





Improved trapezoidal approximations
of fuzzy numbers

Przemystaw Grzegorzewski

Systems Research Institute, Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warsaw, Poland,
pgrzeg@ibspan.waw.pl,

Abstract

Fuzzy number approximation by trapezoidal fuzzy numbers which preserves ex-
pected interval is discussed. The coorected formulae for the approximation operator
discussed in the previous papers is given.
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1 Introduction

In [9] we have formulated a list of desirable criteria which trapezoidal approximation
operators should possess. We have also suggested a new approach to trapezoidal approx-
imation of fuzzy numbers that lead to, so called, the nearest trapezoidal approximation
operator preserving expected interval.

Unfortunately, we have not noticed that in some situations our operator may fail
to lead a trapezoidal fuzzy number. Allahviranloo and Firozja (1] and Ban (3} showed
some examples illustrating such situations. Thus in the present paper we propose a
corrected version of our trapezoidal approximation operator. Actually, we obtain four
approximation operators. Which one should be used depends on the shape of a fuzzy
number to be approximated.

2 Fuzzy numbers

Let us consider a fuzzy number A, ie. such fuzzy subset A of the real line R with
membership function g, : R — [0,1] which is {see [6]): normal (i.e. there exist an
element xp such that p,(zg) = 1), fuzzy convex {(i.e. wy(Azy + (1 — A)zp) > palzy) A
palze) Vzi,z. € R, VA €[0,1]), i, is upper semicontinuous, suppA is bounded, where
suppA = cl({z € R : pu(z) > 0}), and cl is the closure operator. A space of all fuzzy
numbers will be denoted by F(R).



Moreover, let Ay = {x € R : py(x) > o} denote an a-cut of a fuzzy number A. As it
is known, every c-cut of a fuzzy number is a closed interval, i.e. A, = [AL(a), Au(a)],
where Ar(a) =inf{z € R: u (z) > a} and Ay(a) =sup{z € R: p4(z) > a}.

Let us also recall that an expected interval EI(A) of a fuzzy number A4 is given by
(see [7], {11])

EI(A) = [ /0 s (a)dar /0 1 Au(a)da} . (1)

In [9] we have discussed the problem of the trapezoidal approximation of fuzzy num-
bers. Roughly speaking we have shown how to substitute arbitrary fuzzy number by
so called, trapezoidal fuzzy number, i.e. by a fuzzy number with linear sides and the
membership function having a following form:

0 if x<t,
ﬁ if t <1z <ty
pa(z) =< 1 if ty <z <ty (2)
e .
ﬁ if ts <z< t4,
0 if t4 < .

Since the trapezoidal fuzzy number is completely characterized by four real numbers
1y < ty < t3 < ¢4 it is often denoted in brief as A(ty, o, £3,t4). A family of all trapezoidal
fuzzy number will be denoted by FT(R) (of course, FT(R) C F(R) ). By (1) and (2) the
expected interval of the trapezoidal fuzzy number is given by

EI(B) = [tl—;t—? ti;“—“J . (3)

For two fuzzy numbers A and B with a-cuts [Ar(a), Ay(e)] and [Br(a), Bu(a)l,
respectively, the quantity

1 1
d(A, B) = \//0 (Ar(a) — BL(a))ﬂda+/0 (Ay(@) — By(a))2da (4)

is the distance between A and B (for more details we refer the reader to [8]).

To simplify the representation of fuzzy numbers Delgado et al. [5] suggested two
parameters — value and ambiguity — which represent some basic features of fuzzy numbers
and hence they were called a canonical representation of fuzzy numbers.

Let s : [0, 1] — [0, 1] denote so-called reducing function. Then

1
Valy(A) = / s(a)[AL () + Ay (e)]da (5)
0
is called the wvalue of fuzzy number A. Index Val,(A) may be seen as a point that
corresponds to the typical value of the magnitude that the fuzzy number A represents.
The next index, called the ambiguity is given by

Amby(A) = /0 s(0)[Au(a) — Ar(a))da, (6)
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and it characterizes the vagueness of fuzzy number A.

These two parameters defined above depend on the choice of the reducing function s.
Using, so-called, regular reducing function the value and ambiguity of a fuzzy number A
is defined as follows

1
Val(A) /0 a(Ar(a) + Av(a))de, (7)

Amb(A) = / a(Au(a) — AL ())da. (8)

Another parameter utilized for representing the typical value of the fuzzy number is
the middle of the expected interval of a fuzzy number and is called the expected value of
a fuzzy number A, i.e.

BV(4) = ; ( /0 *(a)do + /O 1 Au(a)da> ©)

(see {7, [11]). Sometimes its generalization, called weighted expected value, might be
interesting. It is defined as

1 1
EV,(A) = (1 - q) / Ar(a)da+ g / Ay(@)da, (10)

where ¢ € [0, 1] (see [8]).
Finally, the width of a fuzzy number (see [4]), defined by

00 1
w(A) = / pa(z)de =/ (Ay(a) — Ap(a))do. (11)

—00 0
is also an useful parameter characterizing the nonspecifity of a fuzzy number. It is worth

remembering (see [4]) that
w(A) = w(EI(A)).

