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Evaluation of reliability using shadowed sets and fuzzy lifetirne data 

O.Hryniewicz 
Systems Research Institute, Warsaw, Poland 

ABSTRACT: In the paper we consider the problem of the evaluation of systems reliability using sta­
tistical data coming from the reliability tests of its elements when the life times of the elements are 
described by the exponential distribution. We assume that these lifetime data may be reported impre­
cisely, and that this Jack ofprecision may be described by fuzzy sets. As the direct application of the 
fuzzy sets methodology leads, in the considered case, to very complicated and time consuming calcu­
lations, we propose simple approximations of fuzzy numbers by the shadowed sets introduced by 
Pedrycz (1998). The proposed methodology may be simply extended to the case of generał lifetime 
probability distributions. 

I INTRODUCTION 

Statistical methods for the analysis of lifetime data have been intensively developed for the last fifty 

years. Numerous papers and textbooks dealing with different statistical aspects of the analysis of reli­

ability data have been published. In the books written by Bain & Englehardt (1991), Meeker & 

Escobar (1998), Lawless (2003), and other authors one can find practically all methods that could be 

used for the analysis of such data. However, practically all well known statistical procedures have 

been developed for the analysis of precisely measured lifetime data. Only in few books and papers 

(e.g. in Lawless (2003)) one can find information about the statistical analysis of interval data with 

precisely defined time intervals covering unknown lifetimes. 

Precisely reported lifetimes are common when the data come from specially designed life tests. In 

such a case a failure should be precisely defined, and 

all tested items should be continuously monitored. However, in real situation these test requirements 

might not be fulfilled. In the extreme case, the reliability data come from users whose reports are ex­

pressed in a vague way. The vagueness of reliability data coming from the users has many different 

sources. In Hryniewicz ( 1995) these sources have been divided into three groups: 

• vagueness caused by subjective and imprecise perception offailures by a user, 

• vagueness caused by imprecise records of reliability data, 

• vagueness caused by imprecise records of the rate of usage. 



First source of vagueness is typical for so called non-catastrophic failures. The tested item may be 

considered as failed, or - strictly speaking - as nonconforming, when at least one value of its parame­

ters falls beyond specification limits. In practice, however, a user does not have a possibility to meas­

ure all parameters, and is not able to define precisely the moment of a failure. For example, if there 

exists a requirement for an admissible level of noise it usually may be verified by a user only subjec­

tively. The user can usually indicate only a moment when he noticed that the level of noise had in­

creased, and the moment when he (or she) considered it as obviously excessive. Thus, it might be as­

sumed that the first moment describes the time when the tested item (say, a car) may be considered as 

failed, and the second moment indicates the time of a sure failure. As the result, we obtain imprecise 

information about the real lifetime. Moreover, this type of vagueness causes situations in which even 

at the end of a test (i.e. at a censoring time) a user is not sure whether the tested item has failed or not. 

In such a case, we have not only imprecise values of lifetimes, but we have imprecise information 

about the number of observed failures as well. This type of imprecise reliability data was considered 

in Hryniewicz (1995) and in Grzegorzewski & Hryniewicz (2002). 

Second source of vagueness is typical to retrospective data. U sers do not record precisely the mo­

ments of failures, especially when they are not sure if they observed a real failure (see above). So 

when they are asked about failures which were observed some time ago, they sometimes provide im­

precise information. A lifetime of an individual is the actual length of life of that individual measured 

from some particular starting point. However, it may happen that the user cannot specify this starting 

point precisely but only in a vague way. In such situation the lifetime of the item under study is also 

vague. 

Third source of vagueness is related to the fact that users, who report their data in days (weeks, 

months), use the tested items with different intensity. Two reports about items that failed after 20 

weeks of work may have completely different meaning for the measurement of MTTF expressed in 

hours of continuous work, when the intensity of usage significantly differs in both these cases. In 

practice, the users are asked about the intensity ofusage (for example, in hours per day), and their re­

sponses are, from obvious reasons, very often imprecise. 

The lack ofprecision ofreliability field data comes from all these sources and in many cases cannot 

be even identified. Precise probability models can be seidom applied only for clearly identified 

sources ofvagueness, and they are very often impractical, because of many parameters which are ei­

ther unknown or difficult to estimate. Therefore, we have to admit, that we often deal with really 

vague data expressed by imprecise words, and it is the only source of information which can be used 

for the verification ofhypotheses about the mean Iifetime oftested items. 



