in order
to simplify it we may use the asymptotic result

of Hryniewicz {10} who showed that the original
optimisation procedure is equivalent to the min-
imisation of a simple objective function

boh-(A—05
brho(A-05)
T

Gh) = (6+ S)% 2

where

h - optimised inspection interval,

b - standardised (related to a cost of a false alarm)
average profit, fron) one renewal of the system,

A - expected number of inspections while the sys-
tem is failed,

7 - expected time to the system failure,
§ - probability of a false alarimn,

S - standardised (related to a cost of a false alarm)
expected cost of one inspection.

Parameters of the objective function (2) may be
evalnated directly or calculated as functions of
other parameters. More detailed description of
the problem when applied in the statistical qual-
ity control may be found in Hryniewicz[9].

When the input parameters of G(h) are known it
is possible to calculate the optimal value of the
inspection interval h. Simple calcutations show
that it is equal to

It is easy to show that if we insert (3) into (2) the
minimal value of the objective function for any
set of input parameters is equal to

Gomin = 21/b(A—0,5) (3 + 5) (4)

Thus, the optimal inspection interval is very easy
to calculate. Moreover, the expresion (4) shows
how the values of input parameters influence the
optimal cost. However, this apparently very sim-
ple result is hardly used in practice. Omne of the
reasons for that is the lack of reliable input infor-
mation. In practically all cases the inpnt parame-
ters (especially costs) of all optimisation models
are very difficult to evalnate. This is also a case in
the problem of the optimal choice of the inspec-
tion interval. Therefore, even in such a simple




case, the optimal solutions are very seldom used
in practice.

The objective function in the considered optimi-
sation problem (2) has clear economic interpreta-
tion. However, there exist also other requirements
which interpretation in terms of costs is difficult
or even impossible. First of all, some values of
the inspection interval are more preferred from an
organisational point of view. For example, the in-
spection interval equal to one hour is much more
preferred than the inspection interval equal to,
say, 47 minutes. In certain circumstances, the
inspection procedure is possible only during pro-
duction breaks (in the night, for example), etc. In
solne cases the requirements of such a type can be
formulated as classical constraints. However, in
many cases they are presented in terms of prefer-
reces, where some values are more preferred than
some other values.

The preferences described above are formulated
with respect to the optimised variable - the in-
spection interval. There exist, however, other
preferences that are related to some functions of
the optimised variable. In the cosidered case there
exists also at least one such requirement. This re-
quirement is related to the expected number of
false alarms during a given time period. It has
been observed in practice, that false alarms have
a negative impact on managers. When they are
too frequent, the managers begin to doubt in the
efficiency of the inspection procedures. It is easy
to show that the expected number of false alarms
during a certain time period T is given by

T
Ag=b (5)

As the impact of false alarms on managers is
rather a vague concept it is not clear how to de-
scribe it in terms of a classical constrained opti-
misation problem.

In general, in practical opitimisation problenis
sowetimes is difficult to define one objective for
the optimisation procedure. When it is possible
to define other objectives the multi-objective pro-
gramming may be applied. In other approaches
we try to represent the values of different objec-
tive functions on the saine scale in order to build
one goal function which comprises different objec-
tives. In such a case for each considered objective

we need to construct a utility function that as-
signs utility values from a given interval to all
possible values of the objective function. In the
considered case of choosing an optimal value for
the inspection interval such approaches are not
natural, as the values of the objective function,
and the preferences related to the values of the op-
timised variable cannot be measured on the same

scale.

3 Optimal choice of the inspection
interval - a fuzzy optimisation
problem

In the previous section we noticed that the main
reason of apparent difficulties with the practical
implementation of the optimal inspection inter-
vals is a lack of knowledge about the values of
the optimisation model parameters. These val-
ues are seldom known to users, and there exist,
at least, two reasons for such a situation. First,
they may randomly vary in time. In such a case,
in the optimisation procedure we may use their
average values, as it is frequently used in prac-
tice. However, there exists also a second reason
that seems to be much more important. The in-
put parameters (or their average values) are very
often imprecisely defined. Such lack of informa-
tion has not, in our opinion, a stochastic nature,
and has to be described in another way.

