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Abstract

The problern of the selection of vari-
ables for systams analysis is con-
sidered. Variables arc sclected ac-
cording to the statistical analysis of
exparts opinions.  We propose to
describe possible ambiguous experts
opinions by possibility distributions,
and thus by fuzzy scts. For such
fuzzy data we proposc a fuzzy ver-
sion of the Pearson’s chi-squarc test
of independence.
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1 Introduction

Systems analysis deals with complex prob-
lems and processes deseribed by many pos-
sible variables that may be uncertain and im-
precisc.  These problems and processes we
treat as certain systems described by math-
cmatical models. Building of such mathe-
matical models requires a large amount of in-
formation, cspecially when input information
is of a random mnature, and thc models arc
presented in a form of regression cquations.
When this information is available we could
usc well known nicthods of mathematical sta-
tistics to sclect the best set of variables that
describe the considered system.  Using such
mcethods we could sclect explanatory variables
which, on the onc hand, are highly correlated
with the main characteristics of the system (so
called outcome variables) but, on the other

hand, arc mutually independent. However, in
many cascs this information is not available,
and the cost of its acquisition is very high. For
cxample, in building mathcmatical models for
complex socio~cconomic phenomena we need
results of costly polls. In such a case, we need
to sclect the appropriate varables in advance
inorder to reduce the amount of necessary in-
formation. In order to do this we propose to
usc experts opinions.

The simplest way to sclect variables using ex-
pert opinions is to ask them about possible de-
pendencics betwoen different variables. This
approach may be not dficient, especially in
the case of different or even conflicting opin-
ions. Therefore, there is a need to proposce
a more objective method of acquiring export
opinions. In the sccond section of this paper
we proposc a statistical procedure for cstab-
lishing possible dependencics betwoen varis
ables of interest which utilises the statistical
test of independence for categorical data. In
this procedure we divide the range of possible
valucs of cach variable of interest into a finite
number of categorics. This mcans that for
scts of possible values of the considered vari-
ables we assign some labels. These categorics
may be defined precisely (c.g. by defining nu-
merical intervals such as 10 < X < 20) or
impreciscly (c.g. by using imprecise linguistic
notions as ”high income”, "low risk”, ctc.).
We acquire necessary information by asking
questions such as "If the value of the explana-
tory vaviable X belongs to the category a;
what is a comesponding value of the outcome
variable ¥?”. In the casc of unambiguous an-
swers (i.c. whon variables are strongly depen-




dent, and experts are able to indicate only one
possible category for the outcome variable Y')
we proposc to usc the well known Pearson’s
chi-squarc test of independence in order to
find information about possible dependencies.
However, we cannot expect such unambiguous
answers - especially in the case of independent
or weakly corrclated variables. Thus, we may
face imprecisc answers that may be described
in terms of possibility distributions. We con-
sider this case in the third scction of this pa-
per where we introduce the fuzzy version of
the chi-square test of independence. Finally,
in the fourth scction of the paper, we discuss
the obtained results and indicate the probicms
for futurc investigation.

2 Test of independence using
unambiguous expert opinions

Suppose that we have to investigate a possi-
ble dependence between an cxplanatory vari-
able X and the outcome variable Y. Let
{z1,232, ...z} be a sct of labels (categorics)
that describe the possible values of the ex-
planatory variable X, and {y1,y2,.-.yr} be
a sct of labels (categorics) that describe the
possible valucs of the outcome variable Y. TFor
cach of n cxperts we randomly choosc onc
valuc of X. Then we ask cach expert "If
X = z; which is thc most plausible value
of Y?". We cxpect that the expert indicates
only one valuc of Y. This answer could be
described in the following form:
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In such a case the results of questioning can
be summarised in a form of a two-way kxr
contingency table.
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where 75 deseribes the mnnber of indications
(or observations) in the ij-th cell, and

n;. = Z i (1)
J=1

k
1L.j = Zn.'j. (2)
i=1

Pearson introduced the notion of "the ox-
pected number of observations”. This is the
expected number of obscrvations in cach cell
of the contingency table, calculated under the
assumption that both variables X and Y arc
mutually independent. He proposed to calcu-
late these valucs from the fonnula

iy = My, (3)

n

Then, he proposed to measure the "distance”
between the obscrved contingency table and
the ideal onc using the famous chi-square sta-
tistics

If n is sufficicntly large, and ng > 5, i =
1.,k , j = 1,.,7 then the x? statistics
has asymptotically the chi-squarc distribution
with (k— 1) (r — 1) decgrees of freedom. We
should rcject the hypothesis of independence
at the significance level § when the value of
the chi-square statistics is too large, namcly
larger than the quantile x?kgl)(,_vlm% of the
corresponding chi-square distribution. The
statistical test described above is well known
as Pcarson’s chi-squarce test of independence.

Further information about thie chi-square test
of independence the reader can find in any
statistical textbook (c.g. by Bickel and Dok-
sum [2]). Information about more advanced
tnethods of testing independence for categor-
ical data can be found in Agresti [1].

If we need to build a model with a limited
number of explanatory variables we should
choose those that arc mutually independent,
and highly corrclated with the outcome vari-
able. To scleet the variables which has the



highest corrclation with the outcome variable
we can usc the well known Tchouproff’s index
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Explanatory variables with the highest valuc
of this index have probably the strongest cor-
relation with the outcome variable.