In the second section of the paper we introduce the concept of the fuzzy modeling of imprecise life­

time data. The obtained results, however, may be too difficult to implement by practitioners. There­

fore, there is a need to propose a much simpler approximate formulae. In the third section of the paper 

we present such results using the concept of shadowed sets introduced by Pedrycz (1998). 

2 FUZZY MODELING OF IMPRECISE LIFE-DATA 

One of the most frequently used reliability characteristics is the mean time to failure MTTF. It can be 

easily estimated from sample (W1, W2,, ... , Wn) of the times to failure (life-times) when all the life­

times are known. However, in the majority of practical cases reliability tests are terminated before the 

failure of all items. Thus, the lifetime data are usually censored using fixed censoring times Z;>0, i = 

I, .. . ,,n, where n is the sample size. In such a case we observe lifetimes W; only if W; :;; Z;. Thus, the 

lifetime data consist ofpairs (T1,Y1), ... , (Tn,Yn), where 

T; =min(W;,Z,), (I) 

{
I if 'I';= W; 

Y= 
' O if 'I'; =Z, 

(2) 

Further analysis of censored lifetime data depends upon the assumed probability distribution. The 

simplest, and frequently used in many areas of lifetime analysis, is the exponential model. In this 

model the lifetime W is described by the probability density function 

where 0.>0 is the mean lifetime. 

if w>O 

if w:S;0 
(3) 

The exponential model is rather restrictive ( constant hazard rate ), but due to its simplicity is fre­

quently used by practitioners. Thus in this paper we assume that the exponential distribution is used 

for the mathematical description of lifetimes. 

Let 

T = °"" T =°"W+ °" Z L.,;,..J I LJ I LJ I 
ieO ieC 

(4) 

be the total survival time (total time on test), where O and C denote the sets of items whose exact life­

times are observed and censored, respectively. Moreover, Jet 



r - """ y - L..-;- 1 i (5) 

be the number of observed failures. In the considered exponential model (r, 1) is a minimally suffi­

cient statistics for 0, and the maximum likelihood estimator of the mean life time is given by 

(6) 

Now suppose that the lifetimes (times to failure) and censoring times are not necessarily precisely re­

ported. In such a case it is possible to model this kind of vagueness by fuzzy numbers. This approach 

has been recently used by severa! authors such like Viertl & Gurker (1995), Grzegorzewski & 

Hryniewicz (1999, 2002), and Hryniewicz (1995). Grzegorzewski & Hryniewicz (1999) proposed the 

generalization of the exponential model using the concept of fuzzy numbers and fuzzy random vari­

able. 

The fuzzy subset A of the real line R, with the membership function µ A : R • [0,1] is a fuzzy 

number iff 

a) A is norma!, i.e. there exists an element xo such that µ(x0 ) = 1; 

b) A is fuzzy convex, i.e. µJAX1 + (1-,l.)xi);:;: µJx1 )A µJxi), 'ltx1,x2 ER, \;f ,l. E [0,1]; 

c) µ A is upper semicontinous; 

d) supp A is bounded. 

From the definition given above one can easily find that for any fuzzy number A there exist four 

real num bers a,, a2, a13, a4 and two functions: nondecreasing function T/ A : R • [0,1], and nonincreas­

ing function Ę A : R • [0,1], such that the membership function µ A is given by 

o if x<a1 

r,Jx) if a1 ~x <a2 

µAx)= 1 if a2 ~x <a3 (7) 

tAx) if a3 ~x < a4 

o if a4 <X 

Functions T/ A and ĘA are called the left side and the right side of a fuzzy number A, respectively. 

Fuzzy numbers may be also described by a set of a-cuts. The a-cut of a fuzzy number A is a non­

fuzzy set defined as 

(8) 



A family {Aa : a e (0,1 ]} is a set representation of the fuzzy number A. From the so called resolution 

identity we get 

µA(x)=sup{a!A. (x):a e (0,1]}, (9) 

where / A.. (x) denotes the characteristic function of Aa. Every a-cut of a fuzzy number is a closed in­

terval. Hence we have Aa = [A;, A~ j, where 

A;= inf{x e R: µJx)~ a}, 
A~= sup{x e R :µjx)~ a}. 

