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ESTIMA TION OF THE PREFERENCE RELA TION ON THE BASIS OF MULTIPLE 

PAffiWISE COMPARISONS IN THE FORM OF DIFFERENCES OF RANKS 

by 

Leszek Klukowski 

Systems Research Institute Polish Academy of Sciences 

6 Newelska Str., 01-447 Warsaw, e-mail: Leszek.Klukowski@ibspan.waw.pl 

The problem of estimation of the preference relation in a finite set on the basis of 

pairwise comparisons, in the form of difference of ranks with random errors, with the use 

of nearest adjoining order idea (NAO), is investigated in the paper. The results presented 

below are extension and correction of earli er works of the author; especially the case of 

multiple independent comparisons of each pair is examined. The comparisons of each 

pair are aggregated - two approaches are analysed: averaging of comparisons and median 

from comparisons. The estimated form of the relation is obtained in both cases on the 

basis of some discrete programming tasks. The properties of the estimators are obtained 

under weak assumptions about distributions of comparison errors, in particular the 

distributions may be unknown. 

Keywords: multiple pairwise comparisons, nearest adjoining order method, difference of 

ranks 

1. lntroduction 

The paper presents extensions of the method of ranking elements from a finite set on 

the basis of pairwise comparisons, in the form of difference of ranks with random errors, 

presented in Klukowski (2000). The results discussed in Klukowski (2000) relate to the case 

of one comparison of each pair and require some correction (see section 4). The extension 

examines the case of multiple comparisons; the comparisons of each pair are aggregated in 

two ways. The first way is simply averaging of (each pair) comparisons; the second approach 

is based on the median from the comparisons. In both cases the idea of nearest adjoining order 

(NAO) is applied (see Stater 1961, David 1988, section 2.2). The results obtained are based 

on weak assumptions about distributions of comparison errors, especially their distributions 



may be unknown. The properties of distributions of comparison errors assumed in the paper 

may be verified with the use of statistical tests (for unimodality, mode, median, symmetry). 

The basis for the properties of estimators are well known probabilistic inequalities: 

Hoeffding's inequality for sums of bounded independent random variables (Hoeffding 1963) 

and Tschebyshev inequality for expected value; some properties of the order statistics (David 

1970) are also used. In the case of averaging approach the probability of the event that same 

random variable (defined in Section 3 below) corresponding to actual relation (the errorless 

estimation result) is !ower than the variable corresponding to any other relation converges 

exponentially to one. Some asymptotic properties are obtained also for the median approach. 

The empirical problems with such structure often appear in practice, e.g.: ranking 

organisms according to their age (in years), ranking writers according to artistic value oftheir 

works, etc. 

Let us notice that the comparisons in the form of differences of ranks with the 

properties assumed can be obtained also on the basis of rankings (estimates) resulting from 

comparisons in the form of direction of preference (Klukowski 1994). It allows to construct 

two-stages estimators: the first step - to obtain estimates of the relation form with the use of 

comparisons indicating direction of preference and to determine differences of ranks for each 

estimate, the second step - to apply the algorithm based on differences of ranks (sections 4, 5 

below). It seems that two-stages approach can be mare efficient that the earlier approach 

presented in Klukowski (I 994), section 5. Therefore, the examination of the estimator based 

on differences of ranks is needful. 

The empirical results, based on actual data and initial simulation experiments, are 

promising - also for "inconvenient" form of distributions of comparison errors (asymmetric, 

with non-zero expected value). 
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The literature on ranking problems is quite extensive; for example the probabilistic 

approach is presented in David (I 988), Marden (I 995), learning approach - in Hastie et al. 

(2001) chap!. 14, Kamishima and Akaho (2006), fuzzy approach in Yager R., R. (2007). 

The paper consists of six sections; main results: the problem formulation, definitions 

and notations, the form of estimators and their properties are presented in sections 2 - 5. Last 

section summarizes the results obtained. 

2. Problem formulation 

The formulation of the problem is an extension of the problem stated in Klukowski 

(2000) for the case of N> I independent comparisons of each pair. 

lt is assumed, that in a finite set of elements X={x,, ... , x.,} (m2::3) there exists an 

unknown complete weak preference relation R of the form: 

R = lvP, 

where: 

I - the equivalence relation (reflexive, transitive, symmetric), 

P - the strict preference relation (transitive, asymmetric). 

(I) 

The preference relation R generates from elements of the set X the family (sequence) 

of subsets x;, ... , x: (n5J11 ), such that each element X;e x; is preferred to any element x,e X: 

(r<s) and each subset x: (l$q'.91) comprises equivalent elements only. 

The relation R can be characterised by the function T: X x X • Dr, 

Dr= {-(n-1), .. , O, ... , n-I}, defined as follows: 

(2) 
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The value of the function T(x;, x,) expresses the difference of ranks of the elements X; 

and x, in the relation R. In the case T(x;, x,)<O, (T(x;, x,)>O) the element X; precedes element 

x, (element xi precedes x;), for dij positions. The value T(x,, x,)=O means the equivalence of 

both elements (they belong to the same subset x;, l:,q:01). It is obvious, that 

The relation form is to be determined (estimated) on the basis ofpairwise comparisons 

of elements of the set X disturbed by random errors. Each pair (x,, x,)EX is compared 

independently (in stochastic sense) Ntimes; the result of k-th comparison (k=l, ... , N; N>l) is 

the value of the function: 

gk:XxX • D, D={-(m-1), ... ,m-l}; (3) 

the result gk(x,, x,)=cyk is an assessment of the difference of ranks in the pair (x,, xJ, in k-th 

campari son. The set D can include values from the range: -(m- I), ... , m-1 because the number 

ofsubsets n is assumed unknown. 

