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Abstract 

Bayes life-time tests with imprecise input information 

O.Hryniewicz 

Systems Research lnstilute, Polish Academy ofSciences, Newe/ska 6, 0/-447 Warsaw, Poland 
hryniewi@ibspan.wow.pl 

The problem of the Bay es estimation of the fai Iure rate is considered when the reliability data are presented in a 
vague form. lt is also assumed thai the prior information about the estimated failure rate is given in the form of 
the gamma distribution with imprecisely detined parameters. Fuzzy sets are used to model the Jack of precision. 
The formulae are given for the fuzzy Bayes estimator of the fai Iure rate. 

Keywords:F ai/ure ra/e; Bayes eslimator; Fuzzy re/iability data; Fuzzy prior information. 

1. Introduction 

In reliability testing decision-makers are faced with data of a random nature. Various 
statistical methods have been developed during the last 200 years in order to cope with 
random data. However, in nearly all cases it is assumed thai available data are described 
precisely, usually by real numbers. Thus, in the majority of statistical papers it is assumed that 
the only source of uncertainty is the randomness of data. In many circumstances of a real life, 
however, the data are not precise, and we often have to analyse not only exact numbers, but 
vague statements as well. Thus, classical methods are sometimes not sufficient, and there is a 
need to apply some other theories which, at least in statistics, are considered as non-standard. 
The theory of fuzzy sets is a theory that has been successfully applied in many cases where 
we deal with vague data, and when the results of a rigorous mathematical analysis have to be 
presented to people in a plain language. 

In the majority of practical cases the available life-time data are not sufficient for 
precise estimation of reliability characteristics. Usually, however, there exists additional 
information that can be merged with the information obtained from reliability tests. In such a 
case Bayes statistical methods are used both for reliability estimation and decision making. 
The ready-to-use results are described in numerous books and papers for the case of precise 
information about reliability data, prior distributions, and related costs. However, in many 
cases this information is also imprecise. 

In the paper we consider the problem of the Bayes analysis of life data when both 
statistical data and additional infonnation may be expressed in a vague form. In the second 
section of the paper we present basie notions of the fuzzy statistical Bayes analysis. The 
generał results from the second section we illustrate in the third section with the application 
from Bayes reliability analysis - the problem of the estimation of the constant failure rate. 
Theoretical results presented in the paper are illustrated with a numerical example. 

2. Bay es statistical analysis of reliability da_ta with imprecise information 

Bayes statistical analysis is a special case of a more generał problem of making 
decisions presented in many textbooks such as e.g. Raiffa and Schlaifer [7], and DeGroot [2]. 
According to the basie model typically used for the problems of the reliability analysis the 
decision maker can specify the following data defining his decision problem: 



space of terminal decisions (acts): A= {a}. 

state space: e = {0}. 

sample space: Z = {z}. 
utility function: u(-,,) on A x Z x e . 

Note, that in the case of the Bayes statistical analysis of reliability data it is usually assumed 
that the decision space is the same as the state space e. The decision maker evaluates a utility 
u(z, 0) of making a certain decision when the result of this experiment is z, and the true state 

of nature is 0. In order to find appropriate (hopefully optimal) decisions the decision maker 
has also to specify a joint probability measure P0,, ( ·,) for a Cartesian product e x Z. The 

knowledge of this probability measure means that we know the joint pro babi lity distribution 
of observing the statistical data z when the random state of nature is described by 0. Knowing 
this joint probability distribution we can calculate some important marginal and conditional 
probability distributions. In particular, we are usually interested in three distributions: 

the marginal distribution on the state space e describing our prior information about 
possible states of nature; 
the conditional distribution on the sample space Z for given state of nature 0, 
the conditional distribution on the state space e for given result of the experiment z 
describing our posterior information about possible states of nature. 

Note, that we may know only these particular distributions, as their knowledge is equivalent 
to the knowledge of the joint probability distribution on ex Z . 