(IO) 

Membership functions of fuzzy numbers that are defined as functions of other fuzzy numbers may 

be calculated using the following extension principle introduced by Zadeh (1975), and described in 

Dubois & Prade (1980) as follows: 

Let X be a Cartesian product of universe X= X 1 x Xi x · · · x X,., and A1, ••• , A, be r fuzzy sets 

inXw . . , X,, respectively. Let f be a mapping from X= X 1 x Xi x · · · x X, to a universe Y such 

that y = J(x1, ••• , x,). The extension principle allows us to induce from r fuzzy sets A; a fuzzy set B on 

Y throughf such that 

µ 8 (y )= sup minł,uA, (xi), . .. ,µA, (x,)j 
x1 , • • ,xr ;y ::i J(x1 .... ,x,) 

(11) 

µB(y)= 0 if r 1(y)= 0 (12) 

Fuzzy numbers may be treated like a generalization of real numbers. Similarly, real-valued random 

variables may be generalized by fuzzy random variables. There exist many definitions of a fuzzy ran­

dom variable. The following definition is similar to that given in Kruse & Meyer (1987). 

Suppose that a random experiment is described by a probability space (n,A,P), where n is the set 

of all possible outcomes of the experiment, A is a cr-algebra of subsets of n (the set of all possible 

events) and P is a probability measure. A mapping X: n • FN, where FN is a space of all fuzzy 

numbers, is called a fuzzy random variable if it satisfies the following properties: 

a) 

is a set representation of X(m) for all en, 

b) for each a e [0,1] both 



and 

xi =Xi(m)=supX)m) 

are usual real-valued random variables in (n,A,P). 

Thus, a fuzzy random variable X is considered as a perception of an unknown (unobservable) usual 

random variable V, called the odginał of X. If only vague data are available we can calculate the grade 

of acceptability that a fixed random variable V is the original of the fuzzy random variable X (see 

Krnse & Meyer (1987)). 

Fuzzy random variables are described by probability distributions that a similar to usual probability 

distributions except for their parameters which are described by fuzzy numbers. Fuzzy parameters of 

a fuzzy random variable X may be considered as fuzzy perceptions of unknown parameters of its 

original V. Thus, in the case of imprecise fuzzy lifetime data, important reliability characteristics like 

the mean time to failure are also fuzzy. 

Let us consider the case of imprecise Iifetime data. In the exponential model time to failures and 

censoring times equally contribute, see (4), to the total time on test T. Thus, each ofthese times may 

be regarded as one lifetime datum, denoted by T;, i=l, .. . ,n. Suppose now that times T1 may be de­

scribed by fuzzy numbers. In order to simplify calculations we assume that for each i=l, ... ,n they are 

described by the trapezoidal fuzzy numbers defined by the following membership function: 

o if f < t,,; 

(t - t,J!(t 2,1 -t,J if t,,1 S: f < f2,1 

µr(t)= I if f2,1S:f<f3,1 (13) 
' 

(t4,i -t)!(t4,i -f3_;) if f3,1 s; f < t4,i 

o if t,,; s; f 

It is easy to note that precise lifetime data can be considered as a special case of(13) when the follow­

ing equality holds: t, .1 = f2,; = f3,1 = t4_1 = f1. When the following equalities hold: t,.1 = t2,; = t,., and 

t3_1 = t4,; = t„,1, then the expression (13) represents well known interval data. On the other hand, if we 

have f 2,1 = f3,1 = t p,; than (13) represents a typical imprecise information "t; is about t1,p". 

Now, !et us consider the fuzzy equivalent of the total time on test when individual fuzzy data are 

described by (13). From the extension principle one can easily find that the fuzzy total time on test 

fis defined by the following membership function: 



o if f < 'Fi 
(t-'I'i )!(T2 -Ti) if 'Fi ::5,f <T2 

µT(t)= 1 if T2 ::5,t<T3 (14) 

(T4 - t )!(T4 - TJ if T3::5,t<T4 

o if T4 ::5, t 

where 

Ti= I" ,1 , i=l ,, (15) 

T2 = I" f2 . ' i=I ,, (16) 

T3 = I" f3 . ' i::l ,, (17) 

and 

T4 = I " f4 . l = I ,1 
(18) 

Now, let us suppose that the number of failures r is precisely defined. It means that all failures may 

occur at imprecisely reported times, but their existence is sure. [The case of imprecise (fuzzy) failure 

counting is considered in Grzegorzewski and Hryniewicz (2002)]. In sucha case the estimated mean 

time to failure 0 is described by the membership function similar to that given by (14) - (18). The 

only difference is in the scale of the membership function, as everything in (14)- (18) has to be di­

vided by r. 