In the paper it is assumed, that each comparison gk(x,, x,) (l:;;ksN) can be disturbed by 

a random error; it means, that the difference T(x,, x,)-gk(x,, x,) may assume values different 

than zero - with same probabilities. The comparisons gk(x,, x,) and gi(x„ x,) are assumed 

independent, i. e.: 

The probabilities, which characterize each distribution of comparison errors will be 

denoted with the symbols a.;([), /Jij,([), yij,([); the probabilities are defined as follows: 

aij,([) = P(T(x,, x,) - gk(x;, xi) = I; T(x,, x,) = O) 

/Jij,([) = P(T(x,, x,) - gk(x,, x,) = I; T(x,, x,) < O) 

(-(m-1 ):,/:,(m-1 )), 

(-2(m- l ):,/:,2(m- l )), 

(5) 

(6) 
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r.,(l) = P(T(x,, x,) - gk(x,, x,) = I; T(x,, x) > O) (-2(m-l)ś/ś2(m-l)). (7) 

lt is obvious, that the probabilities (5) - (7) have to fulfil the equalities: 

(m - 1) 

L a",(/)= I, 
2(rn- J) 

L /J",(l) = I, 
2(rn- J) 

L yij,(l) = I. (8) 
l=-(rn - 1) l=-2( rn-J) l=-2(rn-J) 

Moreover it is assumed that the following assumptions hold: 

L P(T(x,, x,) - gk(x,, x,) =I)> 1/2, (9) 
l<O 

L P(T(x,, x,) - gk(x,, x,) =I)> 1/2, (10) 
l>O 

P(T(x,, x,)-gk(x,, x,) =I)~ P(T(x,, x)-gk(x,, x) = /+l); l?.O, (Il) 

P(T(x,, x,)- gk(x,, x,) =I)~ P(T(x,, x)- gk(x,, x) = /-1); /śO. (12) 

The conditions (9) - (12) guarantee, that: • zero is the median of each distribution, 

• each probability function is unimodal and • assumes maximum in zero. The expected value 

of any comparison error can differ from zero ( especially, for T(x,, x,)=±(n-1) the expected 

value of comparison is typically different than zero, because usually P(T(x,, x,)-gk(x,, x,)=O)~I. 

The probabilities a.,(O), JJ • .(O) and yy,(O) may be !ower than ½; therefore the 

assumptions about errorless comparison are more generał, than those in zero-one approach 

(see Klukowski 1994). 

For simplification it is assumed, that distribution of any comparison error T(x,, x,)-

gk(x,, x,) ((x,, x)EX x X) is the same for each k, lśkśN (as a result the comparisons of each 

pair g1(x„ x,), .. , gM,.x,, x) are iid. random variables). Therefore, the index k will be omitted in 

symbols: a.,(!), JJ.,(l), rij,(l). The relaxation of the assumption about identical distributions is 

not difficult. 
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The probabilities au(!) (-(m-l):S/911-1) detennine the probability function of 

comparison errors for equivalent elements x, and xi (because T(x,, xj=O). The probability au(!) 

means, that a result of comparison assumes value /, when both elements are equivalent; 

especially a.(O) denotes the probability of errorless comparison (because T(x,, x,)=gJ.,x,, xj=O). 

In the case of known number of the relation subsets (index n) the interval of integers [-(m­

l ), m-1] ("support" of comparisons gJ..·)) ought to be replaced with the interval [-(n-1), n-1]. 

The interpretation of the probabilities f]u(l) and y;(l) (-2(m-l)s::/s::2(m-1)) is similar, with the 

difference, that they both determine distributions of errors for non-equivalent elements. 

The problem of estimation of the preference relation can be stated formally as follows. 

To determine the relation R ( or, equivalently, the sequence of subsets x; , ... , x:) on the basis 

of the comparisons gk(X;, x1) (k=1, ... , N), made for each pair (x1, x1)EX x X. 

Let us emphasize that, it is not assumed, that the probability functions of comparisons 

errors (probabilities au(!), /Ju(l), r,ll)) and the number of subsets n are known. 

3. Basic definition and notation 

The following notation is introduced for further considerations: 

• l(x;, xj - the function which detennines the difference ofranks for each pair (x,, xi)EX x X in 

any preference relation in the set X, i.e.: 

t(x;, x,) = du <=:> X; ex•, x, e x,; d,1 =k-1. (13) 

• l(x1 , .. . , x,), P,(x1 , ••. , x,), P,(x,, ... , x,)- the sets ofpairs ofindices <i,J> generating a 

relation (x1 , ••. , x,), i.e.: 

l(x,, .. , X,)={ <i,j> I l(x,, x,) = 0;1>i}, (14) 

P,(x1 ' ... , x,)={ <i,j> I l(X;, xi) < 0;1>i}, (15) 
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Pi(x,, ... , x,) ={<i,J> I l(x,, x,) > O;J>i}; (16) 

• M=m(m-1)/Z=#(R,,,) (18) 

(the symbol #(3) means number of elements of a set 3). 

