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Goodman-Kruskal, measure of dependence 
for fuzzy ordered categorical data 

Olgierd Hryniewicz 

Systems Research Institute, Newelska 6, 01-447 Warsaw, POLAND 

Summary. In the paper we the generalisation of Goodman-Kruskal 'Y for the mea­
surement of the strenght of dependence {association) between two categorical vari­
ables with ordered categories. We consider the case when some data is not precise, 
and observation are described by possibility distributions over a set of categories of 
one varia ble. For sucha data we define the fuzzy 'Y statistic, and present the mcthod­
ology for the statistical inference related to this fuzzy measure of dependence. 

1 Introduction 

Looking for dependencies is one of the most freąuently used applications of 
statistics. Methods for the statistical analysis of dependencies have been in­
tensively developed for more than one hundred years, especially in economi­
cal,agricultural, medical, and social sciences. Recently, these methods are also 
used in information technology and computer sciences, especially in data min­
ing and knowledge discovery. Traditionally, statistical methods used for the 
analysis of dependencies are divided into two groups: methods for continuous 
variables, and methods for categorical data. In both groups there exist many 
procedures and test for dealing with precise data. However, w hen data are not 
precise the situation is not so elear. When we deal with imprecise statistical 
data measured on the real line the number of available procedures is ąuite 
large. For example, there are many papers devoted to the problem of a fuzzy 
regression, and - to less extend - to the problem of the analysis of correlation. 
However, when we deal with categorical data the number of papers devoted 
to this problem is relatively small. This situation is somewhat astonishing, as 
in real problems we often have to analyse statistical data in the presence of 
imprecisely defined categories. Consider, for example, the analysis of depen­
dence between health and smoking. Patients filling ąuestionnaires may identify 
themselves as "nonsmoker", "smoker", and "heavy smoker". Note, that the 
border between the last two categories is definitely vague. The attempt to 
clarify this situation by introducing a sharp border {in terms of the number of 
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cigarettes per day) does not solve the problems, as for many individuals this 
number may vary in a way which is difficult to describe formally. Therefore, 
many people may assign for both categories some "weights" making the prob­
lem similar to the statistical analysis of multiple answers. We claim, however, 
that this similarity is highly misleading. In classical problems of the statistical 
analysis of multiple answers a statistician faces situations when two (or more) 
categories may occur simultaneously. For example, when we ask people for 
the source of a particular information the may indicate multiple categories as, 
e.g., television, newspapers, etc. This situation is, in our opinion, entirely dif­
ferent than the problem described above. The Jack of precision in the case of 
imprecisely defined categories is not of a probabilistic nature, and reąuires the 
application of a "soft" methodology like the possibility theory or the theory 
of fuzzy sets. 

In a recent paper Hryniewicz [8] considers a fuzzy version of a well known 
Pearson's chi-sąuare test of independence. The chi-sąuare statistics works very 
well for that purpose, but is not suita ble for the measurement of the strength of 
dependence, even in its standardised version (indices proposed by Tchouproff 
and Cramer). The reason for this is its lack of operational meaning. A set of 
bet ter measure of dependence was proposed in a seminal paper by Goodman 
and Kruskal [4]. One of the most popular measures of dependence proposed 
by Goodman and Kruskal is based on a 'Y statistic that was proposed for the 
analysis of ordered categories. In the second section of this paper we recall 
its definition and basie properties. Then, in the third section we adopt the 
similar approach as in Hryniewicz [8], in order to generalise the Goodman­
Kruskal statistic 'Y for fuzzy categorical data. Finally, we propose a possibilistic 
interpretation for statistical tests which are based on the fuzzy 'Y statistic. The 
paper is the extended verion of the paper of Hryniewicz [9] presented during 
the SMPS'2004 Conference in Oviedo. 

2 Measurement of association for ordered categorical 

data. Goodman-Kruskal's 1 

Consider the situation when we have to measure the strength of dependence 
(or association) between two categorical variables X and Y. Let's assume 
that X has k categories ordered in the following way x 1 < x2 < .. . < Xk, 

and Y has r categories ordered as follows: y1 < y2 < ... < Yk . For a fully 
multinomial statistical experiment (i.e. when the tot al number of observation 
in each category of X and Y is a random varia ble) the results of the experiment 
can be summarised in a form of a two-way kxr contingency table. 
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X/Y Y1 ... Yi ··· Yr I;; 

Xk nkl ... nk; ... nkr nk. 