Let us consider the simplest case of the generał model when there is no statistical data. 
In such a case, the only information we need is the probability distribution 11-(0) defined on 

the state space e . We call this distribution the prior distribution of the parameter 
(parameters) describing the unknown state of nature. If we know the utility function u(a, 0) 
defined on A x e we may calculate the expected utility assigned to a particular action 
(decision) a from a simple formula 

u(a)= fu(a ,0}n-(0}d0 . (I) 
e 

If we use a loss Junction L(a,0) for the description of potential consequences of taking 
decision a we may calculate the expected loss (usually called a risk) from an equivalent 
formula 

p(a)= fr(a,0}n-(0)d0 . (2) 
e 

Having calculated the expected utilities for all possible decisions we can find the optima) one 
which is related to the maximal expected utility (or the minimal risk). The expected risk 
associated with the optimal decision is called a Bayes risk. This procedure is in principle very 
simple. However, in many practical cases (when the number of possible decisions is 
sufficiently large) it may require the usage ofsophisticated optimisation methods. 

When the decision maker has an additional information about the state of nature in a 
form of observations z=(z1, z2 , ••• ,z11 ) of a random vector described by a probability 

distribution J(z ,0) we may calculate the expected utility assigned to a particular action 
(decision) a from a formula 

u(a, z)= fu(a ,0)g(01 z)de , 
e 

(3) 



where 

g(Biz)= J(zl0)n-(e) 
f J(z I 0)1t(0)d0 

(4) 

0 

is the posterior distribution of the parameter 0 which describes the state of nature. In such a 
case the expected utility attributed to each decision is calculated from 

u(alz)= fu(a,0)g(01z)d0, (5) 
0 

and the respective risk from the formula 

,o(alz)= fL(a,0)g(01z)d0, (6) 
0 

The procedure for finding the optimal decision is exactly the same as in the case described 
previously. 

Suppose now that the parameter p of the prior distribution 1t(0; p) and the statistical 
data z are defined imprecisely. Let us assurne thai our imprecise knowledge about their 

possible values is represented by fuzzy sets. A fuzzy set X is defined using the membership 
function µ x (x) which in the considered in this paper context descri bes the grade of 

possibility thai a fuzzy parameter, say X, has a specified value of x. Each fuzzy set may be 
also represented by its a-cuts defined as ordinary sets 

(7) 

From the representation theorem for fuzzy sets we know that each membership function may 
be equivalently represented as 

µ x (x)= sup{al xa (x) : a e [0,1 ]}. (8) 

Lei us denote the imprecisely defined parameter p by p, and the vaguely described life data 
statistics z by z, respectively. Moreover, assume thai fuzzy values of pand i are represented 

by their a-cuts, and thai these a-cuts are given in a form of closed intervals [Pf, P3 j and 

[ztz5 j, respectively. The knowledge of these a-cuts let us calculate fuzzy equivalents of 

the expected utility or the expected loss (risk). In generał, it is possible to assume thai the loss 
function L( *) may be also imprecisely defined. However, to make the presentation sim ple we 
assume that decisions are based on the knowledge of the vague posterior distribution 
g(0 I z, p) and the precisely defined loss function L(0) . As the posterior distribution function 
is the function of imprecise fuzzy parameters, it is also fuzzy, and may be denoted as 
g(Blz,p) . 
Now, Jet us rewrite formula (6) as 

p = f L(a, 0)g(0 I z, p)de. (9) 
0 

The risk calculated from (9) is now an imprecisely defined jitzzy number whose membership 
function may be calculated using Zadeh's extension principle (see Klir and Yuan [6], orany 
other textbook on fuzzy sets, for a reference). lt is easy to show that the fuzzy risk p is now 

represented by its a-cuts ~f, PB j, where 

pf = t'nj a)p(z,p) 
Z E Z1, ,Z lf 

pe pf,Pll 

(IO) 



and 

Pt= f~P a1p(z,p) . 
ZE Zt, ,Z(I 

pe pf ,pff 

( 11) 

Thus, for every possible decision we may find a fuzzy risk 
ii which may be calculated in the same way. 

p or a fuzzy expected utility 

3. Dayes estimator of the constant failure rate in the presence of imprecise information 

One of the most important problems of Bayes analysis of reliability data is the 
estimation of the constant failure rate. The constant failure rate characterises the exponentially 
distributed time to failure Z whose density function is given by 

( ) { o, z< o 
f z·,1, = 

' .k-k, z~O 
(12) 

Lei n items be placed on a reliability test, and z1 :,; z2 :,; ... :,; zd , d:,; n be the observed times 

to failure. In the simplest case of censored life-time data the total time on test is given by 