The properties of the estimators examined in the paper are based on random variables 

(19) 

vlf > (x I' ... ,X,) = I t(x„ x,)-gk(X,, x,) I; t(x,, xJ<O, (20) 

(21) 

wk>o = I u~k>o+ I v~k>o+ I z~k>o. 
<i,j>e/(·) <i,j>epi(-) <i,/>EP1(·) 

(22) 

Random variables and other symbols corresponding to the relation R ( errorless result 

of the estimation problem) will be marked with asterisks, i.e.: U~k)', V~k)', zif>', i', p;, p;, 

w<k)•, while variables and symbols corresponding to any other relation X,, .. . , X,, different 

h I ·11 b d d -(k) -(k) -(k) - - - -(k) F fi d k (1- 1-<'M\ h t anerroressone,w1 e enote: U;J ,Vu· ,Zu· ,/, p 1,p2 ,W . or 1xe =~,,te 

difference w<k)' -w(k) can be written in the form 1: 

1 The swn (23) comprises, in Klukowski 2000, six components only; it does not comprise the variables 

Q~k 5) ( < i,j >ES 5) and Qt8> (<i, j >E S 8). TI1erefore, tl1e evaluation (33) from Klukowski 2000 also 

requires correction (see forrnulas (46) and (63) in tli.is paper). 
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+ . ~ . <vt>· -D~k>)+ . ~ . <vik>' - z&k>)+ . _ I: _ <v~k>' -vt)) 
p,n(f -/) P,n(p,-P,) (P,np,)n(T( )'1 (-)) 

+ I: (z~k)' -D&k))+ I: (zik)' -vtl)+ I: (zt)' - z)!l) (23) 
p;n(f-I°) p; n(p,-p;) (p;np,)n(T(-),ot(·)) 

or shortly in the form 

where: 

Q(k,1) = u(k)' _ v-(k) 
lj I) I) , S1 =(<i,J> I <i,J>e/ n(J5i-p;)}, (24) 

Q(k,2) =u(k)' _ z-(k) 
I) lj 1J > S, ={ <i,J> I <i,J>e/ n(p,- p; )}, (25) 

Q(k,3) = v(k)' _ u-(k) 
I) I} I) , S, =( <i,J> I <i,1>e p; n(l -!')}, (26) 

Q (k,4) = v(k)' _ z-(k) 
u I) I} ' 

(27) 

Q(k,5) = v<k)' _ v-(k) 
I) I) I) ' 

(28) 

Q(k,6) = z(k)' _ u-(k) 
IJ lj I) > s.=(<i,1>I<;,1>ep;nu -nL (29) 

Q(k.1) = z(k)' _ v-(k) 
I) JJ I} ' 

(30) 

Q(k,8) = z(k)' _ z-(k) 
I) I) lJ J 

s. ={ <i,J> I <i,J>e(p; np,)n(T(x,, xJt t(x;,x) )}. (3 l) 

The following properties of the random variables Q~k,v) are necessary for further 

considerations. 
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Lemma 

The expected value of each random variable Qrv) (Jśkg{; <i,J>ESv; i,=J, ... , 8) satisfies 

the condition: 

(32) 

Proof - see Appendix. 

4. The case of averaged comparisons 

The estimator presented in this section is based on averages from individual random 

variables Uijk)O, vik)o, Zijk)(-), i.e. the variables: UyO, vy(·) and zij(·) defined in the 

following way: 

(33) 

(34) 

(35) 

Similarly, the random variable W(-) is defined, as follows: 

wo= 1: uijo+ 1: vijo+ r zijo. 
<i,j>el(·) <i,j>ep1(-) <i,J>ePk) 

(36) 

The symbols corresponding to the relation X;, ... , x: will be also denoted with asterisks, 

i.e. [i~(-), V~(-), z~O, W', while the symbols corresponding to any other relation 

i,,. , i, will be denoted with tildas, i.e. tJ l), V l), z l), W• 

Let us notice, that the variables [i ij(-), V ij O and z ij (-) satisfy, und er the assumption 

about identity of distribution functions a.,(l), fly.(l), ru,(l) (I skśN) , the conditions: 
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E(U ii O)= E(uti O), 

Var(V /)) = -!J-Var(vifl(-)), 

The difference W' O-w (-) can be expressed in the form: 

+ . ~ . (Zy - u) + . ~ . (z~ - i\) + . _ L . _ (Zy - z ij) 
P1r>(/ -/) p,n(p1-P1) (P1np1)n(T (•),t (·)) 

= I }:Q~'l, 
v=l S„ 

where: 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 
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<i,J>eSs, 

(Sv-the same as in (24)-(31)). 

It results from the lemma presented in Section 3, that: 

E(W(·)- W(-))<0 (44) 

Moreover, it can be determined the evaluation of the probability P(W• <W); the 

Hoeffding's inequality (see Hoeffding 1963): 

N N 2 
P(I,Y; - I,E(y,)?. Nt).::, exp{-2Nt 2 l(b-a) }, (45) 

,b=I k=I 

where: 

Y, (i=I, ... , N) - independent random variables satisfying the condition P(a<::,Y1<::,b) = I, 

(-oo<a<b<oo ); 

t - positive constant, 

will be used as a basis for the evaluation. 

Theorem I. 

The probability P(W' < w ) satisfies the inequality 

l 8 j ( I,I,E(Qtl))2 
P(W' < W ) ?. 1- exp - 2N v=Is. 2 , 

(2.9(m-l)) 
(46) 

where: 

8 
.9 - the number of elements of the set US v. 

v=l 
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Proof 

The probability P(w < W) can be expressed in the form: 

- -
P(W. < W) = 1- P(W. -W?: O) and 

P(W•-W?:O)=P(I LQ~v)?:0)= 
v=l S„ 

8 N 
=P( I I-/;-IQt>:?:o)= 

v=l s. k=l 

N 8 
=P( L(L LQ~kv))?:0), 

k=l v=l S. 

where: 

Q(kl) = u<k)' -v~(k) 
lj I) I) > 

Q(k8) = z(k)• _ ~ (k) 
u u Vu . 

Last inequality in (47) can be transformed in the following way: 

(47) 

The equality (48) results from the assumption, that for any k (!$kg{) the distributions 

of the random variables uif> (-), V~k> (-) and zr> (-) are the same. Therefore, the expected 

values of the variables Q~kv) (!$kg{) are also the same. 