I:· n.1 ... n.1 ... n.,. n 

where n;j describes the number of observations in the ij-th cell, and 

r 

n;.= Enij 

j=l 

k 

n.i= Enij· 

i=l 

(1) 

(2) 

Let's consider two individual observations of the random vector (X, Y) 
described as (x;,Yj) and (xm,Yn), where (i =Im) V (j =I n). We call this pair 
concordant if (i < m)/\(j < n), and disconcordant if either (i< m)/\(j > n) or 
(i> m)/\(j < n). Goodman and Kruskal [4] proposed a measure of association 
called I that is based on two probabilities: of observing a concordant pair of 
observation Ile, and of observing a disconcordant pair of observation Ild. 
To calculate these probabilities let 's assume that the contingency table is 
generated by a multinomial distribution with probabilities given as 

X/Y Y1 ··. Yi ··· Yr I;; 
X1 Pll · ·· Pi; ··· Pir PI· 

X.; Pil ··· Pii •· · Pir Pi-

Xk Pkl •·· Pb •·· Pkr Pk· 

) P-1 ··· p.; ... P-r 1 

Goodman and Kruskal have shown that probability Ile is given by 

where 

Ile= 2 L PijJII;ij 

i,j 

(3) 
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lh;ij = L L P;'j', 

i' > i/ >j 

and probability Jid is given by 

where 

Jid = 2 L PijJIIV;ij, 

i,j 

IIIV;ij = L L Pi'J' · 

i' > ij' < j 

(4) 

(5) 

(6) 

The measure of association 1 was then defined by Goodman and Kruska,l [4] 
as 

llc - Jid ,= . 
llc + Jid 

(7) 

The value of, belongs to the interval [-1, 1 ], and when X and Y are inde­
pendent, we have , = O. When 1 < O the considered variables are associated 
negatively, and when 1 > O they are associated positively (Note that the sign 
of association depends entirely upon the ordering of categories). 

Let G be the maximum likelihood estimator of 1 . the formula for G is 
obtained straightforwardly by inserting in (3) - (7) n;j /n instead of Pij, i = 
1, ... , k , j = I, .. . , r . It is easy to show that for the calculation of G it suffices 
to change Pij to n;j in all those formulae. The exact probability distribution 
of Gis very difficult to calculate even w hen the considered variables are inde­
pendent . However, for a large number of observations Goodman and Kruskal 
[5], [6] found an asymptotic distribution ofG. Theyshowed that v'n(G - ,) 
is asymptotically normally distribu ted with the expected value equal to zero, 
and the variance given by 

where IIc , IIc1, II1;ij, II1v;•ij are defined as previously, and 

JIII ;ij = L L Pmn, 
m < in > j 

IInI;ij = L LPmn• 
m <i n < j 

(9) 

(10) 
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The maximum likelihood estimator ci of u = N is obtained by inserting 
n;i / n ( or simply n .;j) instead of Pij, i = 1, ... , k , j = 1, ... , r into respective 
formulae. Thus, the two-sided asymptotic confidence interval for "Y (for a given 
confidence level /3) is given as 

(G - Y(1+(J)/2ci/vn, Q + Y(l+f3)/2ci/vn) ( 11) 

where Y(I+f3)/2 is the quantile of the (1 + /3) /2 order from the standard nor mal 
distribution. This confidence interval can be used for testing the hypothesis 
that both variables X and Y are mutually independent. 

