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The problem of estimation of the preference relation in a finite set on the basis of
pairwise comparisons, in the form of difference of ranks with random errors, with the use
of nearest adjoining order idea (NAO), is investigated in the paper. The results presented
below are extension and correction of earlier works of the author; especially the case of
multiple independent comparisons of each pair is examined. The comparisons of each
pair are aggregated - two approaches are analysed: averaging of comparisons and median
from comparisons. The estimated form of the relation is obtained in both cases on the
basis of some discrete programming tasks. The properties of the estimators are obtained
under weak assumptions about distributions of comparison errors, in particular the

distributions may be unknown.
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1. Introduction

The paper presents extensions of the method of ranking elements from a finite set on
the basis of pairwise comparisons, in the form of difference of ranks with random errors,
presented in Kiukowski (2000). The results discussed in Klukowski (2000) relate to the case
of one comparison of each pair and require some correction (see section 4). The extension
examines the case of multiple comparisons; the comparisons of each pair are aggregated in
two ways. The first way is simply averaging of (each pair) comparisons; the second approach
is based on the median from the comparisons. In both cases the idea of nearest adjoining order
(NAQ) is applied (see Slater 1961, David 1988, section 2.2). The results obtained are based

on weak assumptions about distributions of comparison errors, especially their distributions




may be unknown. The properties of distributions of comparison errors assumed in the paper
may be verified with the use of statistical tests (for unimodality, mode, median, symmetry).
The basis for the properties of estimators are well known probabilistic inequalities:
Hoeffding’s inequality for sums of bounded independent random variables (Hoeffding 1963)
and Tschebyshev inequality for expected value; some properties of the order statistics (David
1970) are also used. In the case of averaging approach the probability of the event that some
random variable (defined in Section 3 below) corresponding to actual relation (the errorless
estimation result) is lower than the variable corresponding to any other relation converges

exponentially to one. Some asymptotic properties are obtained also for the median approach.

The empirical problems with such structure often appear in practice, e.g.; ranking
organisms according to their age (in years), ranking writers according to artistic value of their

works, etc.

Let us notice that the comparisons in the form of differences of ranks with the
properties assumed can be obtained also on the basis of rankings (estimates) resulting from
comparisons in the form of direction of preference (Klukowski 1994). It allows to construct
two-stages estimators: the first step — to obtain estimates of the relation form with the use of
comparisons indicating direction of preference and to determine differences of ranks for each
estimate, the second step — to apply the algorithm based on differences of ranks (sections 4, 5
below). It seems that two-stages approach can be more efficient that the earlier approach
presented in Klukowski (1994), section 5. Therefore, the examination of the estimator based
on differences of ranks is needful.

The empirical results, based on actual data and initial simulation experiments, are
promising — also for “inconvenient” form of distributions of comparison errors (asymmetric,

with non-zero expected value).




The literature on ranking problems is quite extensive; for example the probabilistic
approach is presented in David (1988), Marden (1995), learning approach - in Hastie et al.

(2001) chapt. 14, Kamishima and Akaho (2006), fuzzy approach in Yager R., R. (2007).

The paper consists of six sections; main results: the problem formulation, definitions
and notations, the form of estimators and their properties are presented in sections 2 — 5. Last
section summarizes the results obtained.

2. Problem formulation

The formulation of the problem is an extension of the problem stated in Klukowski

(2000) for the case of ¥>1 independent comparisons of each pair.

It is assumed, that in a finite set of elements X={x,, ..., x,} (#23) there exists an

unknown complete weak preference relation R of the form:
R=1UP, )

where:
1 - the equivalence relation (reflexive, transitive, symmetric),
P - the strict preference relation (transitive, asymmetric).

The preference relation R generates from elements of the set X the family (sequence)
of subsets 2’;, s Z’; (n<m), such that each element x;e 1: is preferred to any element x;e 2’:
(r<s) and each subset 1; (1<g<n) comprises equivalent elements only.

The relation R can be characterised by the function 7': X x X — Dr,

Dr={-(n-1), .., 0, .., n-1}, defined as follows:

T, x) =dy < xey,, %eg,, dy=r-s )



The value of the function T{x, x;) expresses the difference of ranks of the elements x;
and x;in the relation R, In the case 7(x; x,)<0, (7(x; x,)>0) the element x; precedes element

x; (element x; precedes x;), for dj positions. The value 7{x, x)=0 means the equivalence of

both elements (they belong to the same subset z;,ISan). It is obvious, that
T(xi,x;)=~T(x,,x;) for T(-}=0.

The relation form is to be determined (estimated) on the basis of pairwise comparisons
of elements of the set X disturbed by random errors. Each pair (x;, x)eX is compared
independently (in stochastic sense) N times; the result of k-th comparison (k=1, ..., N, N>1} is

the value of the function:
g XxX > D, D={-(m-]),.,m-1}, 3)
the result gi(x;, x,)=cyx is an assessment of the difference of ranks in the pair (x;, x), in -th

comparison. The set D can include values from the range: -(m-1), ..., m-1 because the number

of subsets » is assumed unknown.