The probability (48) can be evaluated on the basis ofHoeffding inequality (45) in the 

following way: 
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The evaluation ( 49) results from the following facts: thai absolute value of each 

difference IT(x;, x1)-gk(x;, x1) 1-1 t(x,,x)-gk(x;, xJ I ((x;, x1)E XxX) cannot exceed the value 

8 

2(m-l), the number of components of the sum I:I:E(Qt>) equals ,9 and each expected 
v=IS. 

value E(Qtv)) is negative (see lemma in the section 3). The evaluation is equivalent to the 

proved inequality ( 46). 

D 

The inequality ( 46) shows that P(W* < w ) , i.e. the probability of the event that the 

value of the random variable w is !ower than any other variable W, converges 

exponentially to one, for N• oo. Moreover, each variance Var(W (x1, ... , x ,)) converges to 
' 

zero, when N• oo. Therefore, any variable W(x1, ... , x,) converges in stochastic way to same 

constant iv(z1, ... , x ,) ; the constant m', corresponding to the variable w• (i.e. relation 

x;, ... , x:) assumes minimal value in the set {iv(x1, ... ,z,) I Xi,···,X,EFx; Fx - the 

family of all preference relations in the set X}. This facts indicates the form of the estimator -

to determine the relation ,i" ... , X,;, which minimizes the value of the random variable 

W(x1, ••• ,x,) for given comparisons gk(x;,x) (k=l, ... ,N; (x;,x1)EX x X). Let us notice, 

that the value of the right-hand side of the inequality (46) depends on the form of the relation 

Xi, ... , i,; an increase of "dissimilarity" between i 1 , ... , i, and actual relation x;, ... , x: 
8 

increases the expected value I:I:E(Q~IvJ) and - finally - decreases the probability 
v=IS„ 
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P(W*?. w ) . In ot her words - mare dissimilar relation z1, ... , i,, in campari son to the 

relation x;, .. . , x:, is less probable. 

The optimization task for the case under examination assumes the form: 

(50) 

where: 

Fx - the feasible set of the problem, i.e. the family of all preference relations in the set X, 

f \x;, x1) - the function describing the relation x[•>, ... , x;:!, from the feasible set Fx 

(the factor ¼ is omitted, because it does not influence the form of the optima! solution). 

The number of solutions of the problem (50) can be greater than one. In the case of 

multiple solutions, the inequality ( 46) relates to who le set of the solutions obtained. The 

unique form of the relation can be cho sen randomly or with the use of an additional criterion, 

e.g. minimal value of the expression . . ~ . f/i(x;,x 1)-gk(x;,x)/ (the function i(,) 
<1, J>e/(,r1, .. . , .ri;)k=l 

describes the estimate ,i1, ... , X,;). 

The evaluation (46) is similar to those presented in Klukowski (1994) point 5.1 , 

corresponding the case, when comparisons indicate the direction of preferences (not 

difference of ranks) . The right-hand side of the probability (46) is better (assumes higher 

value), than the evaluation presented in Klukowski (1994) in the case, when: 

where i5 denotes the maxima! probability of error in comparisons expressing the direction of 

preference. 
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Numerical value of the right-hand side of the inequality ( 46) can be determined in the 

case of known distributions of comparison errors and the form of the relation x; , ... , X: . If 

not, they can be replaced with estimates or evaluations (see Klukowski 2007). The estimation 

requires sufficient number of comparisons N, at least several. 

Let us notice that the evaluation ( 46) is, in generał, significantly underestimated; its 

negative feature is dependence on number of elements m. Therefore, in the case of "reliable" 

estimation of the relation form (it is indicated by the minimal value of the function (50) close 

to zero), the value m-1 can be replaced with the estimate 11-l. The estimate can be usually 

"reliable" for moderate N, e.g. severa[, because of exponential form of the right-hand side of 

inequality ( 46). 

Let us notice, that it is also possible to consider the estimation problem with the use 

quadratic function instead of absolute value, e.g.: 

(51) 

N 
W 2 (x;,x) = -/i L ( L UZ (x;,x1) + L VZ(x;,x) + 

k=I <i,j>el(·) <i,J>ep,(-) 
L ZZ(x;,x)), 

<l,j>eP,(·) 
(52) 

or with the use of the average g(x;,x) instead ofindividual gk(X;, x1), e.g.: 

(53) 

W(x;,x1) = L U(x;,x)+ L V(x;,x)+ 
<i,J>el(·) <i,J>eP,(·) 

L Z(x;,x), 
<i,j>ep,(-) 

(54) 

N 
where: g(x;, x1) = -j, I:gk (x;,x), etc. 

k=I 

The minimization problems assume the following forms for these functions: 

mm 
z!'' . ... x:;~>eFx 

(55a) 
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min 
x:•), .. , x~;!>eFx 

. L l/'>(x;,x1)-g(x;,x1/}. 
<t,J>ER .. 

The properties of such estimators need further investigation. 

5. The median approach 

(55b) 

In the case of the median approach it is assumed, that N is odd, i.e. N=2 rt- I 

(r-0, I, ... ). The form of estimator is based on the random variables: Um,,N(X;,x), 

Vme,N (x;, Xj), Zme,N (x;, x), Wm,,N (Xp···, x,) defined in the following way: 

t(x;, xJ) = O, (56) 

t(x;, x1) < O, (57) 

(58) 

where: 

g,,,._N(x;, x1) - the median from comparisons i.e. 

gmeJĄX,, x1)= g((N+l)tii(x;,x) and symbols g(IJ(X;, x1), .. , g(N)(X;, x,) denote the 

comparisons: g1 (x,, x1), ... , gN(x;, x1) ordered in non-decreasing mann er. 