T=I,~=IZ;+(n-d)zd (13) 

It can be found in any textbook on the statistical analysis of life data that (d, z) is the 

observed value of the test statistics that is sufficient for the estimation of the failure rate A, 
and the observed value of the maximum likelihood estimator of A is given by 

,1,•=!!__ (14) 
T 

When the prior information about the actual value. of ,ł is available in a form of a prior 
distribution 11'(,1,) we can apply the Bayes methodology described in the previous section and 

find the Bayes estimator of A. In the classical book of Raiffa and Schlaifer [7] it has been 
shown that the most appropriate prior distribution of ,ł is the gamma distribution given by the 
density function 

f O, ,ł < O 

11'(A)=r0 A~:rr-< A~O' y~O.o~O (15) 

The gamma distribution with the parameters (y,b) is the conjugate distribution to the 
exponential distribution. Thus, the posterior distribution of A is also the gamma distribution 
with the parameters (y+ T, o+d). 

In the Bayes estimation we assume that the space of decisions A is the same as the 
space of parameters. Therefore, the Bayes estimator of A is such a decision a= -ł 8 thai 

minimises (6) for a given loss function L(,1,8 , ,1,) . This is a well known fact (see, e.g. , 
DeGroot [2] for a reference) that for a quadratic loss function, i.e. when 

L(,1, IJ, ,1,) = c(,1, - ,ł IJ )2 , c > O, the Bayes estimator of the constant fai Iure rate ,1, is equal to the 

expected value in the posterior distribution of A, i.e. 
,1, _ d+o 

B - T+y ' 
(16) 

and the associated Bayes risk is equal to the variance in the posterior distribution of A, i.e. 



d+o 
p=--. 

(T+y)2 
(17) 

Let us assume now that both the life-time data and the prior distribution are described 
in a vague form. The vagueness of life-time data coming from the users has, as it has been 
pointed out in Grzegorzewski and Hryniewicz [3], many different sources. We could divide 
these sources into three groups: 

vagueness caused by subjective and imprecise perception offailures by a user, 
vagueness caused by imprecise records ofreliability data, 
vagueness caused by imprecise records of the rate ofusage. 
First source of vagueness is typical for so called parametric failures. A parametric failure 

occurs when at least one value of functional parameters of an item under investigation falls 
beyond specification limits. In practice, however, a user has only a perception of the values of 
these parameters, and is not able to define precisely the moment of a failure. For example, if 
there exists a requirement for an admissible level of noise, it usually cannot be measured by a 
user, but only assessed in a subjective, and therefore imprecise, way. As the result, we obtain 
an imprecise information about the real life-time. Moreover, this type of vagueness causes 
situations in which even at the end ofa test (i.e. at a censoring time) a user is not sure whether 
the tested item has failed or not. In such a case, we have not only imprecise values of life­
times, but we have imprecise information about the number of observed failures as well. This 
type of imprecise reliability data was considered in Hryniewicz [5], and Grzegorzewski and 
Hryniewicz [4]. 

Second source of vagueness is typical for retrospective data. Users do not record 
precisely the moments of failures, especially when they are not sure if they observed a real 
failure (see above). So when they are asked about failures which occurred some time ago, 
they often provide an imprecise information. Another case of vagueness of this type arises 
when a user knows exactly the time of a failure but does not know the precise length of the 
time to failure. This often happens in the case of a reliable equipment when failures occur 
after years of exploitation. In such cases users very often cannot precisely recall the moment 
when the failed equipment begun its exploitation. 

Third source of vagueness is related to the fact that users, who report their data in days 
(weeks, months), use the tested items with different intensity. Depending on the value ofthis 
intensity two items that failed after the same period of time may have completely different 
time to failure expressed in hours of continuous work. In practice, the users are asked about 
the intensity of usage (for example, in hours per day), and their responses are usually 
imprecise. 

The Jack of precision of reliability field data comes from all these sources, and in 
many cases cannot be even identified. Moreover, vagueness described above (especially from 
first two sources) is rather of an epistemic character. Therefore, its description in terms of 
probabilities is rather doubtful. Even in the case when this could have been done, precise 
probability models are very often impractical, because of many parameters which are either 
unknown or difficult to estimate. Thus, when we deal with really vague data expressed by 
imprecise words, and it is the only source of information which can be used for the 
verification of hypotheses about the mean life-time of tested items, we need to use another 
formalism that is more suitable for the description of imprecise data. We believe, that the 
formalism of the theory of fuzzy sets provides us with well established and easy to use means 
of the forma! description of imprecise (linguistic) information. 