In the paper it is assumed, that each comparison gi(x;, x;) (1<k<N) can be disturbed by
a random error; it means, that the difference 7(x, x)-gi(x;, x;) may assume values different
than zero - with some probabilities. The comparisons gi(x;, x;) and g(x,, x,) are assumed
independent, i.e.:

P(glx,, x)=cy)(gilx,, xJ=c))=P(gulx,, x)=cy)P(gi(x, X)=crs)  (k2]). &)

The probabilities, which characterize each distribution of comparison errors will be
denoted with the symbols o)), Su(D), 7u(f); the probabilities are defined as follows:

(D) = P(T(x;, x,) — glx,, x) =1, T(x,, x)) = 0) (-(m-D<l<(m-1)), &)

Bl = P(T(x,, x;) = gdx,, ) =1, T(x;, x;) < 0) (-2(m-D<I<2(m-1)), (6)




¥ud) = P(T(x, %) - gilx, ) = I, T(x;, ;) > 0) (-2(m-1)sI<2(m-1)). M
It is obvious, that the probabilities (5) - (7) have to fulfil the equalities:

(m 1) 2(m-1)
z ayh=1, V_ZA(\: " LD =1,

I=-(m-1) i

2(m-1)
p ) Yul(D) = L. (®)

1=-2(m~

Moreover it is assumed that the following assumptions hold:

I AT, x) - gdx, x) = 1)>112, ©®)

L PTG, 5) - gl x) = 1)>172, (10)
P(T(x, x) — g, x) = 1) > P(T(x,, %) — galx, ) = 1), 120, (1)
P(T(x,, x) — gilx;, ) =) 2 P(T(x;, ) - gil(x, ) = 1-1);  I<0. (12)

The conditions (9) — (12) guarantee, that: e zero is the median of each distribution,
e each probability function is unimodal and e assumes maximum in zero. The expected value
of any comparison error can differ from zero (especially, for 7(x; x,)=t(n-1) the expected

value of comparison is typically different than zero, because usually P(7(x,, x,)-gi(x;, x,)=0)#1.

The probabilities ¢:(0), F4(0) and #:(0) may be lower than Y; therefore the
assumptions about errorless comparison are more general, than those in zero-one approach

(see Klukowski 1994).

For simplification it is assumed, that distribution of any comparison error 7(x; x)-
ge(xi, x;) ((x,, x)eX x X) is the same for each &, 1<k<N (as a result the comparisons of each
pair g1(x, x,), ..., gn{x, x) are iid. random variables). Therefore, the index £ will be omitted in
symbols: a(D), Ju(l), ¥#(D). The relaxation of the assumption about identical distributions is

not difficult.



The probabilities (/) (-(m-1)</<m-1) determine the probability function of
comparison errors for equivalent elements x; and x; (because 7(x;, x;}=0). The probability a,{/)
means, that a result of comparison assumes value /, when both elements are equivalent;
especially ,(0) denotes the probability of errorless comparison (because 7(x;, x;)=gu(x;, x)=0).
In the case of known number of the relation subsets (index n) the interval of integers [-(m-
1), m-1] (“support” of comparisons gi(-)) ought to be replaced with the interval [-(n-1), n-1].
The interpretation of the probabilities Fi(/) and ¥, (!} (-2(m-1)<I<2(m-1)) is similar, with the

difference, that they both determine distributions of errors for non-equivalent elements.

The problem of estimation of the preference relation can be stated formally as follows.
To determine the retation R (or, equivalently, the sequence of subsets 2'1.’ A..,x; ) on the basis
of the comparisons gi(x;, x;) (,=1, ..., N), made for each pair (¥, x)eX x X.

Let us emphasize that, it is not assumed, that the probability functions of comparisons
errors (probabilities (1), f(D), %(D) and the number of subsets n are known.

3. Basic definition and notation

The following notation is introduced for further considerations:

® {(x;, x;) - the function which determines the difference of ranks for each pair (x;, x)eX x X in

any preference relation in the set X i.e.:

Hx,x)=dySxiey,, xeyg,; d=kI1 (13)

oIy, 2,0 Py o 2.0, Px,, - x,) - the sets of pairs of indices <i, /> generating a

relation (y,, ..., z,) i.e:
Iy, 2,07 (<02 | o, %) = 0, 1), (14)

P gy, 2)=(<0 > | #0e, %) < 0 1), (15)



Pty lr)={<i,j>| Hx;, x) > 0; j>i}; (16)
o Ru=I(xy e 2P s X IPL L5 o 2,) = (<0 > | 1S, jm; i) a7
o M=m(m-1)/2=#R,) (18)
(the symbol #(E) means number of elements of a set ).

The properties of the estimators examined in the paper are based on random variables

UL 20 VU0 1), ZP G o 1) WOy, - 2,) defined as follows:

UP s 2,) = L gl x) 1(x;, %5)=0, (19)

VPG, o 2,0 = 1, x)-gulx, x) | «(x;, x)<0, (20)

Z¥ (o 2,) = i, %)l %) 1 1(x, x)>0, 21

o= T UPO+ T rPO+ T zZ90. (22)
<i,j>el() <i,j>ep() <i,j>ePy()

Random variables and other symbols corresponding to the relation R (errorless result

of the estimation problem) will be marked with asterisks, i.e.. U, v§", z(* I", p, P,

w®* | while variables and symbols corresponding to any other relation ¥, ..., ¥,, different

than errorless one, will be denoted: (7,(1"), [7;"),2,") I, B, P, W® . For fixed k (1<k<N) the

k)

difference w*)* - j7™® can be written in the form':

WO = WP - T -z

I'(p-P) I'™(P,=P3)

' The sum (23) comprises, in Klukowski 2000, six components only; it does not comprise the variables
Q(ks) (<i,j>€ §s) and ngs) (<1, j >€ §g) . Therefore, the evaluation (33) from Klukowski 2000 also

requires correction (see formulas (46) and (63) w this paper).