3 Goodman-Kruskal's -y for fuzzy statistical data 

In the classical statistics it is assumed that each statistical datum is given as 
a pair (Xą, Yą) , q = 1, .. , n that defines the observed cell (ią, ją) of the con­
tingency table. The value Z;j E { O, 1} , i = 1, ... , k , j = 1, ... , r assigned to 
each cell of the contingency table is equal to 1 when (i= ią,j = ją) and O 
otherwise. It means that for q-th observation we have only one value of X 
and one value of Y. This type of statistical data could be generalised to the 
case of so called multiple responses, when for a given value of X we observe 
simultaneously severa! values of Y (or vice versa). A good example of multiple 
responses is when we analyse questionnaires in which people indicate one or 
more sources of particular information from among a set of different sources. 
This generalisation, to the best of our knowledge, has not been considered 
yet for Goodman-Kruskal's "Y- However, there exists another generalisation of 
categorical statistical data introduced by Hryniewicz [8] who assumed that 
for a given value of X we observe a fuzzy value of Y described by a certain 
possibility distribution. To explain this situation !et us assume the following 
experiment. Our aim is to find the measure of association between education 
and smoking habits. Assume now that smoking habits (variable Y) are de­
scribed by three categories: "non-smoker", "smoker", and "heavy smoker". 
it seems to be quite obvious that for many smokers it becomes difficult to 
indicate only one value of Y ("smoker" or "heavy smoker"). Note, that this 
situation is entirely different from that of multiple response data, as it arises 
rather from a vagueness of these two categories than from their simultaneous 
"existence". Further explanation of the difference between the considered sit­
uation and the case of multiple responses may be the following. In the case 
of multiple responses we can always create a set of new additional clearly de­
fined categories (being combinations of the existing ones) in order to remove 
all multiple responses from our data set. This is not possible, however, in the 
considered case where the vagueness of responses has an intrinsic nature, and 
cannot be removed without loosing some information. 

To sinlplify the analysis of imprecise (fuzzy) categorical data !et us assume 
that imprecise observations are related only to the values of Y, and the obser­
vations of X are always crisp. Thus, for a single observation the contingency 
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table may look like (Hryniewicz [8]) 

X/Y Y1 ... y; ... Yr 

1-----t---i>··--1---+--+---I 
X; µ;1 .. · µ;j .. . µ; r 

where µ;j E [0,1], i= l, ... ,k; j 1, ... ,r and SUP;,jµij = 1. We may 
interpret the values of µ;j as the degrees of possibility that for the X = X; 

the variable Y adopts the value w. Now, each observation is described by a 

pair ( Xą, Yą), q = 1, .. , n, where Xą represents the observed category of the 

varia ble X, and Yą = y1 Iµ ;• 1 +Y2 lµią2 + .. . +y„ lµiąr i~ a fuzzy set that describes 

imprecise observation of the variable Y. Fuzzy set Yq may be interpreted as a 
possibility distribution over the categories of Y for the ą-th observation . 

Let Yą"' be the o-cut (O< a, :S: 1) ofYą . Thus, Yą"' = { Mf:, 1 , Mf:, 2 , ... , M~,.}, 
where 

M °' _ { 1 if µ;•i ;:,c a, . { k} . _ 1 _ 1 ; j - 0 h . , tą E 1, .. . , , J - , ... , r, q - , ... , n, 
• ot erWJse 

is an ordinary set. Let Y°' = {Yj_°',t;°', ... ,Y~} be the set of a,-cuts for all 
observations, and S°' c:;;; Y°' be its su bset consisting of those elements of Y 0 

for which I::;=1 Mf,,j = 1. It means that for each element of SO/ we have 
only one value 1, and r - 1 zeros. Now, define niJ,min to be the number of 
observations in the (i, j)-th cell, calculated over all observations that belong 
to the set S°', and nfj,max to be the number of observations in the (i, j)­
th cell, calculated over all observations that belong to the set Y°'. Having 
these quantities defined we proceed to the definition of the fuzzy equivalent 
of Goodman-Kruskal's I measure of dependence (association). 

Let's define the following set 

N°'= {nij , i= 1, ... , k, j = 1, ... , r : nfj,min :S: n;j :S: nf;,max, t n .;j = n.,.} 
J = I 

To give an interpretation of N°' Jet 's int rodu ce the notion of an observation 
that for a given a,-cut is compatible with a given fuzzy observation. A crisp 
observation Z(i0 ,j0 ), such that µ;j = 1 for (i= i 0 ) n (j = j 0 ) and µ ;j =_O 
otherwise, is for a given a,-cut compatible with a given fuzzy observation Yą 
(q = 1, .. . ,n) if for a given ią = i 0 we have Mf;,jo = 1 . (Note, that the each 

a,-cut of Yą can be represented as a superposition of all crisp observations that 

for the given value of a, are compatible with Yą . ). Thus, N°' is the set of all 
possible samples consisted of crisp observations that are compatible with the 
observed fuzzy sample. 
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Now, using the approach proposed in Hryniewicz [8), we define a fuzzy 
index of dependence (association) ~ by the set of a:-cuts h:in' 'i'~ax ), where 

,::iin = inf1 
No 

( 12) 

and 

'Y~ax = SUp'")'. (13) 
No 

Calculation of (12) and (13) may be a hard computational task. In order 
ease these computations we will prove the following Lemma. 