The symbols corresponding to the actual relation x;, ... , x: are marked with 

asterisks, i.e.: u:•.me,N, v:.me,N' z:.me.N, w: .. N, while corresponding to any other relation 

X1, ... , X;; - with tildas, i.e.: Uy·,me.N> Vy.me,N> Zy.me,N, W me,N · 

Using such notations the difference w; •• ,N - Wm,,N - the basis for the properties of the 

estimator based on medians - assumes the form: 
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w:,,e,N- Wme,N=. ~ . (U~,me,N-Vij,me,N)+. ~ . (U~·.me,N-Zij,me,N)+ 
1 r.(p,-Pi) 1 '"'(P1-P1) 

equivalent to: 

w:,,e,N - w me,N= f LQt~ne,N, 
v=I S„ 

(61) 

where: 

Q(I) = '.. - - <. i> S 
ij,me,N U IJ,me,N V ij,me,N, 1,J E 1, 

Q(2) = • - - < i> s 
1)',me,N U IJ,me,N Z,;,me,N, l,J E 2, 

Q(J) = • - - <. i> s 
1)',me,N V IJ,me,N U ij,me,N, 1,J E 3, 

Q(4) = • - - - < i> s 
ij·,me,N VIJ,me,N ZIJ,me,N> l,j E 4, 

Q(5) = • - - <. i> s 
ij",me,N V IJ,me,N V ij,me,N, I,] E 5, 

Q(8) = • - - < i> s 
ij·,me,N ZIJ,me,N Z ij·,me,N, I,] E 8, 

(Sv - defined in (24) - (31 )). 

The properties of the difference w;.,,,N -W me.N are determined in the following 

17 



Theorem 2. 

The dijference w:,,e,N -W me.N satisfies the inequalities: 

E(w:,,e,N - w me.N)< O, (62) 

8 (v) 
E(LL Qij,me,N) 

P(w' <w ) >-----v=_IS~· ------
me.N me.N - J,(m-1)+2J2(m-l)+ A.3(m-2), 

(63) 

where: 

(symbol #('E.) - means the number of elements of the set 'E.). 

Proofofthe inequality (62). 

The inequality (62) is true for N=! (on the basis of the inequality (32) - see lemma in Section 

3). For N=2 rt-1 ( i= I, ... ,) the proof is similar to the case examined in Klukowski (2007); 

therefore its draft is presented only below. The probability function 

P(T(x;, x)- g 111e,N (x;, x 1)) = I) (N=2 rt- I; i=0, 1, ... ,) satisfies for each pair (x;, x1)EX x X 

the inequalities: 

P(T(x;, x)- g 111e,N+l (x;, x) =O)> P(T(x;, x)- gme,N (x;, x) =O), (64a) 

P(T(x„ x)- g,,,e,N+l (x;, x) = I) <P(T(x;,x)- g,,,,,N(x;,x1) = I) (/.tc0). (64b) 

The inequalities (64a) and (64b) result from the following facts. The probabilities 

P(T(x„ x)- g 111,,N (x„ x) = I) can be expressed in the form (see David (1970), section 2.4): 

P(T(x;,xj)-g111,,N(x;,x) = O)= 

= P(T(x;, x)- g 111,,N (x;, x1) $ O) -P(T(x;,x)- g,,,,,N (x;, x 1) ~ -1)= 
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NI G(O) 
____ · --2 j ,<N-1)12(1-tlN-1)/2dt' 
(((N - I)/ 2)!) G(-1) 

(65a) 

NI G(I) 
____ · -----=-2 J ,<N-1)/2(1-t)(N-l)/2dt' 

(((N -1)/2)!) G(l-1) 
(65b) 

where: 

G(I) = P(T(x„x)- gk (x,,x) 5a I). 

The expressions (65a) and (65b) are determined on the basis of beta distribution B(p, q), with 

parameters p=q=(N+ I )/2. The expected value and variance of the distribution assume the 

forms - respectively: ½ and ((N+l)/2)2/(N+I)2(N+2)= 4cJi+2). The variance of the 

distribution converges to zero for N• oo and the integrand in integrals (65a), (65b) is 

symmetric around ½. These facts guarantee, that: the distributions of the random variables 

T(x,,x)- gm,,N (x,, x1) ((x;, x1)EX x X) are for each N unimodal, their probability functions 

assume maximum in zero (i.e. for T(x;,x1)-gm,,N(x;,x)=O) and satisfy the inequalities 

(64a), (64b). Last two conditions are sufficient (see the assumptions (9) - (12) and lemma 

from section 3) for the inequality (62). 

Proof of the inequality (63). 

The inequality (63) is proved on the basis of Chebyshev inequality for expected value. For 

this purpose the left-hand side of the inequality is transformed to the form 

P( w:,,,.N < W me.N)= 1-P( w:,,,,N -w me,N :2:0) and each random variable Q;::,,.,N is transformed 

to the form, which provides non-negative expected value: 
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Q'<•'> -Q<v> + ( I) 
1J,me, N - if,me,N lll- ( i,=J, 2, 3, 6), (66) 

Q'(v) =Q(v) +2(m-J) 
ij,me,N i;,me,N 

( i,=5, 8), (67) 

Q'(,,) -Q(v) + ( 2) 
ij,me,N - 1/,me,N lll- (i,=4, 7). (68) 

The probability P( w;n,,N -W me,N 2".0) can be evaluated in the following way: 

8 

P( w:ne,N -w me,N 2".0)=P( L L Qt;ne,N 2".0)= 
v=l S„ 

8 
P(I: L QtL.N2".,ł1 (m-1)+2,l,i(m-l)+,ł3 (m-2))!> 

v=l S„ 

8 (v) 
E( L L Qij,me,N) 

= )+ v=I S, 

(,.i1 + 2,ł2)(m- I)+ ,ł 3 (m - 2) 
(69) 

The inequality (69) is equivalent to proved inequality (63). 