SN (S RN (4 ey O LD YN (4 S )

Pin(T 17 PIr(By~P}) (PiBINTORT()

* ~(k ~(k ¢ (K
T @P-gy s @iy @ -7 @)
PG -1 P PP (PINPINT ()T ()

or shortly in the form

.k & kv
W(k) - W(/‘) = Z ZQ; ),
S,

v=1

where:

I S S PP SO @
QUD =y 50, 8, ={<i, > | <i, pel N(F,-P)), (25)
QY =pr - o, S, ={<i, > l<i, pe pL (T -1}, (26)
O~y 50, Sy={<i, j>|<i j>e P} (B,- P3)), @n
0 g O, Ss={<i, > <i, pe( Py By (T, )2 T (i ), (28)
0% = 24 G, S =(<i > |<i, pe Pin(T -1, @9
ijkﬂ) :ZSJk)‘ _ 17,3") , S, ={<i, > '<i,j>EP; (B, -P}L 30)
OB = g 50, Se={<i, > | <i, > e( Py B )T, )2 T (xi,x ). @31

The following properties of the random variables ijk’v) are necessary for further

considerations,



Lemma
The expected value of each random variable ijk’") (1<k<N, <i, j>€S,y;, v=1, ..., 8) satisfies
the condition:

E(Q™) <0. (2)

Proof - see Appendix.

4. The case of averaged comparisons
The estimator presented in this section is based on averages from individual random
variables U(), VP (), Z$(), i.e. the variables: {7,(), 7,;() and Z,() defined in the

following way:

7,0=4 ZUP0, 33)
_ N
V,,-(')=#k};lV,(,")('), (34)
_ N
ZiO=~% kz;lzf,“(') 4 (35)

Similarly, the random variable ¥ (-) is defined, as follows:

o= = 0,0+ T 7,0t ¥ Z;0. (36)

<i,j>€l(-) <i,j>ep?) <t j>EPy")

The symbols corresponding to the relation ;(;, 1: will be also denoted with asterisks,

lLe. (7; OR 17; ©), Z;(-), #", while the symbols corresponding to any other relation

=

Z1s - Z, will be denoted with tildas, i.e. 77, (), 7,0, Z,0),

Let us notice, that the variables 7, (), V7,() and Z, () satisfy, under the assumption

about identity of distribution functions ai,(£), (D), (D) (1<k<N) , the conditions:



7O

where:

E(U,()=EUP ),
EW,(D=EFPE),
E(Z,()) = EZP (),
Var(T ;) = $VarUP (),
Var(V ; (D=3 Var(VP()),
Var(Z () = %Var(ziP ().

The difference W'(l)—p;:/ () can be expressed in the form:

WO= ¥ @-F)r T @-F)+

1'D(B=P) 7' A(Py-P3)

— ~ — o~ — ~
R Wymgpt X Wymzpt X )
PANT =1 Pin(Py—P2) (PINPINT()=T()
+ ¥ @yt L Zyvpt X (Zy-Z)
PN =17 Pin(B =P (PN (=T ()

3 (v
=3 g:Q,j’,

v=

Q(l) :(7; _ I%g' , <i, j>ely,
0T 5, <ipes
o :7,:- - ﬁu , <i, €8s,
oW=y;- Z, <i, j>e8a,
i" f/:u., <i, j>eSs,

A6 5% = .
Q, =Zy - Uy» <i, j> €8s,

37

(38)

(39)

(40)

(41

(42)

(43)
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gV=z,-7,  <ijpes,
@) _ 5t = :
Q, =Zy-Z, <i, j>€S,

(S - the same as in (24) - 31)).

It results from the lemma presented in Section 3, that:
EW()- W()<0. (44)

Moreover, it can be determined the evaluation of the probability P(W"<VT~7); the

Hoeffding’s inequality (see Hoeffding 1963):
N N 2 2
P(Yi- ZE(Y) 2 Ny <exp{-2Ni*/(b-a)}, (45)

where:

Y. (i=1,...,N) — independent random variables satisfying the condition P(a<V;<h) =1,
(-o<a<b<ow),

1 — positive constant,
will be used as a basis for the evaluation.

Theorem 1.

The probability PGY" < 7 ) satisfies the inequality

(%}gE(Qf,-‘“’))’
POV <y )z l-exp{ 2N
O <)z 1-expy =2 (219(171—1))2 ’ (46)

where:

8
9 - the number of elements of the set |)§,.

v=l

11




Proof.

The probability P(F7" < V?) can be expressed in the form:

PG <W)=1-PGF" - 20) and

PG~ 20)= P( ¥ $0,20)=

v=l S

_p L& ok
=P(Z(Z L0z 0), “47
where:

(K1) _ 7 (k) _ 706D
o0, =u-7,7,
k8) _ (k) _ (K
0, =27,

Last inequality in (47) can be transformed in the following way:

ee> ZQ("")>0) PO ZQ"‘")) E(E(3 ZQ‘*"’))>—E(z<z ZQ,‘,"”))))—

k=1 v=1 k=1 v=l S k=1 v=l k=1 v=1

M=

=P(L(Z TOM)-NI SEQ)2-NS SEQP). ()
S. v=l s, val S,

k=1 v=

i}

The equality (48) results from the assumption, that for any & (1<k<N) the distributions

of the random variables U{(), P¥() and z{¥)() are the same. Therefore, the expected

values of the variables Q;"") (1<k<N) are also the same.