3 Trapezoidal approximation

In this section we propose an approximation operator T : F(R) — FT(R) which produces
a trapezoidal fuzzy number that is the closest to given original fuzzy number among all
trapezoidal fuzzy numbers having identical expected interval as the original one. There-
fore, this operator will be called the nearest trapezoidal approzimation operator preserving
expected interval,

Suppose A is a fuzzy number and [A(a), Ay(a)] is its a~cut. Given A we’ll try to
find a trapezoidal fuzzy number T'(A) which is the nearest to A with respect to metric d
(4). Let [Tr(a), Ty(e)] denote the a-cut of T(A). Thus we have to minimize

d(A, T(A)) = \//0 (Ar(@) = Tr(a))?da +/(; (Ay(a) — Ty(a))?da (12)

3




with respect to T, («) and Ty (e). However, since a trapezoidal fuzzy number is completely
described by four real numbers that are borders of its support and core, our goal reduces
to finding such real numbers ¢, < tp < t3 < t4 that characterize T(A4) = T(ty, ta, t3, t4).

Theorem 1 The nearest trapezoidal approzimation operator preserving expected inter-
val 45 such operator T : F(R) — FT(R) which for any fuezy number A with a-cuts
[Ar(a), Au{a)] assigns a following trapezoidal fuzzy number T(A) = T(ty, ta, t3,t4):

(a)  if Amb(A) > $w(A) then

1

tl = —6/ GAL( )dQ+4 AL (13)
0

t2 = S/ICKAL 0—2/ AL (14)

0
t3 = 6 cAy(a)da—2 | Ay(e)do, (15)
fomiosensf

ty = —6/ ady (a) da+4/0 Ay (@) do; (16)

0

(b) if Amb(A) < }w(A) and EV}(A) < Val(A) < EV3(A) then

S/OIAL(a)da - 3/0101AL (o) der — 3/01 aAy (o) do + /OIAU(a)da, (17)

t, =
ty = 3= 3/1aAL () da+3/laAU (a) da-/lAL(a)da— /IAU(a)da,
0 0 0 o
(18)
1 1 1 1
ty = 3/0 Au(a)da—SA aAr (@) da—SA aAy (a) da+/0 Ar(a)da; (19)

(c) if Amb(A) < 3w(A) and Val(A) < EV%(A) then

t] = f2=t3=/01AL(a)da, (20)

1 1
ty = 2/0 AU(a)da—A Ap(a)dao; (21)

(d)  if Amb(A) < Jw(A) and Val(A) > EV;(A) then

1 1
- A — [ Ag(e)de, 22
n o= 2 [ Agojda— [ ag(a)a (22)
ty = t3=t4=/ Ay(a)da. (23)

0



Proof:
As T(A) = T(ty, 2, t3,t4) is a trapezoidal fuzzy number, its a-cuts have a following form
[t + (t2 — t1) @, ty ~ (tg — t3)a], where @ € (0,1]. Therefore (12) reduces to

d(A, T(A \/ [Ap(@) = (i + (ta — t1) @) da +/ [Ap(a) — (ts — (ts — tz))}* da,

(24)
and our goal is to minimize (24) with respect to ¢1, ¢y, t3, £4. Moreover, since we are looking
for an operator which preserves the expected interval of a fuzzy number, a following
condition should be fulfilled

EI(T(A)) = EI{A). (25)
By (1) and (3) we can rewrite (25} as follows
{tl ;tQ fat t“] U A (a)da, / Au(a da] . (26)

It is easily seen that in order to minimize d(A4,7(A)) it suffices to minimize function
Flt1,ta, ta, tg) = d*(A, T(A)) with respect to following conditions:

ty -t !
1t -/ Ap(@)da = 0, (@7)

2 0

1
—/ Ayla)da = 0. (28)

0
Finally, we have to assure that ¢; < tp < t3 < ¢4, i.e. following inequalities should hold:
ty—t < 0, (29)
o —t3 < 0, (30)
ts—ty < 0. (31)

Thus, to sum up, we wish to minimize function

1

= / [Ap(a) = (t1 + (t2 — t1) @))* do + / [Au(a) — (ts = (ty — ta)))*da (32)

0

subject to
h(t)

g(t)

where t € R%.

1 1 T
|it1 + 1y — 2/ AL(CY)dC!, ty+ tq4 — 2/ AU(a)da] = OT, (33)
0 0

[t —ta, 80 — ta, 13 — ta) <0, (34)
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By the Karush-Kuhn-Tucker theorem, if t* is a local minimizer for the problem of
minimizing f subject to h(t) = 0 and g(t) < 0, then there exist the Lagrange multiplier

vector A and the Karush-Kuhn-Tucker multiplier g such that
Df") + ATDh(t*) + pTDg(t*) = 07,
urg(t) = 0,
It 0.