D 

The right-hand side of the inequality (63) is included in the interval (O, 1). Its 

numerical value can be determined in the case of known distributions of comparison errors 

P(T(,)-gm,,N (·)=1). In opposite case it can be estimated or approximated. An approximation 

procedure for this purpose, useful for moderate N (less than severa!), based on the formulas 

(65 a, b) and an assumption about symmetry of distribution tails, can be constructed in similar 

way, as in Klukowski (2007), for the tolerance relation. For N greater than severa!, unknown 

probability functions of comparison errors can be estimated. 

The evaluation (63) based on the value m is usually underestimated (!ower than actual 

probability) and - similarly as in the case ofaveraged comparisons - the values: m-1, 2(m -1) 

and m-2 can be replaced with the estimates based on n. It seems also rational to use the 
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estimates of the form: _max {jt(x;,xJ}. 2. milx {lf(x;,x1)-t(x;,xJ} and 
T(xi,x1)=0 T(x1,xJ)· I (x1,x1)<0 

. milx {lf (x;, x )-T (x;, x 1 )I} (the expression T(x;, x 1)· T (x;, x1) means the product). 
T(x,,x1)·t (x,,xJ)>O 

The minimisation task for the estimation of the preference relation is similar, as in the 

case N=! (see (50)). It assumes the form: 

(70) 

The number of solutions of the task (70) can exceed one. 

It should be emphasized, that the evaluation (63) is based on rough probability 

inequality. However, it seems conceivable, that for same types of distributions of comparison 

errors, the efficiency of the median approach is similar to those corresponding to the 

averaging approach. 

The right-hand side of the inequality (63) does not converge exponentially to one. 

However, the estimator, which guarantee such convergence can be constructed for medians 

(from the differences of ranks) on the basis of the approach presented in Klukowski 1994, 

point 5.2. The differences of ranks have to be transformed into comparisons indicating the 

direction of the preference, which satisfy the condition, that probability of errorless 

campari son is higher than ½. The idea of the transformation can be presented briefly in the 

following way. On the basis of the formulas (65a, b) it can be determined the minimal value 

(integer) K, (K5{!f}, which guarantee, for each pair (x;, x;)EX x X, the condition: 

P(T(-)-gm,.,{)=0) > ½, (71) 

where: g,,,,,.{) is the median in the subset of K consecutive comparisons, i.e. {g1(·), ... , g,{)} 

or {g,c1-i(,), ... , gi.-0}, etc. 
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Let us define the random variables Uij,, (x" . . , X,), Vij,, (X1> ... , x,), lij,,(X1> ... ,X,) 

in the following way: 

Uy,,(X1,···,X,)= (72a) 

l I; 9111,,r(x;, xJtct(x;, x) for <i,J>E J(xi, ... , x,), 

r O; 9me,r(X;, xJ=t(x;, Xj) for <i,J>E P1(X1, ... , x,); 

Vy,,(Xp···,X,)= (72b) 

(72c) 

where: 

9m,,,Cx;,x1)- the median in the set ofcomparisons {Qc,-1)- .... 10, ... ,g • .(-)} (x=l, .. , .9); the 

expression a•b - (index in 9a•h0) means the product of a and b, 

.9 - integer part of the quotient NIK (odd number), i.e .9 = ent(NIK). 

Now, the majority approach, introduced in Klukowski (1994) point 5.2 (equivalent to 

the median in the set comprising zero-one random variables), can be applied to the random 

variables Uy,,(xp .. ·,X,), Vy,,(x1, ... ,z,), Zy,,(x1, ... ,z,) (x=I, ... , .9). Asaresult, one can 

obtain the variables U&''.8), v~:9J, zf~Jl defined as follows: 
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r O; 
a 
I: Uy.,(x1, ... ,z,) <912 for <i,J>E J(x1, ... , Xr); 
r =I 

Uta>(x,, ···, Xr) = (73a) 

l I; 
a 
I: Uu.,(X1> ... , Xr) > 9/2 for <i,J>E l(z1, ..• , Xr), 
r=l 

r O; 
a 
I: ViJ,,(X1, ···,Xr) <912 for <i,J>E Pi(z1, ... , Xr); 
r=l 

v~~;>cx1, ... , x,)= (73b) 

l I; 
a 
I: ViJ,,(X1, .•. , Xr) > 9/2 for <i,J>E P1 (X1> ... , Xr), 
r =l 

r O; 
a 
I: Zy.,(x1, ... ,zr) <912 for <i,J>E P2 (z1, ... , Xr); 
r =l 

(73c) 

l I; 
a 
L ly_,(x,, ... ,x,) >912 for<i,J>EP2(Xp· ·· ,Xr) . 
r=I 

Let us apply the con vent i on used in previous sections to the variables: Uij~;) O, 

V~''.8>(-), Z~'.8>(-), i.e. the symbols corresponding to the actual relation x:, ... ,x: will be 

marked with asterisks: ut;>•, vt;>•, zt;>•, while the symbols corresponding to any other 

I . - - • h "Id . -(me) -(me) -(me) 
reation X,, ... ,Xr -w1t t1 as. UiJ,S, ViJ,S, ZiJ,S. 

Finally !et us define the random variables w; and W 8 : 

w;=Ę uta>'+Ę vt1>'+Ę z(me)• (74) lj,fJ ' 
I P, P, 

wa=I: -(me)+}: 9cn;>+1; ~(me) (75) UtJ.s _ IJ, ~ ly.s · 
T P, P, 

On the basis of the results presented in Klukowski (1994), point 5.2, it is elear that: 
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(76) 

where: 

,1,3=exp{-2 .9 (1/2-o~2, )2} (77) 

and 

o~2, = max {P(T(x;, xJ),,eg,n.,,.{ X;, X1))}. 
( x1,x1)eXxX 

If K> I, then the convergence obtained as a result of the zero-one transformation is 

weaker, than those in Klukowski (1994), because .9 <N in the equality (77) (in other words 

the exponent in the right-hand side of relationship (76) "decreases with the step ,c.''). The case 

I(= I is not excluded, in generał, but it is satisfied only in the case P(T(•)-gk(•)=O)> 1/2 for each 

(x;, x;)EX x X. 

lt seems viable to prove, that efficiency of the median approach in the case of 

difference of ranks is not worse than those based on the transformations (72a) - (73c); the 

problem needs further investigations. 