The probability (48) can be evaluated on the basis of Hoeffding inequality (45) in the

following way:

12



. (SZEQM)

) _NY SEQ")2-NY TEQM)<expl-2N-5 | (9
l(v=l SZQ” ) E)sz ©,7 Exszv @7 <exp 28(m-1))* ¢9)

M=

2(

The evaluation (49) results from the following facts: that absolute value of each

difference IT(x,-, x))-gi(x;, X;) [- T(xi,x,) -gu(xs, x,)l ((xi, x)e XxX) cannot exceed the value
8

2(m-1), the number of components of the sum ZZE(QSJ.I")) equals & and each expected
v=1S,

value E(Q;’”')) is negative (see lemma in the section 3). The evaluation is equivalent to the

proved inequality (46).
0

The inequality (46) shows that PG < i# ), i.e. the probability of the event that the
value of the random variable # is lower than any other variable V?, converges
exponentially to one, for N—w, Moreover, each variance Var(# (y,, "",7")) converges to
zero, when N—>w. Therefore, any variable W (x,, ..., x,) converges in stochastic way to some
constant @(y,, ..., x,); the constant z", corresponding to the variable W (i.e. relation

1;, x:,) assumes minimal value in the set {@(y,,..., t,) l Xy X, EFy; Fy - the

family of all preference relations in the set X}. This facts indicates the form of the estimator —
to determine the relation %, ..., 7, which minimizes the value of the random variable
W(x,,... x,) for given comparisons g, (xi,x;) (=1, .., N, (x;, x)eX x X). Let us notice,
that the value of the right-hand side of the inequality (46) depends on the form of the relation

*

X1 X, an increase of “dissimilarity” between x|,.., 7, and actual relation /’t’;» s X

8
increases the expected value ZZE(QEJ"')) and - finally - decreases the probability
v=l§,

13



P(W‘zﬁ; ). In other words - more dissimilar relation #|,.., 7,, in comparison to the
relation 1:, . Z:. , is less probable.

The optimization task for the case under examination assumes the form:

min {2 IO%x) g lex))h (50)

70 1&)‘)5}?, <i,j>€Rn k=1

where:

Fy - the feasible set of the problem, i.e. the family of all preference relations in the set X,

A, x;) - the function describing the relation lfl) L 3{2, from the feasible set Fy

(the factor ! is omitted, because it does not influence the form of the optimal solution).

The number of solutions of the problem (50) can be greater than one. In the case of
multiple solutions, the inequality (46) relates to whole set of the solutions obtained. The

unique form of the relation can be chosen randomly or with the use of an additional criterion,

Noa .
e.g. minimal value of the expression 5 Z‘f(xnxj) —gk(x,-,xj)i (the function ¢(-)
<i,j>el(F,, . 7;) k=1

describes the estimate %,,..., 7).

The evaluation (46) is similar to those presented in Klukowski (1994) point 5.1,
corresponding the case, when comparisons indicate the direction of preferences (not
difference of ranks). The right-hand side of the probability (46) is better (assumes higher

value), than the evaluation presented in Klukowski (1994) in the case, when:
& A2 2 2
(T3} [@86n-1)*> (12-57,
vels,

where & denotes the maximal probability of error in comparisons expressing the direction of

preference.

14



Numerical value of the right-hand side of the inequality (46) can be determined in the
case of known distributions of comparison errors and the form of the relation Z: ) Z:.‘ If
not, they can be replaced with estimates or evaluations (see Klukowski 2007). The estimation
requires sufficient number of comparisons &, at least several.

Let us notice that the evaluation (46) is, in general, significantly underestimated,; its
negative feature is dependence on number of elements m. Therefore, in the case of “reliable”
estimation of the relation form (it is indicated by the minimal value of the function (50) close
to zero), the value m—-1 can be replaced with the estimate 71-1. The estimate can be usually
“reliable” for moderate N, e.g. several, because of exponential form of the right-hand side of
inequality (46).

Let us notice, that it is also possible to consider the estimation problem with the use

quadratic function instead of absolute value, e.g.:

UdCenx) = (e x) =8 (e x ) 1xix)) =0, (51)

N
Wieox)=% 2 ( L Ublwx)+ T Vibwx)+ X )Zﬁ(x.',xj)), (52)

k=1 «<i,f>el() <4, f>epy() <i, J>EPy(

or with the use of the average 2(x;,x,)instead of individual gi(x;, x)), e.g..

[j(xl7x_[):]l(xl7xj)—§(xl>xj)l; t(xi1Xj):O; (53)
Wix)= T Uax)t T Vix)+ T Zlxx), (54)
<i,j>el(’) <i,j>ep(} <i,j>epy()

N
where: g(xl’xj) = % ng(xnx/), etc.
k=1

The minimization problems assume the following forms for these functions:

mn (T S0 guene)) ), (552)

2 ,("Z,EFX <i,j>eRqk=1

15



mn { X ’z(‘)(x,,xj)—g(x,,x,,}. (55b)

1:",..4, z%eﬁ‘, <i,J>ERn
The properties of such estimators need further investigation.
5. The median approach
In the case of the median approach it is assumed, that N is odd, ie. N=27+1

(=0, 1, ...). The form of estimator is based on the random variables: Upmen (xi,x)),

Vme,N (xl > xj) 3 Zme,N (X, ,xj) > Wme,N (le-“’ Z,) defined in the fOHOWing way:

Umew Cxisx;) = l 1(x1, %) = GmeNXis Xj) B 1(xi, x;) =0, (56)
Vme,N (xn xj) = l l(xl) xj) - gme,N(xi, x,l) ' ; l(xb “"J) < 0) (57)
Zme (xirx )= 1106, %) - gneailxi, %) 1 1(xi, x)) >0, (58)

Wme,N(ZJr”x Zr): I%:Ume,)\l(xnx1)+PZ(:)sz,N(xi)xj)+PZ Zme,N(xl)xj)a (59)
) 19 ()

where:

Zme(X;, X)) — the median from comparisons glxi, x) (=1, .., N), ie.
BmeN(X, %)= &y 1yi2y(xiox;) and symbols guy(xi, x)), ..., en(x, x;) denote the
comparisons: g1(x,, x;), ..., gv(x;, x;) ordered in non-decreasing manner.