Vv

In our case, after some calculations, we get

1 1
Df(t) = [§t1+%t2+2/0 aAp (a) da—Q/O Ag (o) de,

3 3

1 2 ! 2 1 !
—t) + —ty — 2 aAp (@) do, —t3 4+ -ty — 2 aAy (a) da,
0 0

3 3

1 1
lta + —2-t4+2/ aAy (@) da — 2/ Ay (a) da} ,
3973 o A

0 0 1 -1

Therefore, we can rewrite the Karush-Kuhn-Tucker conditions in a following way

9 1 1 1
"‘t]+§t2+2/ aAL(a)da—Z/ Ap (@) da+ A + 1y
0 0

3
1 2 1
§t1+§t2—2 aAp (o) do+ Ay — pg + pg
0
2 1 1
§t3+§t4—2 OtAU(a) do+ Ag — fig + fi3
0
1 2 1 1
gta+§t4+2/ aAy (a) da—2/ Ay (a) da + Ay — 1
0 0

1
t1 +to — 2/ Ap(a)da
0

1
ta + t4 - 2/ Ay(a)da
o]

m(ts — ta)
Ho(ta — ta)
pslts — ta)
Ha
fo
H3

1l

i

coocooooc o

i

IV IV IV

(35)
(36)
(37)

(38)




To find points that satisfy the above conditions, we first try p; = py = 15 = 0. Then
the system of equations (41)-(52) reduces to following six linear equations

2 1 1 1
=t + =iy + 2/ aAL (a) da — 2/ AL (a) do + )\1
3 3 0 0

1 2 !
—m+—n—2/cmmem+A1
3 3 0

1 1
Zta + =ty — 2/ aAy (@) da + A
373 A

1 2 1 1
—t3 + —t4 + 2/ aAU (a) da — 2/ AU (a) da + )\2
3 3 i} a

1
tl + o — 2/ AL(a)da
01
i3 +1tg4 — 2/ AU(a)da
0
Solving the above equations we obtain
1 1
tl = —6/ aAL(a) da+4/ AL(a) da,
10 10
ty = 6/ aAp (@) da—2/ Ar (@) da,
01 01
3 = 6/ aAy (a) da—Z/ Ay (@) da,
0

0

1 1
ty, = —6/ aAy (a) da+4/ Ay (@) da,
0 0

A= 0,
Az

(53)
(54)
(55)
(56)
(57)

(38)

(59)
(60)
(61)

(62)

(63)
(64)

One can notice that the solution t = (t1,ta, #3,t4), given by (59)-(62), coincides with the

solution given in [9].

Now suppose py = piz3 = 0 and g, > 0, which by (47) and (45) implies

1
tl = tz = / AL(a)da.
0

Substituting (65) into (41) and (42) we get
A= 0,

1 1
o o= / Ar(a)da — 2/ aAr (a) da.
0 0

(65)

(66)
(67)

However, it is not difficult to see that inequality fol Apla)da — 2 fol aAp (@) do > 0
does not hold in general which contradicts the assumption that g, > 0. Hence, there
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is no solution for p, = pg = 0 and gy > 0. In a similar way one may conclude that
assuming p, = 0 the solution exists if and only if both y; = 0 and p3 = 0.
Now let us suppose that i, > 0. Thus by (48) we get immediately

ty = ta. (68)

Assume firstly that py = pg = 0. The system of equations (41)-(52) reduces to following
six linear equations:

1 1
§t1+§t2+2/ QAL(Q) da—2/ AL(Q) da+ X = 0, (69)
0 0
1 2 !
gtl + §t2 -2 aAgp (Q) do+ A + Hy = 0, (70)
0
2. 1 !
§t2 + §t4 -2 aAy (a) doao+ Ay —py = 0, (71)
12 ! i !
§t2+§t4+2/ aAu(CY) da—2/ AU(CY) dCY-’r‘/\Q = 07 (72)
0 0
1
bty -2 / An@)da = 0, (73)
0
1
t2 + l4 - 2/ Au(a)da = 0. (74)
Q

Solving the above system of equations we get
1 1 1 1
3/ Ap(a)da — 3/ aAp (@) da —3/ aAy (a) da+/ Apl(a)da,  (75)
0 X 0 : o : o
ty = t3=3/ adr (@) da+3/ aAy (a) da—/ AL(a)da—/ Ay (a)da,(76)
o 0 o 0

ty = 3/()1Au(a)da—3/01aAL (a) da—3/01aAU () da-l—/lAL(a)da, (77)

0

A o= %/01 Ap(a)da — /OlaAL (o) de +/01aAU (a) do — %/01 Ap(a)da,  (78)

1 1 1 1
N = %/0 AL(a)da—l—/O ad; (@) da—/o Ay (@) da—i—%/o Ap(a)da, (79)

1 1 1 1
JE 2/ aAr (a) da—2/0 ady (a) da—%/o. AL(a)da-l—%/O Ay (a)da. (80)

0

t

However, by the assumption that p, > 0, we have a legitimate solution to the Karush-
Kuhn-Tucker conditions if and only if

/0‘1 Ay (a) do— 31-/01 A(a)da > /01 ady (a) da— % /01 Ap(a)da (81


