Lemma 1. Let {n;j,i = l, .. . ,k, j = 1, ... ,r} describes a set of crisp obser­
vations for which the value of Goodman-Kruskal 1 statistic equals 10 . Moving 
of one observation from the cell (io,jo) to the cell (i0 ,j0 - 1) increases (de­
creases) the value of Goodman-Kruskal 1 statistic if 

where 

and 

(DW; 0 ,j0 - CU; 0 ,j0 ) +(CW;0 ,j0 -1-DUio,jo-1) > (<)O, (14) 

C = L nii L L n;'/' 
id i'>ij'>j 

D = L n;j L L n;'j', 
i,j i'>i/<j 

io-1 

U; 0 ,j = L n;j, j = 1, ... r, 
i=l 

k 

wio,j = L n;j, j = 1, ... r. 
i=io+l 

( 15) 

(16) 

(17) 

(18) 

Proof. Note, that the maximum likelihood estimator of 'i' for a given set of 
crisp observations is given by 

C-D 
::Y= c+n· (19) 

From the structure of C given by (15) we see that by moving one observation 
from (io,j0 ) to (i0 ,j0 - 1) we change C by 
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i0 -1 

..1; = - L nijo - 1 + L L n;'/ - L L n;' j' = 
i=l i 1 >io j 1 >jo-l 

k 

i' >io/>jo 

-Uio,jo-1 + L nijo = -U;o,jo-1 + w·iojo· 
i=io+l 

Similarily, from the structure of D given by (16) we see that by moving one 
observation from (i0 ,j0 ) to (io,Jo - 1) we change D by 

io-1 

,1 D = L nijo + L L n;' j' - L L ni'/ = 
i=l i'>io/ <jo-1 

k 

i' >io j' <jo 

U;o,jo - L niio-1 = U;o,io - wiojo-1· 
i=io+l 

Hence, the total change of I is given by 

_ (C-D)+(..10 -Ll:O) C-D LlN 
,1 =---~~-~---=--

"/ (C+D)+(Llc+..10) C+D LlD' 

where 

LlN = 2 [(DW;o,io - CU;o,io) + (CW;o,io - 1 - DU;0 ,j0 -1)] . 

It is easy to show that LlD > O. Thus, the sign of the change of I is governed 
by the sign of LlN, and the appropiate conditions for that are given by ( 14 )O. 

Lemma 2. Let {n;j,i = 1, ... ,k, j = l, ... ,r} describes a set of crisp obser­
vations for which the value of Goodman-Kruskal 1 statistic equals ,o. Moving 
of one observation from the cell (io,Jo) to the cell (io,Jo + 1) increases (de­
creases) the value of Goodman-Kruskal 1 statistic if 

(DU;o,io - CW; 0 ,j0 ) + (CUio,io+1 - DW;o,io+1) > (<)O, (20) 

where description of (20)is given by (15) - (18). 

Proof. The proof is similar to that of Lemma 1 O. 

Corollary 1. When i0 = 1, then by moving observations to the left we in­
crease the value of,. 

Corollary 2. When i 0 = k, then by moving observations to the right we de­
crease the value of„ 
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Thus, for the calculation of the maximum (minimum) value of I it is 
necessary to represent all fuzzy observations from the first (last) row by their 
leftmost (rightmost) compatible crisp observations. Hence, if k = 2 , then the 
calculation of (12) and (13) is straightforward. 

Next four Lemmas state additionally some sufficient conditions that may 
be useful for the efficient calculations of (12) and (13). 

Lemma 3. Let { nij, i = 1, ... , k , j = 1, .. . , r} describe a set of crisp observa­
tions for which the value of Goodman-Kruskal statistic 1 is 10 > O. Jf the 
following two conditions are met 

(21) 

and 

(22) 

then moving of one observation from the cell (i0 ,j0 ) to the cell (i 0 ,j0 - 1) 
increases the value of Goodman-Kruskal 1 . 