7. Summary 

The paper presents two approaches to estimation of the preference relation on the basis 

of multiple pairwise comparisons in the form of difference of ranks. The results are extensions 

and completion of the case N=l (one comparison of each pair) considered in Klukowski 

(2000); the extension is based on the ideas similar to those developed in Klukowski (1994) 

(for the case of comparisons indicating the direction of preference). The algorithms presented 

in the paper are based on weak assumptions about distributions of comparison errors. The 

properties of the averaging approach, especially exponential convergence of the probability 

P(W' < W ) to one for N• oo, are meaningful. On the other hand, the optimisation problem 
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corresponding to the median approach is easy to solve. The question about efficiency of the 

median approach, in comparison to averaging approach needs further investigations. It seems 

reasonable to investigate the properties of the estimators, difficult to analytic examination, 

with the use of simulation approach. 

Appendix 

The proof of the lemma (section 3) 

Lemma 

The expected value ofeach random variable Q~k,v) (1,;k5Jv; <i,J>ESv;IFI, ... , 8), defined in 

(24) - (31 ), satisfy the condition: 

(Al) 

Proof 

The proof of the inequality (A I) is el em en tary (but cumbersome). 

Let us consider the cases !FI, 3, 5, 7. In the case i,=] the random variable Qt1l assumes the 

form: 

Q (k,I) = (k)' -(k) = I ( ) I I - ( ) ( ) I U U,1 -v U gk X;, x, - I X;, x, - gk X;, x, (A2) 

The facts T(-)=O and 7 (-) <O indicate three possible situations: 

(ii) 7(-)<gk(·) <T(-); 
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For the values gk(-) St(-) (the case (i)) the difference u~k)' -vt> equals: -t(-)>0 

with the probability: L P(gk(-)=l)<½.ln the case (iii) the difference (A2) is equal to: 
l~t(·) 

1(-)<0 with the probability :[P(gk(,)=l)> ½. The inequality (ii) indicates, that the 
,~ro 

difference (A2) equals t(-)-2gk(-). The expression t(,)-2gk0 (t(-)<gk(,)<T(,)) satisfy 

the condition: 

t(-)<t(-)-2gk(,)<-t(,) 

and assume values from the set { t(-)+2, .. , -1(-)-2} with probabilities 

P(t(,)-2gk=1)=P(gk=(t(-)-1)/2) . The expression t(-)-2gkO (1(-)<gk(,)<T(•)) 

assumes values placed symmetrically around zero; their probabilities satisfy the conditions: 

(1 >O); 

last inequality results from the fact, that in the case 1(·)-2gk0=-1 the difference T(,)-gk(,) 

is closer to zero than in the case 1(-)-2gJ)=1 (in other words the value gk(·) is closer to 

T(·)). Assembling the facts concerning the case under consideration (TO=O and 1(-) <O), i.e.: 

P(Q?·1>=1(-))= :[P(gk(-) =I)>½, 
V l~T(·) 

P(t(-)-2gJ) = - 1) ~ P(t(·)-2gJ) = 1) (1 >O), 

one can obtain: 

E( Q~'-'l)<O. (AJ) 

The random variable Qt3> assumes the form: 
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Q(k,3) _ (kJ' -(k) = I Jir ) .r ) I I ( ) I i.f - V ,1 - u„1 ,xi, x1 - gk\x;, x1 - gk X;, x1 (A4) 

The facts T(·)<O and 7 O =O indicates three possible situations: 

(v) T(•)<gJ)<t(,); 

For the values gkO :ST(·) (the case (iv)) the difference vifl' -fJ&kl equals: TO<0 with the 

probability I,P(gJ)=l)= I,P(TO-gk(·)=l)> ½. In the case (vi) the difference (A4) is 
/ST(-) lłO 

equal to: -TO>0 with the probability I, P(gkO =/)<½.The inequality (v) indicates, that 
lłt(·) 

the difference (A4) equals 2 gk O-T(-). The expression 2gk O-TO (1t-)<gk O <7(-)) satisfy 

the condition: 

T(-)<2 gk O-T(-)<-10 

and assume values from the set {T(-)+2, ... , -T(·)-2} with probabilities 

P(2 g k O - TO = 1) = P(g k (·) = (T(·) + 1) / 2). The va lues of the expression 2 g J) -TO 

(T(-)< g J) < 7 O) are placed symmetrically around zero; their probabilities satisfy the 

conditions: 

P(2gk0-TO = -1) ~ P(2gk(-)-TO = 1) (1 >O); 

last inequality results from the fact thai in the case 2 g k O-T(•)=-1, the difference TO- g k O 

is cl o ser to zero, than in the case 2 g k O-TO=1 . Assembling the facts concerning the case 

und er consideration (T(·)=0 and 7 O <O), i.e.: 
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P(2gJ)-TO = -1)?. P(2gk O-TO= z), 

one can obtain: 

(AS) 

The random variable Qt5l assumes the fo rm: 

Q(k ,5) = v<k)' -v~(k) = 
lj I) lj 

= IT(x;, x,)- gk(x;, x;) 1- lt(x;, x)-gk(X;, x;) I (<i,J>e(p; n'fii )n(T(x;, X,)aćt (x;,xi))). (A6) 