To describe imprecise information about the
model parameters in (2 ) we propose to use the
notion of fuzzy nubers. The fuzzy equivalents
of the input parameters b, 4, .S and 7 we de-
scribe using the fuzzy sets b A 5, and T with the
following a-cuts:

(A AS) = {A€ RT,pa(A) 20} (7)

(S o) = {S € RY,pu5(8) 20} (8)

(Tim Tanax) = {T € R i (1) 2 @) (9)

where g1, (b), pa (A), s (S) , pir (7) are the mem-
bership functions of b, A4, S, and T, respectively.
The probability of a false alarm 4§ is usually much
easier to evaluate, so we will asswne that its crisp
value is known. However, this parameter may be




also fuzzified in case of a lack of reliable informa-
tion about its value.

The initial optimisation problem (2) becomes now
a fuzzy optimisation problem with the fuzzy ob-
jective function

0.5)

G(h) = Ei'(%— +(5+ §)’1: (10)

In the simplest, and naive, optiisation proce-
dure we can use the extension principle for the
representation of the objective function (10) in
a fuzzy form, and then to defuzzify it using, for
example, the method proposed by Fortenips and
Roubens [8] or any other defuzzification method.
This procedure, however, is not well justified, and
usually does not provide us with the optimal in-
spection interval whicl is preferred by a user. In-
stead, we propose to apply the result described in
the paper of Canestrelli and Giove [2] that may
be directly applied in the considered case. Ac-
cording to this result, the fuzzy-optimal solution
to the unconstrained optimisation problem may
be found by the application of Zadeh’s extension
principle to the non-fuzzy solution of the equiva-
lent crisp optimisation problem. In the considered
case the fuzzy-optimal solution can be obtained
by applying the extension principle to (3). In our
case we assume that fuzzy parameters 5, ;1', g,
and T are not interactive. This assumption is not
exactly true for b and 7. There exist mathemat-
ical models that describe the link between these
parameters in a crisp case. Using these models
we may evaluate the connection between b and
7. We decided, however, to assume that they
are not interactive in order to keep the model as
simple as possible. Some numerical experiments
have shown, that in many cases this approxima-
tion is acceptable in practice. The fuzzy-optimal
solution to our optimisation problem is given as
a fuzzy number h* defined by the set of a-cuts
(A0 i M ) With

min?

o+ 5y

@ o min
’l min Tmlﬂ bg‘ax (A;flax — 0.5) (ll)

and

[ 64+8g
e g max 1
" max = Tanex ngin (A:lin - 05) ( 2)

A crisp optimal inspection interval may be found
by applying one of many defi wzzication methods to
h*. However, this value will probably be hardly
preferred by the user.

If we want to take into account user’s preferences
we must introduce some constraints. As we have
already noticed, nsually such constraints cannot
be precisely defined. To cope with this situation
we may use the concept of flexible constraints.
The idea of flexible constraints has its origins in
the paper of Bellman and Zadeh [1} on decision
making in a fuzzy environment. Since this semi-
nal paper many results on the flexible constraints
satisfaction problem have been published. For re-
cent references the reader is advised to consult,
for example, the paper of Dubois and Fortemps
[6].

In the problem of the optimal choice of the in-
spection interval the fuzzy constraints represent
user’s preferences. They may be also interpreted
as fuzzy restrictions in a sense of Zadeh (see (7]
for discussion). Thus, a fuzzy constraint may be
viewed as the association of a classical constraint
(a set of admissible values of the decision vari-
able) and a preference-type criterion which rank-
orders solutions to the original optimisation prob-
lem. To describe user preference requirements for
the inspection interval we may use any function
v: Rt 5 [0,1]. As we have noticed in the previ-
ous section, preferences may be expressed in two
different ways. First, a nser may directly eval-
uate his/hers preference for specific values (set
of values) of the inspection interval. Second, a
user may evaluate his/hers preferences for the
values of quantities that are funtions of the de-
cision variable. In this second case, the prefer-
ences for different values of the decision variable
are given indirectly. In both cases, however, the
final result is similar, the nser defines one or more
preference functions v(h) that can be interpreted
as the membership functions of fuzzy restrictions
representing flexible fuzzy constraints. The most
preferred solution is equivalent now to the solu-
tion of the flexibe constraint satisfaction problem
(FCSP).