The symbols corresponding to the actual relation 1;, s 7, are marked with

. . . . . .
asterisks, i.e.. Ujymen» Viimens Zymen> Wmen » While corresponding to any other relation

Xis oo Xi - with tlldas, Le. Uy,me,N’ Vl/',me,N’ Z/'/',mz,N’ Wme,N .

Using such notations the difference /), v - W men - the basis for the properties of the

estimator based on medians - assumes the form:

16



* ~ . £ o~ * ~
sz,N - Wme'N - Z X (Uu,me,N - V,_,,mg,N)+ . Z (Uij,me,N - Zy,me,N) +

I'(p-P) I'(B=P)

+ Z (V:'j_me,N - (jij,me,N) + Z . (Vl_ff,me‘N - Z:j,me,N) +

P(F =17 PIn(F=P3)

+ . Z - (Vlj,me,N - Vij,mg'N)+ . ; . (Zij,me,N _(jy,me,N) +
(PnPINT (1)) P(T =1)

+ Z (Z;_me,N - 17,]_,"2‘/\]) + Lo Z ~ (Z:j,me,N - Zg',nxe,N) >
P (B-PD PPINT()#1())

equivalent to:

8
* —~ _ (y)
Wine = When= 2 SZQ,,,,,.E,N,

v=}
where:
ngl,)me,N =Ui},me,N - I7ij,me,N » <i,j>ES1,
Ql(’ﬁl)nz,N =UZI,"'€.N - le,me,N > <i,_]>ES2,
QS'J']}M,N - V’:-"‘Z»N - ﬁu.me,N ? <1"J>€SJ’
Q:f::)nz,N = V;,rrle,N - Zu_me,N . <L, j>eSs,

5 * ~ .
QfJ,B"e,N - VU,""-’.N - Vl'j,me,N , <L _]>€S5,
OB =g N T <i, e
ij,me,N ij,me,N ZU,me,N 3 s J 8,
(S, - defined in (24) — (31)).

The properties of the difference W/, n - Wme,/v are determined in the following

(60)

(61)
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Theorem 2.

The difference Wy - W ey Satisfies the inequalities:

E( W:ne,N - Wme,,v) < O) (62)

& )
EZE )
=D+ 2 4,(m =D+ A5(m-2)

P(W:rle,N <Wme,N) 2 (63)

where:

A =#(S10 S20 S50 S6); A = #(Sau S7); Ay =#(Ssu Ss)
(symbol #(E) — means the number of elements of the set Z).
Proof of the inequality (62).

The inequality (62) is true for N=1 (on the basis of the inequality (32) - see lemma in Section
3). For N=27+1 (=1, ...,) the proof is similar to the case examined in Klukowski (2007);

therefore its draft is presented only below. The probability function
P(T(xisx,) = & ey (xinx))=1) (V=27k1; =0, 1, ...,) satisfies for each pair (x; x)eX x X

the inequalities:
P(T(x, 5 xj) _gme,N+2 (xl B xj) = O)> P(T(xl > xj) - gme,N (x’ ’ xlv) = O) ’ (64&)

P Cex)) = Emewsa (s %) =D <P (xi %)) = 8 ey (12 %)) = 1) (/20). (64b)

The inequalities (64a) and (64b) result from the following facts. The probabilities

P(T(x;,x;) = & e (x,x,)=1) canbe expressed in the form (see David (1970), section 2.4):
PTCxx)) = ey (xinx )= 0)=
=P(T(xi7x_[)_gme'N(xl7xj)S 0) "P(T(Xy,x/‘)“g,,,g_/\!(x’,x/) < —1)=
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N! G (N-1)/2
= [ (-, (652)
(N =1)/2)1)* 6y

P(T(x,-,x,)—g,,,e’,,,(x,,x,)=1):
=P(T(xl;x])Agme,N(xi)xj)SI)—‘P(T(xl’xj)_gme.N(x”xf)Sl_l):

) G
_ N! . ](N'l)lz(l—l)(N~l)/2df, (65b)
(N -1)/2)H 6a-1

where:

Gy =PI (x;,x))~ 8, (xx ) S ).

The expressions (65a) and (65b) are determined on the basis of beta distribution B(p, ¢), with
parameters p=q=(N+1)/2. The expected value and variance of the distribution assume the
forms — respectively: Y and ((N+1)/2)2/(N+1)2(N+2):4(++2). The variance of the

distribution converges to zero for N—»ew and the integrand in integrals (65a), (65b) is

symmetric around Y2. These facts guarantee, that: the distributions of the random variables

T(x;,x,) = 8 e (xisx;) ((xi, ;)€X x X) are for each N unimodal, their probability functions

assume maximum in zero (i.e. for T(x;,x,)~ gy (xi,x;) =0) and satisfy the inequalities

(64a), (64b). Last two conditions are sufficient (see the assumptions (9) - (12) and lemma

from section 3) for the inequality (62).

Proof of the inequality (63).