Proof. Note, that if (22) holds and 10 > O (i.e. C - D > O) then 

(c - n)+ (L1c - L1;;) 
(C + D) + (L1c + L1ri) 

Hence, if (21) holds, then 

and this ends the proof.O 

(C- D) + (L1c - L1;;) 
---'-----'------'"----=--> 
(C + D) + (L1c - L1ri) + 2L1ri 
(c - n)+ (L1c - L1;;) 
(C + D) + (L1c - L1;;) 

Lemma 4. Let {nij, i = 1, ... , k , j = 1, .. . , r} describe a set of crisp observa­
tions for which the value of Goodman-Kruskal statistic "I is 10 > O. If the 
following two conditions are met 

(23) 

and 

(24) 

then moving of one observation from the cell (i0 ,j0 ) to the cell (i 0 ,j0 + 1) 
increases the value of Goodman-Kruskal 1 . 
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Proof. The proof is similar to that of Lemma 3 •. 
If the conditions of Lemma 3 and Lemma 4 are not fulfilled, the maximi­

sation of 'Y is either impossible or requires recalculation of C and D after each 
step of the proced ure. 

Lemma 5. Let {n;j, i = l, ... , k , j = 1, .. . , r} describe a set of crisp obser-va­
tions for which the value of Goodman-Kruskal statistic 'Y is 'Yo < O. ff the 
following two conditions are met 

(25) 

and 

U;ojo < W iojo-1 (26) 

then moving of one observationfrom the cell(i0 ,j0 ) to the cell (i 0 ,j0 -1) 
decreases the value of Goodman-Kruskal 'Y· 

Proof. Note, that if (22) holds and 'Yo < O (i.e . C - D > O) then 

(C - D) + ("10 - "11)) 

(C + D) + (.<1;; + .<1;) 

Hence, if (25) holds, then 

(C - D) + ("1 0 - "11)) -~----,---~-~--- < 
(C + D) + (L1c - .1;) + 2L1v 
(c - D) + (L1c - .<11)) 

(C + D) + ("10 - "11)) 

(C-D)+(.<1;;-.1;) C-D 
(C + D) + (.<1;; - .<1;) < cT+r/ = 'Yo > o, 

and this ends the proof.O 

Lemma 6. Let { n;j, i = 1, ... , k , j = l, .. . , r} describe a set of crisp observa­
tions for which the value of Goodman-Kruskal statistic 'Y is 'Yo < O. Jf the 
following two conditions are met 

(27) 

and 

(28) 

then moving of one observationfrom the cell(io,Jo) to the cell (i 0 ,j0 + I) 
decreases the value of Goodman-Kruskal 'Y · 

Proof. The proof is similar to that of Lemma 5 •. 
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If the conditions of Lemma 5 and Lemma 6 are not fulfilled, the minimisa­
tion of 'Y is either impossible or requires recalculation of C and D after each 
step of the procedure. 

Practical importance of Lemmas 3 to 6 is obvious. They state conditions 
whose fulfilment allows to decrease dramatically the number of computations 
required for the calculations of (12) and (13). 

4 Statistical inference for fuzzy Goodman-Kruskal -y. 

In the considered case the test statistic is fuzzy, so we can use severa] methods 
for the interpretation of test results. The introduction of vagueness to the 
problem of statistical testing leads to a new class of statistical tests which have 
been proposed by many aut hors such as Casals et al. [l], Kru se and Meyer [10], 
Watanabe and Imaizumi [12], Romer and Kandel [11], and Grzegorzewski [3]. 
In this paper we adopt the approach proposed by Grzegorzewski [3], whose 
methodology follows that of Kruse and Meyer [10], and is based on fuzzy 
confidence intervals of the considered fuzzy statistic. In the case of the fuzzy 
index 7 we will limit ourselves to the asymptotic case mentioned in the second 
section of the paper. 