Several approaches to solve the constraint satis-
faction problem have been proposed. The most
effective are described, for example, in the paper




by Dubois, Fargier, Fortemps, and Prade [3]. Ac-
cording to the simplest and most popular maxmin
approach to combine different preference func-
tions v(h) i =1, ...,k we use a fuzzy decision set
D defined by the following membership function

e (h) =, Juin v(h) (13)

It is wortlly to note that this combination rule
nay be applied when all considered preferences
v(l) are measured on the same scale. Moreover,
by assuming this type of aggregation we asswune
that the global level of satisfaction of a set of fuzzy
constraints is the level of satisfaction of the least
satisfled one(s). The most preferred solution is
now defined as that which maximises pp (h).

As for now, we have shown that there exist sound
mathematical methods to cope with the problem
of finding the fuzzy optinal solution to the orig-
inal optimisation problem and with the problemn
of finding the solution which is preferred by the
user, separately. Unfortunately, we cannot aggre-
gate fuzzy decision set ) represented by (13) and
the fuzzy-optimal solution /i* defined by a-cuts
given by (11) and (12) as these values are not
commensurable. A possible solution may be the
following. We clioose a certain a-cut of i* as a set
of adnissible values of h. Then, we choose such
h that maximises pp (h) over the set of such de-
fined admissible values of h. This approach has,
however, some disadvantages. First, the choice
of a is arbitrary, and cannot be easily related to
user’s preferences. Second, we may unnecessarily
restrict ourselves only to a relatively short inter-
val of admissible values of h. To overcome these
problems we propose in the next section another
metlindefombnding user-preferred optimal inspec-

4 User-preferred optimal inspection
intervals

In the second section of this paper we introduced
the minimal value of the objective function (4).
When the input parameters are fuzzy the objec-
tive fuuction is also fuzzy, and its fuzzy minimal
value can be obtained by fuzzification of (4). For
further analysis we will define the following fuzzy

reference value Gre j using the following a-cuts:

(—2\/5&3:( (Agmx -0, 5) (6 + ngxj:
2/ (A% — 0.5) (0 + 52a)

Now, denote by G, the fuzzy equivalent of the
function —G(z), where G(z) is given by (2) with
z = h/r. We will look now for such admissible
values of z, for which the value of G, is not signif-
icantly worse than the reference value Gre s To
quantify the difference between these two fuzzy
sets we propose to use the Necessity of Strict
Dominance index (NSD) defined by Dubois and
Prade (7] as follows

NSD = Ness (ﬁ > E)
=1- sup min{py (z),ps(y)} (14)

EATEAST

where p4(x), and pp(y) are the membership
functions of the fuzzy sets A and B, respec-
tively. In the considered case, we define a y- NSD-
admissible set of values of z, as the set of all values
of x for which the following inequality holds:

NSD (Gre > Ge) <y (15)

For a fixed value of z the requirement (15) is
equivalent to the following inequality

— [sa7 (A = 0,5) =+ (54 8020) &] =
> -2, [ohd (412~ 0,5) (5 + 55a2)
(16)

Solving this inequality with respect to x we obtain
the y-NSD-admissible set (Zwin, Tmax ), Where

2\/1,,1,;; (4l - 0,5) (5 + shad) ~ VA

Tmin = P 1=
meh? (Al!lil? - 07 5)
(17)
2/bid (4l - 0,5) (54 SiaY) + VA
Tmax =
i (A 0,9)
(18)
and
A= b3 (AR —0,5) (6 +S,30)

min min

—aws) (a7 —0,5) (6 +5557) 49




Having the - NSD-admissible set of values of z
we may define the y-NSD-admissible set of values
of h as the interval (:z:,,,in'r';‘i_n",zmaxr,},;;’). The
values of the inspection interval h that belong to
the set of v-NSD-admissible values will be fur-
ther analysed with respect to other user prefer-
ence measures. It has to be strongly stressed,
however, that the set of ~v-NSD-admissible val-
ues of h is not the same as the (1 — y)-cut set of
the fuzzy set obtained by the fugzification (by the
application of the extension principle) of h* given
by (3). The set of v~ NSD-admissible values of h
is definitely larger as it contains not only optimal
values of h, but also those values of the inspec-
tion interval for which the values of the objective
function cannot be distinguished (in the sense of
the NSD concept) from the optimal ones.