The inequality (63) is proved on the basis of Chebyshev inequality for expected value. For

this purpose the left-hand side of the inequality is transformed to the form

P(When W e )71-P( W en - W men 20) and each random variable ijv,,)"e,,‘, is transformed

to the form, which provides non-negative expected value:
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oW =00+ (m-1) (»=1,2,3,6), (66)

yome N ij . me N

O =08 o ¥2(m-1) (=5, 8), (67)
Q‘u(t,rzle,N =Q1(jfl)ne,N + (’71-2) (V:4’ 7) (68)

The probability P(W e v ¥ e, n 20) can be evaluated in the following way:
8
POV e W ey 20P(Z T O 200
v=l S,

P(S L 00 02 a(m—1)+24,0m=1)+ 45(m~2))<

if,me, N —
v=l §, Y

8 B 8
E(T T Ofen) KX T Qe
< v=l S, =1+ v=l §, ) (69)
(=1 +2 2,(m=1)+ 43(m—2) (W+24)(m =1+ 23(m~2)

The inequality (69) is equivalent to proved inequality (63).
0
The right-hand side of the inequality (63) is included in the interval (0, 1). Its

numerical value can be determined in the case of known distributions of comparison errors

P(T() - g ey ()=1). In opposite case it can be estimated or approximated. An approximation

procedure for this purpose, useful for moderate N (less than several), based on the formulas
(65 a, b) and an assumption about symmetry of distribution tails, can be constructed in similar
way, as in Klukowski (2007), for the tolerance relation. For N greater than several, unknown

probability functions of comparison errors can be estimated.

The evaluation (63) based on the value m is usually underestimated (lower than actual
probability) and — similarly as in the case of averaged comparisons — the values: m—1, 2(m —1)

and m-2 can be replaced with the estimates based on 7. It seems also rational to use the
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estimates of the form: max {7(e.x)}, 2. max  {T(e.x)-7(x,x,)} and
T{xix))=0 T(I:»X/)‘T<xtvxj)<0

_ max (7o x,) — T (xisx, )} (the expression T'(x;, x,)- 7 (x;,x;) means the product).
T (xpox )7 (x0x,)>0

The minimisation task for the estimation of the preference relation is similar, as in the

case N=1 (see (50)). It assumes the form:

WM R B 9Cx) ~ g x )| L (70)

X XEFx <ij>€Ry,
The number of solutions of the task (70) can exceed one.

It should be emphasized, that the evaluation (63) is based on rough probability
inequality. However, it seems conceivable, that for some types of distributions of comparison
errors, the efficiency of the median approach is similar to those corresponding to the
averaging approach.

The right-hand side of the inequality (63) does not converge exponentially to one.
However, the estimator, which guarantee such convergence can be constructed for medians
(from the differences of ranks) on the basis of the approach presented in Klukowski 1994,
point 5.2. The differences of ranks have to be ansformed into comparisons indicating the
direction of the preference, which satisfy the condition, that probability of errorless
comparison is higher than Y2. The idea of the - 1sformation can be presented briefly in the
following way. On the basis of the formulas (65a, b) it can be determined the minimal value

(integer) x, (x<N), which guarantee, for each pair (x;, x,)eX x X, the condition:
PT()-Gnen()=0) > 12, (7D
where: g,...(") is the median in the subset of x consecutive comparisons, i.e. {gi(*), ..., g:()}

or {geni (), ..., &)}, etc.
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Let us define the random variables Uy . (%, .., 2,), \{U‘,(xl, o X0)s Zipe(Xps o0 X))

in the following way:

(0, Qe 1)=1(x;, x))
Upe s 2)= 3

1 G, )21, %)

(0, Gime,dxs, %)=1(xs, X))
Ve 2= 3

U, Gimedxi, %)1(x,, %)

[0, Gume.dxs, x,)=1(x;, X))
e x)= A

(1 Gime i, )21(xi, X))

where:

for <i, >e I(x,, ..

for<i, >el(y,, ..

for <i, j>e Py (1, -

for <i)j>e Pl(xly e

for <i, e Py (1, -

for <i, >e P, (x4, - -

PR
(72a)
XD
s X0
(72b)
DX
PR
(72¢)

X0

Gme.dxi, x;) - the median in the set of comparisons {Je1)x1(), ..., Jexl)} (=1, ..., 3); the

expression a-b - (index in ga.(-)) means the product of @ and b,

3 - integer part of the quotient N/x (odd number), i.e §= ent(N/x).

Now, the majority approach, introduced in Klukowski (1994) point 5.2 (equivalent to

the median in the set comprising zero-one random variables), can be applied to the random

variables U, (x1, - 2,), Vie(xe 5 205 Zie (X0 X)) (F1, .., 9). As a result, one can

obtain the variables U,(,'f'ﬁ), v, Z0m) defined as follows:
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-
2
Me

Upe Qs n 2,) <912 for<i, >el(y,...2,);

i

(I"E)(ll’ - 2,’) = 4 (73&)

,_
-
Me

Upe s n ) > 812 for<i, prel(y), ... x,),

-
i

(0, % Vy:(rnowz,)<8/2 for<ij>ePi(xy,--n2,);

VIR 2= (730)
9
Ll; Y Vie(xy,n2)>8/2 for <i, >e P\(x, - 2,) s
T=1
9
(0, 2 2yt 2,) <812 for<i, e Pa(zy, 0 2.
20, x)= A (73¢)
9
L, % Zy(rs ) > 872 for<i,>e Py(xy, . 2,)-
=]

Let us apply the convention used in  vious sections to the variables: ,(J"'j)()
V), 259 (), ie. the symbols correspond  to the actual relation Zrs oz, will be

marked with asterisks: (9", V{75, Z{"", while the symbols corresponding to any other

~(me) ~(me) =(me)

relation ¥, ..., 7, —withtildas: (;"", V)5, 7,75 -

Finally let us define the random variables W} and yy/,

Wi=3 UPD+3 Voot es Zim, (74)
i Py P2
ZNZ Ul(}l»:ge)+z V;:IJ;)+Z Z[(Jm;). (75)
7 Py Py

On the basis of the results presented in Klukowski (1994), point 5.2, it is clear that:
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P(Wis-W,<0)>1-21,, (76)
where:

As=exp(-29(1/2-6%2)"} an

and

2= max (P, X)#Zme x; X))}
(xpx))eXxX

If x>1, then the convergence obtained as a result of the zero-one transformation is
wealker, than those in Kiukowski (1994), because J<N in the equality (77) (in other words
the exponent in the right-hand side of relationship (76) “decreases with the step £”). The case
x=1 is not excluded, in general, but it is satisfied only in the case P(7(-)-gu(-)=0)>1/2 for each
(xi, x)eX x X.

