





Probabilistic analysis of the T'wo-Constraint
Binary Knapsack Problem; cases of small and
large constraints right-hand-sides values

Krzysztof SZKATULA
Systems Rescarch Institute, Polish Academy of Sciences

ul. Newelska. 6, 01-447 Warszawa, Poland
University of Podlasie

ul. Konarskiego 2, 08-110 Siedlce, Poland

Koszalin University of Technology
ul Sniadeckich 2, 75-453 Koszalin, Poland
E-mail: Krzysztof.Szkatula@ibspan.waw.pl

Decemnber 5, 2011

Abstract

The paper deals with the Two-Constraint Binary Knapsack Problen:,
which is special casc of Multi-Constraint IXnapsack Problem, with 2 con-
straints only. It is asswned that some of the problem coefficients are real-
izations of mutually independent random variables. Asymptotical proba-
Lilistic properties of selected problent characteristics are investigated for
the 2 specific cases corresponding to large and small values of the Lagrange
multipliers.

1 Introduction

Let us consider a Two-Constraint Binary {napsack Problem in the following
formulation:

n
zopr(n) =max Y m

=1

(1)

n
subject to 3T aji-x < bj(n)
=1

where j=1,2, u=0or 1

Without restricting the generality of considerations it may be also assumed that:

by(n) < ba(n).

It is assumed that:

n
¢ >0,a; >0 0<b;(n) < Zaj,-, i=1,...,n =12
i=1



The assumptions that ¢;. a;; > 0,0 < b;(n) € Y7 a5, i=1,...,n, j =
1,2,are supposed to avoid the trivial and degenerated problems. More precisely
interpretation of the aj; = 0 or ¢; = 0 is far 10t obvions. Whew bj(n) > 371 aj;
then the corresponding constraint is always fulfilled aud therefore it may be
removed from the problem formulation, otherwise if bj(n) = 0 then (1) has only
the trivial solution i.e. zopr(n) =0.

Two-Counstraint Bivary Knapsack Problems is special case of the binary mul-
ticonstraint knapsack problem, also known as m-constraint knapsack problem,
see Nemhauser and Wolsey (10] and Martello and Toth {7], where in general
case there is arbitrary number m of constraints, i.e. j = 1..... m. Another
fmportant special case of the wmlticonstraint kuapsack problem is classical (sin-
gle constraiut) or, in other words, Binary Knapsack Problem, which have only
one constraint, i.e. j = 1 {see Martello and Toth [7]). In the Szkatula's pa-
pers see [13] and [14] probabilistic analysis results of the different cases of the
binary mmlticonstraint kuapsack problem were presented. Moreover full case of
the classical (single constraint) Binary Knapsack Problem was considered in the
paper {14].

The Multi-Constraint Knapsack Problem is well known to be AP hard,
moreover, when m 2 2, it s AP hard in the strong sense (sce Garey and
Johnson (3}]). It does mean that Two-Constraint Binary Knapsack Problem (1)
is also A”P hard in the strong sense. Classical (one-constraint) Binary Knapsack
Problem is NP hard combinatorial optimization problem, however not in the
strony sense.

The papers by Frieze and Clarke (2], Mamer and Schilling (6], Schilling [11]
and [12] investigate the asymptotic value of zppr(n) for the random model of
Multi-Constraint Knapsack Problem, where bj(n) =1, 5 = 1,...,m. Papers
by Szkatnta [13] and {14} were dealing with the random model of the Multi-
Constraint Knapsack Problem, where b;{n) are not restricted to be equal to
1. Papers by Meanti, Rinnooy IKan, Stougie and Vercellis 9], Lee and Oh [4]
consider more general random models of Multi-Constraint Inapsack Problem
but only for j = 1,2 some analytical results describing the growth of zgpr{(n)
were obtained.

The aim of the present paper is to analyze the growth of the asymptotic
value of zgpy(n) for the class of random Two-Constraint Binary Knapsack
Problems (1) with possibly full spectrum of the constraints right-hand-sides
values. Two-Constraint Binary Knapsack Problem is important special case of
the general Multi-Constraint I{napsack Problem, see Martello and Toth [8]. It
is NP hard in the strong sense combinatorial optimization problem. Results
of the probabilistic analysis of this problem may allow to deseribe asymptotic
behavior of the zopr(n) for practically all combinations of values of by (n) and
ba(n) as well as other problem coefficients (considered as realizations of the
random variables). Those results may help to better understand number of
the theoretical issues related to Two-Coustraint Binary Knapsack Problems as
well as enable construction of more efficient algorithuis for solving the practical
instances of the (1).

2 Definitions

The following defiuitions are necessary for the further presentation:



Definition 1 We denote V,, = Y,. where n — oo, if
Yo (1-0(1)) £ Vu €Yo - (1+0(1))
when V,,, Y, are sequences of numbers, or

lim P{Y, - (1—0(1)) < Vi € Yo - (L+0(1)} =1

when Vi, is a sequence of random variables and Y, is a sequence of numbers or
random variables, where lim,, oo 0(1) = 0 as it is usually presumed.