The situation becomes more complicated if we are interested in the evaluation of other reliability 

characteristics, as e.g. probability of failure 

P(t)=l-e-' 18 ,t > 0. (19) 

When the total time on test is imprecise, and described by the membership function (14) we may ap­

ply the extension principle to find the fuzzy version of the estimated probability of failure. By 

straightforward calculations we can find that in this case the membership function is given by the fol­

lowing expression: 



o if p < p, 
T rt +---

4 In(!- p) 
if P, ,.,;p <Pi 

T4 -T3 
µp(p)= I if Pi ,.,;p<PJ (20) 

-T. _ __ r_t _ 
1 In(!- p) 

if PJ ,.,;p < p4 
Ti -T, 

o if p4 ,.,; p 

where 

P, = l-e-,.,11,, (21) 

Pi = l-e-,·11r,, (22) 

p3 = l-e-r1 1r, , (23) 

and 

p4 =1-e-nlr, . (24) 

Situation is even more complicated if we want to evaluate the probability of failure of a system 

when probabilities of failures of its elements are estimated from imprecise fuzzy lifetime data. Con­

sider a coherent system whose elements have lifetimes described by exponential probability distribu­

tions. In the most generał case we can write 

Ps(t )= h(J; (t),P2 (t ), ... ,P,,, (t )) (25) 

where probabilitiesJ;(t),Pi (t), .. . ,P,,,(t) have a form given by (19). It is a well known fact that for a 

coherent system the probability of failure Ps{_t) is an nondecreasing function of its arguments. We can 

use this property for the calculation of the membership function of P5 (t) when the membership func-

tions of Ą (t ), Ą (t ), .. . , P,,, (t) have a form given by (20). To calculate this membership function !et us 

consider the a-cut representation of µP (p). For a given value of a e [O,!] we can define the follow­

ing a-cuts: 

(26) 

where 



l ( rf ) Pa,J =1-exp - _ ( _ ) ,j=I, . .. ,m 
T4.1 a ~.1 T3•1 

(27) 

u ( rt ) Pa,J =1-exp - ( ) ,j=I, ... ,m 
T;,1 - a T2_1 -T;,1 

(28) 

Now we can find the a-cut representation of the membership function of Ą (t) using the following a­

cuts: 

(29) 

where 

(30) 

(31) 

However, all these calculations may be prohibitively complicated for systems with a complicated 

structure function h(Fi(t),P2 (t), .. . ,P,,,(t)). Therefore, there is a need to simplify necessary calcula­

tions. In the next section we propose a method for such simplification that is based on the concept of 

shadowed sets. 

3 DESCRIPTION OF VAGUE LIFEDATA USING SHADOWED SETS 

The theory of fuzzy sets provides a precise methodology for dealing with vagueness. However, in 

many practical cases these precision seems to be excessive. See, for example, the description of im­

precise life data and its consequences. Very simple, and intuitively well understood, fuzzy description 

ofimprecise total time on test (14) is transformed to a definitely much complicated description of the 

imprecise probability of failure (20), and further to an incomprehensible for practitioners fuzzy de­

scription of the probability of failure of a coherent system with a generał reliability structure. There­

fore, there is a practical need to simplify this description by using some approximations offuzzy sets. 

One of such approximations has been proposed by Pedrycz (1998) who introduced the notion of 

shadowed sets. 

Let us introduce the concept of a shadowed set in a rather informal way. Suppose that a vague 

lifetime is described by a fuzzy number. lf the value of the membership function for a given value of 

lifetime is small we can say that such a Iifetime is rather not plausible. On the other hand, if such a 



value is rather high (close to I) we can regard that lifetime as very plausible. The concept of shad­

owed sets consists in elevating to I all the values of the membership functions that are high enough, 

and in reducing to O all the values of the membership functions that are small enough. The member­

ship function for the region where it is not possible neither to elevate it to I nor to reduce it to O be­

comes undefined. Thus, a fuzzy number A can be approximated by a set of intervals: a central interval 

with the membership grade equal to one, two adjacent intervals with the undefined (shadowed) grade 

of membership, and the open side intervals, where the grade of membership is equal to O. 