It seems viable to prove, that efficiency of the median approach in the case of
difference of ranks is not worse than those based on the transformations (72a) — (73c); the
problem needs further investigations.

7. Summary

The paper presents two approaches to estimation of the preference relation on the basis
of multiple pairwise comparisons in the form of difference of ranks. The results are extensions
and completion of the case N=1 (one comparison of each pair) considered in Klukowski
(2000); the extension is based on the ideas similar to those developed in Klukowski (1994)
(for the case of comparisons indicating the direction of preference). The algorithms presented
in the paper are based on weak assumptions about distributions of comparison errors. The
properties of the averaging approach, especially exponential convergence of the probability

P(7" < ) to one for N—w, are me: 1gful. On the other hand, the optimisation problem
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corresponding to the median approach is easy to solve. The question about efficiency of the
median approach, in comparison to averaging approach needs further investigations. It seems
reasonable to investigate the properties of the estimators, difficult to analytic examination,
with the use of simulation approach.

Appendix
The proof of the lemma (section 3)
Lemma
The expected value of each random variable Q;k’v) (1<k<N; <, >e8,,v=1, ..., 8), defined in
(24) — (31), satisfy the condition:

E(Q#”) <0, (A1)
Proof.

The proof of the inequality (A1) is elementary (but cumbersome).

Let us consider the cases v=1, 3, 5, 7. In the case 1=1 the random variable Q,(jk’l) assumes the
form:

Q¥ =y F® =g, ) |- 17 o, x)-go x) | (i, el (B, -PY). (A2)

if
The facts 7(-}=0 and 7 (-) <0 indicate three possible situations:
() g,()<1();
(i) T()<g,()<TT;

(i) g, ()2 7C).
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For the values g,(-)<7() (the case (i)) the difference Uff)'-fff) equals: -7()>0

with the probability: 3 P(g,()=/)<%.In the case (iii) the difference (A2) is equal to:
IST()
7()<0 with the probability X P(g,()=0/)>%. The inequality (i) indicates, that the
27()

difference (A2) equals 7()-2g,(-}. The expression 7()-2g, () (F()<g,()<I()) satisfy
the condition:
r()<1()-2g,0<10)
and  assume values from the set {7()+2,...,-7()-2} with probabilities
P(f()-2g,=1)=P(g,=({()~1)/2). The expression ()-2g,() (F()<g,()<I()
assumes values placed symmetrically around zero; their probabilities satisfy the conditions:
PI()-28,)=-02P(I()-2g,()=1) (>0,
last inequality results from the fact, that in the case 7(-) -2 g, ()=-t the difference 7()-g,()

is closer to zero than in the case 7(}-2g,(-}=¢ (in other words the value g, () is closer to
7(-)). Assembling the facts concerning the case under consideration (7(-)=0 and 7 () <0), i.e.:
POV =T(O)= TP(g()=D>"%,

3T()
P(Ql(Jk,l)=7T(‘) ):, ‘);"(I)j(gk() =<,

<

PA()-2g,()=-0)>PFT()-2g,()=1) (1>0),
one can obtain:
E(Q%V)<0. (A3)

The random variable Q,(f'” assumes the  rm:
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OV =V -gP =11, x)- gle ) |- lgutw, ) | (<i, e PL AT 1)),
The facts 7(-}<0 and 7 (-)=0 indicates three possible situations

(iv) g,()=T0);

(A4)

V) TO<g,O<I();

i) 8,0210).

For the values g, () <7(-) (the case (iv)) the difference V,(f)'—ﬁff) equals: 7(-)<0 with the

probability: 3 P(g,()=0=XP(T()-g,()=0> 2. In the case (vi) the difference (A4) is
1S7() 120

equal to: -7(-)>0 with the probability ¥ P(g,()=1)<'. The inequality (v) indicates, that
127(¢)

the difference (A4) equals 2 g, () -7(). The expression2 g, ()-7() (7()<g,() <7 () satisfy
the condition:

T()<2g, () -T()<-10)

and assume values from the set

{(T()*2, ..., -7(:)-2}  with  probabilities
Pg,O)-TO=0=P(g,()=T()+1)/2). The values of the expression 2g, ()-7()

(7()<g,()<7()) are placed symmetrically around zero, their probabilities satisfy the
conditions:

P2g,(O)-TO=-)2P2g,()-T()=1) (1>0),

last inequality results from the fact that in the case 2 g, () -T(-)=-1, the difference 7(-)- g, (")

is closer to zero, than in the case 2 g, () -7(-)=¢. Assembling the facts concerning the case
under consideration (7(-)=0 and 7 () <0), i.e.:
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POV =TOr ZP@O=D>%,

PO, =TOx P (=D <%,

P2g, (O)-TO=-)zP2g,(O-TC): ,
one can obtain:

E(Q)<0. (A5)
The random variable ij.k’s) assumes the rm:
0 -7 -

=T(x, x)- g %) F 1T (o x)-ga %) | (<0, 2 €(PT AP AT, )2 (k1)) - (A6)