The inspection interval i which may be accept-
able for a user has to fulfil his/hers preference
requirements. We will further assume that the
costs connected with the application of the user-
preferred inspection interval should be sufficiently
close to the costs connected with the application
of the optimal inspection interval. The notion
of the v-NSD-admissible set of values of I intro-
duced in this section let us indicate all these val-
ues of h for which the economic consequences, due
to the imprecise values of input parameters, are
difficult to be distinguished, and are - more or less
- equivalent. Thus, we propose to choose the user-
preferred inspection interval from this specific set
of values of h. In such a case, for choosing an
appropriate inspection interval we may take into
account all other preference requirements having
in mind that for all v-NSD-admissible values of /i
economic consequences are indistinguishable.

Let’s denote by H7 the v-NSD-admissible set of
values of h. If we assume, as previously, that
the user describes his/hers preferences by defin-
ing preference functions v} : H7 - [0,1], i =
1,...,m, and if we apply the FCSP technique de-
scribed in the previous section, then the user-
preferred optimal inspection interval may be cal-
culated as

hY = arg max min v](h 20
Yy T8 e i=l,..,m * ) (20)
Thus, the user-preferred optimal inspection inter-

val maximises the minimal preference for the set

of the considered criteria.

5 Numerical example

Let us find the inspection interval for a produc-
tion machine which works 16 hours per day during
two eight-hours working shifts. To find the user-
preferred inspection interval we need the input, in-
formation described in the second section of this
paper. Suppose now that the input information
is imprecise, and is described by fuzzy numbers
of a triangular form with the membership func-
tion u(z) such that p(z*) = 1, p(wrz*) = 0, and
1t {wgrz*) = 0. The left arm of such a triangle is,
thus, described by the function

wL , z € [wr2*, 2%
L

e (2) = ((l_ib)z")z_l“ (21)

and the right arm is described by the fimction

1
(1 —wg)z*

)z— YR , 2 € [2°,wgz"]
1 —wg
(22)
We can use this representation when the input
information is given in a forin of imprecise state-
ments like ‘the valne of z is about z*’.

ILR(Z)=(

Suppose now, that for the considered machine the
expected time to failure 7 is described by the
statement ” 7 equals about 2000 hours”. To model
this fuzzy number we use (21) and (22) taking
2* = 7* = 2000, wy, = 0,8, and wg = 1,2. The
inspection cost S (with the cost unit equal to the
cost of a false alarm) is expressed as ”S equals
about 0,02 cost mmits”. Also in this case to model
this imprecise number we use (21) and (22) with
¥ =5 =0,02, w, = 0,8, and wg = 1,2. The
standardised average profit from one renewal of
the system b is evaluated as "b equals abont 20
cost units”. The membership function in this
case may be described by (21) and (22) with
2 =0 =20, wy, = 0,8 and wpg = 1,2. To
find the expected munber of inspections while the
system is failed A we need to analyse thie prob-
ability that the failure is revealed during the in-
spection which can be evaluated only imprecisely.
Suppose, that after such an analysis we arrive at
the fuzzy version of A described by (21) and (22)
with z* = A* = 1,1, wy, = 0,95, and wg = 1,07.
Note, that in this case the membership function is




not symmetric. It stems from a fact that A must
not be smaller than 1. The valie of the remaining
parameter nainely, the probability of a false alarm
8, usually can be estimated rather precisely, and
in our case is set to 0,01.

Having the input information in the form de-
scribed above let us find the 4-NSD-admissible
set of values of h. Assume that v is equal to
0,5. Hence, we can find the following input val-
ues for (17) and (18): 025 = 18’.- 025, = 22
So5 = 0,018, 95, = 0,022, A%} = 1,0725,

ADS — 11385, and 6§ = 0,01. When we insert

max

these values into (17) , (18) and (19) we find that

Trin = 0,026, Tmax = 0,104

Taking in mind that 1'31’5'1 = 1800, and
705 = 2200 we arrive at the following 0,5
NSD-admissible set of valnes of h: MO =
(46,8nrs.,228, 8hrs.,). It is worth noting that the
simple fuzzification of (3) gives the following -
cut set for the fuzzy-optimal inspection interval

(‘r" 548
min\| oo (A0 5)

23
o 315 ) (23)

-
maxq/ po TAT 05

min

When we take @ = 1 — v = 0,5 and insert the
other input data into (23) we obtain the interval
(81hrs.,123,2hrs.). We can see that this interval
is much narrower than the 0,5-NSD-admissible
set, of values of h. It means th aking the
values of h from a wider 0, 5-NSD-admissible set
we admit such values of h that may not be opti-
mal. However, the values of the objective function
for those non-optimal values of % cannot be dis-
tingushed (in the sense of the NSD index) from
the values of this function for the fuzzy-optimnal
values of h.