For the statistical inference about the fuzzy dependence (association) mea­
sure 7 we will use its fuzzy confidence interval. In the second section we have 
recalled Goodman-Kruskal's asymptotic result expressed by (11). A fuzzy ver­
sion of this interval can be given in terms of its a-cuts as follows: 

(Gf,G~), 0<a:S 1, (29) 

where 

(30) 

and 

(31) 

One might assume that a=;:.in and a~ax should be calculated independently 
from ,;:.in and 'Y;:.ax, respectively. We da.im, however, that f and a are inter­
connected. Therefore, the value of a~in should be calculated from the sample 
equivalent of (8) using the same set of crisp observations that have been al­
ready used for the calculation of 'Y~in. By analogy, for the calculation of a~ax 
we should use the same set of crisp observations that have been already usecl 
for the calculation of 'Y::.ax. This claim is in accordance with the intuition that 
the !ower (upper) limit of the confidence interval of 7 should be calculated 
using the same data as the !ower (upper) fuzzy assesment of this parameter. 
Having the fuzzy confidence interval for 7 we can use the results of Grze­
gorzewski [3] for the construction of statistical tests. 
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Another approach was propose<:l by Hryniewicz [7] who proposed to look 
at statistical tests as a procedure for the possibilistic comparison of the fuzzy 
test statistics and its crisp critical value. We propose to apply this approach 
in the case of testing hypotheses about I using the fuzzy statistic 7. For 
example, we could test the hypothesis of independence 1 = O. To reject the 
hypothesis of independence on the significance level ó we have to evaluate 
the relation is = ✓nli /al > YI - 6 · The membership function of is should be 
calculated using the same sets of crisp observations which have been use<:l for 
the calculation of ,:;,in and ,~ax, respectively. 

In order to make this comparison we propose to use the concept of possibil­
ity indices (see: Dubois and Prade [2]): necessity of strict dominance (NSD), 
and possibility of strict dominance PSD) . 

Possibility of strict dominance index PSD for two fuzzy sets A and B 
described by their membership functions µJ\ (x) and µ 3 (y), respectively, is 
defined by the following formula: 

PSD= Poss (A> B) =sup inf min {µA (x), 1- µ3 (y)} . (32) 
X YiY~X 

PSD is the measure for a possibility that the set A strictly dominates the set 
B. 

Necessity of strict dominance index is defined as 

NSD = Ness(A > B) = 1 - sup min{µA(x),µ3(y)}. (33) 
x,y:x~y 

N SD represents a necessity that the set A strictly dominates the set B. 
In the considered case of the fuzzy test of independence based on i we 

should evaluate the dominance of the fuzzy test statistics i, = li /al over 
the crisp value YI - 6· In sucha case the values of possibility indices can be 
found straightforwardly. First, Jet us introduce two sets: 1 "\ = [, 0 . , oo] 
and ,':,n= [O, ,':,max]· We use these sets to define two memb~rship f~~:~ions : 

µL(,,) = sup{ aI-Y~,L (,,) : a E [O, 1]}, 

where 1-y~L (,,) denotes the characteristic function of the set ,':,L, and 

where f-y';_R denotes the characteristic function of the set ,~R' 
The PSD index is given as 

and the N SD index is given as 

N SD= l - µL(Y1-6)-

(34) 

(35) 

(36) 

(37) 
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There exists a positive necessity of the rejection of the hypothesis of in­
dependence when the critical value Yi-ó is located to the left of the core of 
the fuzzy set :Ys. If this critical value is situated to the left of the support 
of the fuzzy set :Ys, then the necessity of the rejection of the hypothesis of 
independence is equal to one. We have a positive possibility of the rejection 
of the hypothesis of independence when the critical value Yi-6 is to the left 
of or belongs to the core of the fuzzy set :Ys. 

5 Numerical example and discussion 

To illustrate the theoretical results let's consider a set of (fictive) data which 
have been collected in order to investigate a possible association between 
education and smoking habits. The results of the poll are the following: 

• 40 persons with the education described as "High School or less" indicated 
the category "Non-smoker"; 

• 15 persons with the education described as "High School or less" indicated 
the category "Smoker"; 

• 10 persons with the education described as "High School or less" indicated 
the category "Heavy smoker"; 

• 30 people with the education described as "University" indicated the cat­
egory "Non-smoker"; 

• 8 persons with the education described as "University" indicated the cat­
egory "Smoker"; 

• 8 persons with the education described as "University" indicated the cat­
egory "Heavy smoker". 
Moreover, the some persons presented the following fuzzy responses: 

• 5 persons with the education described as" High School or less" presented 
their indication as li" Smoker" +0, 5l"Heavy smoker"; 