Let us assume that instead of exact time to failures z1,z2, ... , zd we observe fuzzy 

times z1,z2 , .. . ,zd(note that an exact time to failure is a special case ofa fuzzy one). Suppose 

thai the membership function of the observed fuzzy time to fai Iure z;, i = I, ... , d is defined 



using the set of a-cuts (zfl , zfu J i= I, ... , d . The total time on test T becomes nowa fuzzy 

number T whose membership function µ(T) may be defined using the set of a-cuts (Tt , T(J ) 
where 

Tt= irif {L~=I Z; +(n - d)z; }= L~=I zu, +(n-d)z;,L (18) 
z; e(zf1, ,zfu) 

and 

Now, Jet us discuss the second source of vagueness considered in this paper, namely 
the vagueness of the prior distribution. One can argue that the prior distribution itself is the 
only possible description of this vagueness. However, in order to define a prior distribution 
we have to indicate exact values of its parameters. Then a new problem arises, how to 
evaluate the values ofthese parameters when we do not know them precisely. According to an 
orthodox Bayes approach we have to define their prior distributions, and to proceed this way 
till the moment when all necessary values are exactly known. Another way to cope with this 
problem is to find a natura! interpretation of these parameters or their functions, and to assess 
them subjectively. In such a case we often face problems of the precise assessment of 
subjectively perceived quantities. In the considered in this paper case of the gamma 
distribution we have to give the values of two parameters <5 and y. Knowing any two 
characteristics of the prior distribution of the parameter A, such as the expected value, the 
mode, the coefficient of asymmetry or the variance, we can easily write two equations whose 
solution gives us the required values of <5 and y. However, when at least one of those 
characteristics is known imprecisely we arrive at vague values of <5 and y. 

In the generał case we may assume that the parameters of the prior distribution are 

described by fuzzy num bers 8 and y whose a-cuts are given in a form of closed intervals 

{of ,<58) and ~f.r8 ), respectively. We can now define the fuzzy version of the Bayes 
estimator of the failure rate as 

- d+8 An=-- - , 
T+y 

(20) 

The membership function of In can be found using Zadeh's extension principle (see, 

e.g., Klir and Yuan [6]). In the simplest case, when both parameters <5 and r are assessed 

independently, the membership function µ(An) of In may be defined using the set of a-cuts 

(AB.l •An.u), where 

Aa - d+of 
n.l - T.a a 

u +ru 

Aa _ d+<58 
n.u -Ta a 

l +yl 

(21) 

(22) 

Let us consider the case when the shape parameter <5 of the gamma prior distribution 
is known exactly. The shape of the prior distribution is not directly related to any vague 
concept, so we can assume that the decision maker is able to give the exact value of <5. Now, 
Jet us assume that the decision maker has some vague opinion either about the expected value 

of the fai Iure rate E ,! or about the most plausible value of the fai Iure rate equal to the mode 



of the prior distribution denoted by i5,; . The fuzzy Bayes estimators of the failure rate are 
now given either by 

- d+ó 
An= _ j1 , 

T+ -
E,; 

(23) 

or, by 
- d+ó 
An=_ (ó-~) , Ó> I„ 

T+ -
D,; 

(24) 

respectively. Using Zadeh's extension principle it is possible to find the a-cuts for the fuzzy 

Bayes estimator In also in these cases. 

When the exact value of the estimated hazard rate is needed we can use one of many 
methods for the defuzzification of fuzzy numbers. One of these methods, aJ-average, has been 
proposed by Campos and Gonzalez [I]. Campos and Gonzalez in their paper [I] call this 
concept as the A-average. However, in the reliability context A usually denotes the constant 

hazard rate, so in this paper we propose to name this concept as the aJ-average. When X is a 

fuzzy number (fuzzy set) described by the set of its a-cuts lXf , X{J j such that the support of 

X is a closed interval, then its aJ-average value is defined by Campos and Gonzalez [I] as 
I 

Vf(X)= f[wX{J +{1-w)Xf ]da, WE [0,1). (25) 
o 

Thus, the aJ-average value of X can be viewed as its defuzzified value. The parameter w in 
(25) is a subjective degree of decision maker's optimism (pessimism). In the case of fuzzy 
risks w = O reflects his highest optimism as the minimal values of all a-cuts (representing the 
lowest possible risks) are taken into consideration. On the other hand, by taking w= I the 
decision maker demonstrates his total pessimism. If the decision maker takes w = 0,5 his 
attitude may described as neutral. 