The facts T(-)<O and 7 O <O (T(-)ać 7 O) indicates two systems of conditions. The first one 

corresponds to the inequality T(-)<t(,) <O and one of the conditions: 

(viii') T(-)<gk (-) <t(,); 

In the case (vii') the difference V~kl' -vt> equals: T(·)-t(-)<O with the probability: 

I P(g k (·) = /) > ½. In the case (ix') the difference (A6) equals: -T(-)+ TO >O with the 
/g(·) 

probability I P(gkO=l)< ½. In the case (viii') the expression (A6) equals: 2gk0-T(-)­
,~,(-) 

7 (-) (T(-)< gk (-) < T (·)) and satisfy the condition: 

T(-)- 7 0 <2 gk (·) -T(-)- 7 (·) <-T(-)+ I(·). 
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Moreover it assumes the values from the set {T(,)- T(-)+2, ... , -T(·)+T(-)-2} with probabilities 

P(2gk O-T(·) - TO= 1) = P(gk O= (TO+ TO +1)/ 2) The expression 2 gk 0-T(·)-TO 

(T(-)< gk O < TO) assumes va lues placed symmetrically around zero; their probabilities 

satisfy the conditions: 

P(2gk O-TO- TO= -1) ~ P(2gkO-TO-TO = z) (z >O); 

last inequality results from the fact, that in the case 2 gJ)-TO-TO =-z, the difference 70-

gk(-) is closer to zero, than in the case 2gk0-T(•)-T(-)=z. Assembling the facts concerning 

the case: T(•)=O and T(-)<O, i.e.: 

P(2gk O-TO- To= -z) ~ P(2gJ)-TO- T(-) =z) , 

one can obtain in the case T(-)< T(·) <O the inequality: 

(A7) 

The second case, i.e. TO <T(-)<O is similar to the previous one; the inequality TO <TO may 

occur together with one of the conditions: 

(vii") gJ) :c; T(-); 

(viii") TO <gJ) <T(-); 
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In the case (vii ") the difference Vijk)' -vtl equals: T(·)- t (-) >O with the probability: 

~ P(g k (-) = /) <½. In the case (ix") the difference (A6) equals: -T(-)+ T (-) <O with the 
/510 

probability L,P(gk(-)=l)> ½. In the case (viii') the expression (A6) equals: 2gk(·)-T(-)­
iłTO 

T (-) (T(-)< g k (-) < T (-)) and satisfy the condition: 

-T(-)+ t (-) <2 gk (-)-T(-)-t (-) <T(-)-t(-). 

Moreover, it assumes the values from the set {-T(-)+t(-)+2, ... , T(.)-t(·)-2} with 

probabilities P(2gk (-)-T(-)- t(-) = 1) = P(gk(-) = (T(-)+ t(-)+1)/2). The expression 2gk(-)-

T(-)-t(-) (T(-)<gk(-)<t(-)) assumes the values placed symmetrically around zero; their 

probabilities satisfy the conditions: 

P(2gk O- TO-TO= -1) 2 P(2gJ)-T(-)-t(·) = 1) (1 >O); 

last inequality results from the fact, that in the case 2gk(·)-T(-)-t0=-1, the difference T(-)­

gkO is smaller (closer to zero), than in the case 2gk(-)-T(-)-t(-)=1. Assembling the facts 

concerning the case under consideration (T(-)=O and T (·) <O), i.e.: 

P( Q;k, 5)=-T(-)+ f (-) )= L, P(gk(-) =I)> ½, 
~ lłTO 

P(2gk (-)-T(·)-T(-) = -1) 2 P(2gk(-)-T(-)- I(·)= 1), 

one can obtain in the case T (-) <T(-)<O the inequality: 

(AS) 
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The random variable Qt1> assumes the form: 

The facts T(-)>0 and TO <O indicates three possible situations: 

(xi) To < gk (·) <T(·); 

(xii) gk (·) ś T(-) . 

For the values gkO ?".T(-) (the case (x)) the difference z~k)' -v~k) equals: -T(-)+ T(-) <O with 

the probability : "[,P(gkO=l) >½. In the case (xii) the difference (A9) is equal to : T0-
1~r o 

T (·) >O with the probability ~ P(g k O=/) <½. The inequality (xi) indicates, that the 
/5t (·) 

difference (A9) equals T(-)+ T(-)-2gk O . The expression T(-)+ T(-)-2gk O (T(-)<g/·) <T(·)) 

satisfy the condition : 

-TC•)+ To <TC•)+ To-2gk o <TO- Tc-) 

and assume values from the set {-TO+ TO +2, ... , 70-T (-)-2} with probabilities 

P(T(·) + To - 2gJ) = 1) = P(gk (·)=(TO+ l(·)-1)/2). The expression T(·)+ t0-2g, (-) 

assumes values placed symmetrically around zero; their probabilities satisfy the conditions: 

P(TO + 1(·)- 2gJ) = -1) ?". P(T(-)+ t(·) - 2gJ) = 1) (1 >O). 

Last inequality results from the fact, that in the case TO+ T 0-2 gk O =-z , the difference TO-

gk O is closer to zero, than in the case T(-)+ I (-)-2 gJ) =z . Assembling the facts concerning 

the case under consideration (T(-)>0 and 1(-) <0), i.e.: 
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P( Q?'7l =-T(-)+ t () )= "'L,P(g/,) = l) >½, 
~ l ~T(·) 

P(2gk O- TO= -1) <'. P(2gJ) - T() = 1), 

one can obtain: E( Qt·1) )<O. 

The proofs of the inequalities E( Q~k,v ) )<O for i,=2, 4, 6, 8 are similar; negative expectations 

E(Qtv)) for i,=l , .. . , 8 are sufficient for the inequality (32). 

o 
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