The facts 7(-)<0 and 7()<0 (7(-)2f (")) indicates two systems of conditions. The first one
corresponds to the inequality 7(-)<7(-) <0 and one of the conditions:
i) g,()=T1();
(viii) T()<g, () <7 ();
(i) g,()27().
In the case (vii’) the difference V,(j")'-ﬁg.") equals: 7(-)-1(-) <0 with the probability:
S P(g,()=0)>%.In the case (ix’) e difference (A6) equals: -T(-)+7()>0 with the
I<T()
probability Y. P(g,()=/)<'. In the case (viii’) the expression (A6) equals: 2g,()-7(-)-
27()

110! T)<g. ) <7(-)) and satisfy the condition:

TO-1() <2, -TO-TQ)<-TOI().
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Moreover it assumes the values from the set {T(-)-7()+2, ..., -7(-)+7 () -2} with probabilities
P2g,(O)-TO-T()=0)=P(g,()=T()+1()+1)/2). The expression 2g,(}-T()-7()
T()<g, () <7()) assumes values placed symmetrically around zero; their probabilities
satisfy the conditions:

PRg,(O-TO-T0)=-02P2g,()-TO-T0) =) (t>0);

last inequality results from the fact, that in the case 2 g,(-)-7()-7 ()=-, the difference 7(-)-
g, () is closer to zero, than in the case 2 g, () - }-7 ()=1. Assembling the facts concerning

the case: 7(-)=0 and 7 () <0, i.e.:
PO =TO-T0)= X Pgi()=1)> %,

PO =TOTO)= ZP@O=D< %,

P2g,()-TO-1()=-1)2P2g,(O)~-TO-1()=1),
one can obtain in the case 7(-)<7 () <0 the inequality:
E(Q%)<0. (A7)

The second case, i.e. 7(-)<T(-)<0 is similar to the previous one; the inequality 7(-) <7{-) may
occur together with one of the conditions:

(Vi) g,0<70);

(viii”?) 7()<g, () <TC);

(ix7) g,0)2T0).
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In the case (vii”) the difference V,(f)‘-f,(f) equals; T(-)-7(-)>0 with the probability:
15%4)P(gk(.) =1)<%.1In the case (ix”) the difference (A6) equals: -T(-}+(-)<0 with the
probability l}j(f(gk ()=0>". In the case (viii’) the expression (A6) equals: 2 g, (-} -1()-
7() (7(:)<g,()<I()) and satisfy the condition:

IHT(O)<2g,O)-TO-1O<T 7).

Moreover, it assumes the values from the set {-T()+{()+2, ..., T()-7()-2} with
probabilities P(2g,()-T()-7(}=0)=P(g,()=T(}+1()+1)/2). The expression 2 g, (-} -

T()-7¢) (I()<g,()<I()) assumes : values placed symmetrically around zero; their

probabilities satisfy the conditions:
P2g,O)-TO~-1()=-1)2P2g,()-TO~1()=1) (:>0);
last inequality results from the fact, th  in the case 2 g, () -1(-)-7 () =-1, the difference I(-)-

g, () is smaller (closer to zero), than in the case 2 g, (-} -7(:}-7 ()=t Assembling the facts

concerning the case under consideration (7(-)=0 and 7 () <0), i.e.:
PO =-T(HT() = IR0 =0> %,

POEI=T()-T() = ZPE0=D<%,
PQRg,()-TO-TO=-1)2PQg,O-TO-T()=1),

one can obtain in the case 7 (-) <7(-)<0 the inequality:

E(QF)<0. (A8)
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The random variable Q,SH) assumes the form:

%7 = 2007 = Tx, x)- gelxis x) |-V T (xiox )-8l x) | (<i, 7€ P (B, - PY)). (A9)

The facts 7(-)>0 and 7 (-) <0 indicates three possi situations:

() £,0)270),

(xi) 7()<g, ()<TC);

(xii) g,()<7().

For the values g, (1) 27() (the case (x)) the difference Z,(j")'-ﬁ,gk) equals: -T(-)+7 (-) <0 with

the probability: ¥ P(g,(-)=1)>%.In the case (xii) the difference (A9) is equal to: T(:)-
27()

7()>0 with the probability ¥ P(g,()=1)<4. The inequality (xi) indicates, that the

I<T()
difference (A9) equals T()+7(:)-2g,(). Theex ssion T()+7()-2g,() T)<g, () <7()
satisfy the condition:
T <TOTT()-28, O <TO-T0)
and assume values from the set {-T()+7()+2, .., T()-1()-2} with probabilities

PTO+T(O)~2g,0) =)= P(g,()=(TO)+T()~1)/2). The expression T(}+7()-2g,()

assumes values placed symmetrically around zero; their probabilities satisfy the conditions:
PTC)+T()-28,()=-1)2P(TO+1()~28,()=1) (1>0).
Last inequality results from the fact, that in the case T(-)+7(}-2 g, (") =-t, the difference 7(-)-

£, () is closer to zero, than in the case 7(-)+ 7()-2g,()=t. Assembling the facts concerning

the case under consideration (7(-)>0 and 7 (-)<0), i.e.:
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P =TOH0)= TP(80)=0>%,

KO =10-T0) SR80 =D<%,

<h0)
P2g,O)-T()=-0N2r2g0)-T0)=1),

one can obtain: £( ij“) )<0.

The proofs of the inequalities E(Qg"”))<0 for 1=2, 4, 6, 8 are similar; negative expectations

I Q,(jk"/)) for v=1, ..., 8 are sufficient for the inequality (32).
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