Let us consider now other preference requirements
that may be expressed for the inspection inter-
vals. First, let us notice that in the considered
case some vahies of h are definitely more preferred
than the others. It seems rather obvious that in-
spections performed after 16 hours of work, i.e.
during the night break, are mucli more prefer-
able than the inspections performed every, say, 1
hour. To describe forinally the preferences of this

type denote by ¥ € (0,1], j = 1,..., k the prefer-
ence assigned to the values of h that fulfil certain
requirements. Denote by I(x) the set-indicator
function that indicates those values of & that ful-
fil a certain requirement. The overall preference
function may be now expressed as follows

v(h) =
sup (Vll(’l mod h(1) = O) VA I(h mod ) = (), .

R

Assume that in  our case we have
(1/1 =1,h = 16), (u'~' =0,8,h® = 8), and
(u3 =0,2,h® =4). Thus, the sampling inter-

vals equal to (48, 64, 80, ..., 224) hours are equally
preferred with vy(h) = 1.

Consider second requirement for the inspection
interval that was mentioned in the second section
of the paper. This requirement is related to the
expected munber of false alarms during a given
time period. As any false alarms are undesir-
able we may assume that the preference function
1(Ay) is a non-increasing function of Ay. Thus,
the respective preference function v4(h) is a non-
decreasing function of k. In the considered case
this information, together with the knowledge of
v1(h), is suflicient to choose the user-preferred
inspection interval which is equal to 224 hours.
Thus, we should inspect the machine every 14
working days.

6 Conclusions and open problems

In the paper we have found a relatively simple
solution to an important practical problem. This
was the goal of the research. Despite the apparent
simplicity of this problem the solution appeared
to be not obvious. Both optimisation probleins
considered, i.e. the optimisation of a fuzzy objec-
tive function and the solution of the Hexible con-
straint satisfaction problem treated separately are
well described in literature. However, when these
two approaches have to be dealt with together
there are still problems to be solved.

The methodology for finding the user-preferred
optimal inspection interval can be viewed as an al-
ternative method for treating two aforementioned
optimisation problems together. The proposed
method for the evaluation of the possible solu-
tions by comparing them to the best attainable




las its origins in the approach proposed by Bell-
man and Zadeh {1]. Therefore, it seems to be
consistent with the flexible constraint satisfaction
problem that was used for chovsing the most pre-
ferred solution.

Numerical example considered in this paper ex-
plains - in some way - the problems with the ap-
plication of "optimal” solutions in practice. It is
clearly seen that even in a case of relatively small
iprecision in setting the values of model’s pa-
raneters the interval which contains admissible
values is - from a practical point of view - so wide
that it is sufficient to look only for the most pre-
ferred solution. In practice it means that expe-
rienced users choose the 1mnost preferred solutions
ignoring possible optimisation problems.

The proposed method can be easily generalised.
L'or exawple, in the majority of optimisation
problems the optimal solution is not explicitly
given as in the case cosidered in this paper. In a
forthcoming paper of Hryniewicz [11]a simple al-
gorithm is proposed to find the y-NSD-admissible
set of values of the optimised variable in such a
case. A further generalisation to a multidime-
sional case is possible, but nnmerically not effi-
cient.

In the considered case the preference structure
is very simple, and the imaxmin approacl to
solve the flexible constraint satisfaction problem
is quite natural. In more complicated cases with
wmany preference relations it may be useful to
consider some other approaches. For example a
discrimin approach, described in the paper of
DPubois, Fargier and Prade [5] may be used to
choose a better solution. When the preference
coustraints have different priorities we may use
the concept of prioritized constraints proposed by
by Dubois, Fargier and Prade [4]. Finally, the
concept of y-NSD-admissibility that was intro-
duced in this paper may be used to rank differ-
ent solutions. In suclymin t may be viewed
upon as an additional flexible constraint. This
approach, however, may be too complicated nu-
merically to be effectively used in practice.
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