3 Test of independence using fuzzy
expert opinions

The assumption that the expert will indicate
only onc valuc of ¥ without hesitation in
many cascs is obviously unrealistic. Consider
for example a situation when both variables X
and Y arc independent. Then it is quite prob-
able that the expert is not able to indicate the
most plausible valuc. In such a casc he cither
chooses the answer randomly or indicates two
(or more) values as equally plausible. In the
casc of kxr contingency table his answer could
be like the onc presented in the table:
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This result looks like a well known in statistics
casc of multiple answers. However, its inter-
pretation is quite different. In the problem
of multiple answers two (or more) values of
Y may occur simultaneously. An cxample of
such a problcm was described by Loughin and
Scherer [10] who investigated the association
between the educational background of farm-
crs and the source of some veterinary inforina-
tion. In such a casc it is quite probable that
people would indicate different sources from
which they obtained this information. In our
casc the situation is quite different. The rea-
son for a multiple answer is cither a lack of
knowledge or ¢ven an inherent inability, as in
the case of independent variables.

Let us consider the interpretation of the ™ mul-
tiplc” answer that was presented in the ex-
ample given above. What docs it mean in
practicc? Onc possible answer is that the

cxpert sces both outcomes y; and gy as
cqually probable. Another possibility is that
the expert secs both outcomes as equally pos-
sible. Let us discuss the difference between
these two interpretations. In the first casc,
the expert evaluates the expected frequency
of the occurrence of those outcomes, and the
reported numbcers may be casily transformed
to probabilitics (0.5 and 0.5 in the considered
casc). In the second case, the expert says that
both outcomes y; and y;41 arc equally possi-
ble but not necessarily equally probable, and
their probabilities belong to the interval (0,1].
Thus, in a real experiment we could cxpect
both results
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Now, let us consider a more general situation
when the answer is given in the following form
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where g5 € [0,1], i=1,..,k j=1,..,rand
nﬁ\x i = 1. We may interpret the values of
[l.i']' as the degrees of possibility that for the
X = a; we will obsarve ¥ = y;. Hence, for a
given possibility gy we iay observe in a real
experiment all values whose possibilitics are
not sinaller than .
Let’s denote 1, by n;, then we have ZLI n; =
n. Now, a single expart’s opinion can be de-
scribed in a general form by the following vee-
tor:

Miq = (Hitsg izigs -or Hirg) + @=Ly,

i=1.,k, 0 e <1, j=1,.,r,

m;xx ijg = L




‘We assume that this vector represents a possi-
bility distribution givenin a formof a fuzzy set
that describes the expert’s answer, and num-
bers gy, are the values of the membership
function assigned by the expert to possible
observations (@i, ;).

For a given acut (0 < a <1) the expert’s
opinion is described by the following vector
M= (Mﬁ;q’Mz%;q"“’ Igzq) ’
g=1,..,n;,i=1.,k,0<a<l

where

1 ifpije 2
a _ ijig <
Mijiq { 0 otherwise

If the expert docs not hesitate, and its answer
is unambiguous, we can describe formally this
situation by the following vector:

S‘i;q = (Sil;qysiZ;qv'"; Sir;q) ’
g=1,.,n;,1=1 .,k

where

RS- 1 if pijig =1 and 35— prijiq =1
i 0 otherwise

Henee, we can find the number of unambigu-

ous answers for cach pair (z;,y;) from the fol-

lowing cxpression

i
n =3 Sig,i=l.k,i=1..r (6
=1

Now, let us find the number of observations
in the ¢5-th ccll of the contingency table for
the given a-cut. It can be calculated from the
formula

ng =Yg M, i=1.,k,i=1,.,7,
0<a<l
@)

Now, the munber of ambiguous obscrvations
in the ij-th ccll of the contingency table for
the given a-cut is given by

a,n

0 . . i
i =nfj—1ny, i=1L.,k,j=1.,r,

0<a<l.
8)

n.

The total number of ambiguous cascs for the
i-th level of the variable X is now

nt=nd)-nd,i=1,.k (9

where

-
n?:Zn% yt=1 .7 (10)
=1

Having defined all these quantitics we de-
fine the chi-square statistics for the case of
ambiguous opinions. First, let us introduce
the set M of auxiliary variables m$ €
0,1,.},i=1.,k,j=1.,7r,0<a<
1 such that 0 < m@ < n?}’" and 337, mg =
n¥. Let

ok
A=Y (ndy+ms;) (D)

and

ko (04 a)?
xi=ZZ——-~——(n” .:n”) -n (12)

i=1j=1 5

Now, for a given a-cut we can find the small-
cst possible value of the chi-square statistic
(12) from the formula

=mmin X3, (13)

2

Xa,min

and the largest possible valucof the chi-squarce
statistic (12) from the formula
2

X?x,max =I!A14‘dg( Xa- (14)

We can consider these two values as the limits

of the a-cut interval x2 = [x?,’min, x?,,max of

a fuzzy chi-squarc statistic ¥2 whosc member-

ship function can be found from the following

expression:

niA) = sup{alxgl(xz) a€0,1]},  (15)

where I,a (x?) denotes the characteristic func-
tion of the sct x2.

When the obtained test statistics is fuzzy we
can use several methods for the interpretation
of test results. The introduction of vagueness
to the problem of statistical testing leads to a






