4. Numerical example 

To illustrate the concepts introduced in this paper !et us consider a simple practical 
example. Suppose that the reliability field data from n=I0 pieces of an infrequently used 
equipment have been collected. The users were asked to give the limes to first failures, or the 
times of exploitation in the case of the equipment that has not failed yet. In case of troubles 
with providing precise information on those times, the users were asked to provide the data in 
a form of time intervals [Imin, Imax]. Note, that this is the simplest form of fuzzy data, when the 

membership function of a fuzzy number f has a rectangular form 

( ) -{ I I min 5, I 5, I max 
µTI -

O otherwise 
(26) 

The life-time data provided by the users are the following : 
- two users gave exact time to failures: 524 hrs, and 634 hrs.; 
- two users gave imprecise time to failures in a form of intervals: [450 hrs. , 500 hrs.], [650 

hrs. , 700 hrs.]; 
four users gave exact times of exploitation without a failure: 700 hrs. 805 hrs., 950 hrs., 
1010 hrs. ; 



- two users gave imprecise times of exploitation without a failure in a form of intervals: 
[550 hrs. , 600 hrs.], [750 hrs. , 800 hrs.]. 

Hence, d=4 failures have been observed, and the total fuzzy time on test T is described by a 
rectangular membership function (se~ (18) and (I 9) for justification) of the following form: 

( ) -{ I I min s; I s; I max (27) 
µr 1 - O otherwise ' 

where Imin = 7023 hrs., and Imax = 7223 hrs. Hence, the expected time to failure is given in a 
form of the interval [1755,75 hrs. , 1805,75 hrs.J. It is also easy to show that the fuzzy 

maximum likelihood estimator of the hazard rate I has a form of the rectangular fuzzy 
number with the support given by the interval [5,538* I O"' hrs·1 , 5,696* 10"' hrs- 1] . 

Now Jet us assume that there exists some prior information about the failure rate of the 

considered equipment. Let the most plausible value of the failure rate i5 „ be presented in a 

form of the interval [5* I o"' hrs·1 , 6,667* 10"' hrs- 1], and the value of 8 be equal to 3 (it 
means that the prior distribution of ,l, is asymrnetric, with large values of the hazard rate more 
probable that the small ones). 

By merging both types of information in (24) we arrive at the imprecise Bayes 

estimator of the hazard rate Is in a form of the rectangular fuzzy number with the support 

given by the interval [6,237* I O"' hrs· 1 , 6,984* 10"' hrs-1]. Note, that the interval for In is 

wider that the interval for I. However, its variance - as it is usually the case for Bayes 
estimators - should be much smaller. 

The defuzzified value of In in this particular example is extremely easy to calculate. 

It isjust a weighted sum of the lower and upper limit of the interval for In. 
In the example given above we have assurned the simplest representation offuzziness, 

narnely the intervals. In practical situations imprecise information may be described by other 
membership functions, such as triangular or trapezoidal. For example, triangular membership 
fonctions are very useful for the forma( descńption of a vague information like "the time to 

failure was about x hours". In sucha case, the form of the membership function of In may 

be not so simple. However, even in such cases it stili easy to calculate the a-cuts of In . 

S. Summary 

In the paper we have described the methodology of the Bayes estimation of the failure 
rate when the life-time data are given in a vague form. This situation may happen when times 
to failure are expressed in a common language. We model such a vague information using 
fuzzy sets. Moreover, we assume that the prior knowledge about the estimated failure rate is 
modelled by the gamma prior distribution with imprecisely defined parameters. We combine 
the imprecise information from both sources in a form of the fuzzy Bayes estimator of the 
failure rate. When the exact value of the fuzzy estimator of the failure rate is needed we may 
adopt a simple defuzzification method presented at the end of the paper. 
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