• 5 persons with the education described as" High School or less" presented 
their indication as O, 5l"Smoker" +l l"Heavy smoker"; 

• 2 persons with the education described as "University" presented their 
indication as I I" Smoker"+O, 5l"Heavy smoker"; 

• 2 persons with the education described as "University" presented their 
indication as 0,5l"Smoker"+ll"Heavy smoker". 
Hence, for the o-cut level o= 1 we do not observe any fuzziness, and the 
corresponding contingency table is the following: 

Non-smoker Smoker Heavy smoker 
High school or less 40 20 15 75 
University 30 10 10 50 

70 30 25 125 
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For the o-cut level o = 0,5 fuzzy responses are presented by vectors of 
the form (O, 1, 1) , and the crisp compatible observations are given either as 
(O, 1, O) or as (O, O, 1 ). Following Corollary 1 and Corollary 2 we see that the 
maximum value of I is attained for such an allocation of these observations 
that the corresponding contingency table looks like: 

Non-smoker Smoker Heavy smoker 
High school or less 40 25 10 75 
University 30 8 12 50 

70 33 22 125 

On the other hand, the minimum value of, is attained for such an allo­
cation of these observations that the corresponding contingency table looks 
like: 

Non-smoker Smoker Heavy smoker 
!!i_gh school or less 40 15 20 75 
University 30 12 8 50 

70 27 28 125 

For these input data we can calculate the o-cut representation of::;: . For 
a= 1 the result is crisp: ,~;~ = 1~~ = -0, 09091, and for o= O, 5 we have: 

,~;~, = -0, 1674, and ,~~x = - 0, 01345. The confidence interval (on the con­

fidence level (3 = O, 9) for o= 1 is ( G{•0 = -0,35677, G~,o = O, 174954), and 

( G~' 5 = -0, 42441, G~•5 = O, 2560) for o = O, 5. Hence, the data reveals small 

negative dependence between education and smoking habits (better educated 
persons smoke less than the other), but this result is not statisticaly very sig­
nificant as the fuzzy confidence interval contains zero. It is also easy to show 
that both necessity and possibility to reject the hypothesis of independence 
(Jack of association) on normally used significance levels are equal to zero. 

Let us notice, that an opponent of fuzzy statistics might argue that the 
presented data can be treated using classical methods. A possible argumenta­
tion may be the following: persons whose answer was ll"Smoker" +O, 5J"Heavy 
smoker" may be assigned to a new class "Sm o ker+", and persons w hose an­
swer was O, 51" Smoker" +o, 1 I" Heavy smoker" may be assigned to a class, say 
"Smoker++". In sucha case the contingency table might look like 

Non-smoker Smoker Smoker+ Smoker++ Heavy smoker 
H. Sch. or less 40 15 5 5 10 75 
University 30 8 2 2 8 50 

70 23 7 7 18 125 

For such crisp data the value of Goodman-Kruskal's I is equal to -0, 0815, 
and this value is similar to that obtained using fuzzy methodology. However, 
the calculation of the asymptotic confidence intervals seems to be not possi­
ble, as certa.in cells contain too small number of observations. Moreover, Jet 
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us notice that in this crisp case we tacitly assumed that smoker who were 
not able to present crisp answers smoke more than ord in ary "Smokers". It 
may not be true if the hesitation results from the impecise description of 
categories. Therefore, while building a new extended contingency table we 
introduce some new information which is not necesarily present in the data. 
Using the fuzzy approach proposed in this paper do not loose imprecision 
contained in statistical data. 

6 Conclusions 

In the paper we present a new methodology for the assesment of the strength 
of dependence (association) of two variables described by ordered categorical 
data w hen the observation are not crisp. We propose to use a certain possibility 
distribution over a set of categories of one varia ble in order to describe impre­
cise data. For this purpose we use a fuzzy version of the Goodman-Kruskal 'Y 
statistic. We present also a methodology for the calculation of fuzzy confidence 
intervals of 'Y, and a methodology for testing statistical hypotheses about the 
values of this measure. The results presented in this paper may be generalised 
to the case when the data are fuzzy with respect to both variables. However, 
in such a case a required computational effort (optimisation over a possibly 
very large set of alternatives) could be rather prohibitive unless we find some 
hidden structure of the optimisation algorithms. 
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