Consider a fuzzy number A with the membership function given by (7). The elevation of its mem­

bership function to I should be done for any 

and 

where au < I is a given upper threshold. Similarly, the reduction of its membership function to O 

should be done for any 

and 

where a L < au is a given !ower threshold. Thus, each fuzzy number can be represented by a shad­

owed fuzzy number defined by the set of four real numbers {a;, a;, a;, a;} that have been defined 

above. Further transformations of shadowed fuzzy numbers can be done using interval arithmetic. 

Pedrycz (1998) proposed a generał methodology for finding such thresholds that al= a, a< 0,5, 

and au= I-a. The value of a can be find by taking 

, -1 ( ) a1 = 77A a , 

and solving the following equation 



°Ji1A (x)dx + }1 -17A (x))dx-°J11 A(x)dx + 
a1 a; aj 

}Ax)dx+°I{i-;Ax))dx-°J;jx)dx = O. 

(32) 

~ ~ ~ 

In the case of the fuzzy probability of failure defined by (20) solving (32) is extremely difficult as it 

involves numerical evaluation of special functions named integral logarithms. The situation may be 

simplified when we assume that the probabilities of failure are small. In such a case we can use the 

following approximation: 

o if P<P1 
T _'.!_ 

4 
__ P_ 

if Pis; P < P2 
T4 -T3 

µ,,(p)"" I if P2 s;p<PJ (33) 
rt 

-7; +-
__ P_ if p3 s; p < p4 

T2 -7; 
o if p4 s; p 

where p1, pz, p3_ and p4 are given by (21) - (24), respectively. The solution of (32) when the fuzzy 

number is described by (33) is much easier, but it can be done only numerically. The amount of com­

putation is comparable with that which is necessary when we use the concept of a-cuts, and thus there 

is a practical need to find a simpler approximate solution. 

A very simple solution can be found, however, when we apply the methodology of the shadowed 

sets just on the level of the fuzzy total time on test. Pedrycz ( 1998) has shown that in the case oflin­

ear functions 11Ax) and ĘJx) the value of athat fulfills (32) is always equal to 0,414. Simple calcu-

lations lead to the representation of the fuzzy time on test f described by (14) by the set of four 

numbers {t1 ,t2 ,t3 ,t4 } defined by the following expressions: 

tł =1; +0,414(T2 -7;) (34) 

12 = 1; + 0,586(T2 -T,) (35) 

t 3 = T4 - 0,586(T4 - TJ (36) 

14 =T4 -0,414(T4 -TJ (37) 



Hence, we can represent the fuzzy probability of failure P(t) defined by (20) by its shadowed coun­

terpart VJj',p{,p;,p;},where 

(38) 

(39) 

(40) 

and 

(41) 

Now, the calculation of the fuzzy probability of system's failure P5 (t) becomes much simpler, and 

this characteristic is now given as a shadowed fuzzy number {Pf1., Ps',2 , P;,',3 , Pf4 }, where 

P/1 (t) = h(pt,1, P;,,, · · ·, P,:,,1), (42) 

(43) 

P;,3 (t) = h(p1~3, pI_3,• · · ,p;;,,J), (44) 

(45) 

and Pi.i ,P1,2 ,p1_3 ,p1_4 , j = 1, ... ,m are given by (38)-(41) for each element of the system. 

4 CONCLUSIONS 

In the paper we have proposed a new methodology for the evaluation of reliability for a coherent sys­

tem when the reliability of all its elements is described by an exponential model. The novelty of our 

approach consists in the assumption that the observed time to failures of system's elements may be re­

ported imprecisely. We have assumed that this imprecision can be described by fuzzy numbers. Un­

fortunately, the direct application of the fuzzy sets methodology to the considered problem requires 

significant computational effort. To alleviate these computational problems we propose simple ap­

proximations offuzzy numbers by shadowed fuzzy sets introduced in Pedrycz (1998). 

The proposed methodology may be used for amore generał problem when times to failures are dis­

tributed according to other probability distributions. In such a case we have to approximate individual 



observed fuzzy times to failure by the respective shadowed fuzzy sets. Further calculations should be 

done using the rules of interval arithmetic and the respective formulae known from the mathematical 

statistics. 
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