Definition 2 We denote V,, X Y, (V, = 11,,) if
V< (1+0(1))-Y. (Vi 2 (1-0(1))- W,,)
when V,,, Yo (W) are sequences of numbers, or

fim PV, < (1+0(1)- Yo} =1 ¢ lim P{V, > (1-o(1))- Wa} = 1)

n—
when V;, is a sequence of random variables and Y, (W), ) is a sequence of numbers
or random. variables, where iy, o 0(1) =0.

Definition 3 We denote V,, & Y, if there exist constants ¢’ > ¢’ > 0 such that

Y, 2V, 2T,

where Yy, Vi, are sequences of munnbers or random variables.
The following random model of (1) will be considered in the paper:
sn—oo,i=1,...,n7=12
® c;, aj are realizations of mutually independent random variables and
moreover ¢;, aj; are uniformly distributed over (0, 1].

e 0 <8< bi(n) € ba(n) € n/2 bj{n) € bj(n+ 1), for every n 2 1 and all
b;(n), j = 1,2, are deterministic, where § is a constant.

Under the assumptions made about ¢;, aj; and b;(n) the following always
hold

n

"
0< zopr(m) <> e < <) <Y aj < j =12 (2)
=1 =1

Moreover. from the strong law of large numbers it follows that

ZC‘ ~ E(cy) n=mn/2, Zaﬁ =~ E(ay)-n=n/2

i=1 i=1
Therefore, it is justified to enhance forimda (2) in the following way:
0< 2opr(n) X0/2, 0 <d < bi(n) < ba(n) <n/2 (3)

Formula (3} shows that random model of the Two-Constraint Binary Knap-
sack Problem (1) is complete in the sense that nearly all possible instances of



the problem are considered. In this respect the model where by(n) = by(n) =1
is just a very special case. Taking into account that Z:‘:l aji = n/2 assumption
that b;(n) < bj(n+ 1), for all n. 2 1, is quite logical.

The growth of zopr(n) - value of the optimal solution of the problem (1)
may be influenced by the problem coefficients, namely:

n, 3, azi, by(n), bo(n), wherei=1,...,n

It is assumed that ¢;, aj; are realizations of the random variables and therefore
their impact on the 2o p7(n) growth is in this case indirect. Moreover, we have
assumed that 7 — 0. The aim of the prababilistic analysis is to investigate as-
ymptotic behavior of zopr(n) when nn — oo. The hupact of the right-hand-side
values - b1 (n),ba(n) - is well illustrated by the Lagrange function and the prob-
lem dual to (1), see Averbakh {1}, Meanti, Rinnooy Kan, Stougie and Vercellis
[9], Szkatuta {13] and [14]. Duc to the very complicated formulas, impossible to
handle in the general case, the papers by Szkatula [13] and [14] investigate only
two important special cases of values of constraints right hand sides in the case
of Multi-Constraint Knapsack Problem.

3 Lagrange and dual estimations

When the general knapsack type problem, with one or many constraints, is
considered then Lagrange function and the correspouding dual problems, see
Averbakh (1], Meanti, Rinnooy Kan, Stougie and Vercellis [9], Szkatula [13] and
[14] are very nseful tools to perform varions kind of analyses of the original
problemn. In the specific case of the Two-Coustraint Binary Knapsack Problemn
Lagrange function of the problem (1) may be formulated as follows:

n 2 n
L.(z) = Zci Sz Z Aj - (bj(n) — Za"" . 3;,-) =
i=t i=1 i=1
2
Z Z Z/\j'“ji B
=1 = =1

where @ = [m1,. .., 2] andt A = [Aq, Ag] - vector of Lagrange nmltipliers. More-
over, let for every A, A; 20,7 =1,2:

2

2
$(A) = max Ln(x,A)= max Z Sbi{n) + Z Z Ajagi | @
‘ =

x€{0.1}" x€{0.1}



Using the following notation:

2
1 ifei— 5 Ajeaz >0
np) = { PN (1)
0 otherwise.
2
¢; ife;— A a4 >0
a(h) = P2
0 otherwise,
2
a;i if ¢ — Asca >0
ailh) = o aT B
(] otherwise.

we Liave for cvery A, X 20, 7 =12

2 n 2
Z Aj - bi(n) + Z (c,- - Z Aj - uj,-) ca{A) =
i=1 i=1 i=1

2 n 2

STA b)Y (ci(A) DT a,-,-(A)>
i=1 i=1 i=1

P (A)

Obviously for s =1,...,n, 7=1,2,
ci(A) =ci-2i(A), azi(A) = aji - @i(A).

Dual problem to Two-Constraint Binary Knapsack Problem (1) maybe formu-
lated as follows:

.o -
@5 =min Bn(A). (5)
For every A > 0 the following holds:
2
20pr(n) < B} < da(A) = za(A) + 3 Aj(b;(n) ~ 55(A)). (6)
j=1

Let us denote:

m(A) = Deem(A) =Y ailA)s;(A) =Y as-a(A) = au(A),
i=1 i=1 i=1

i=1
2 2
Sulh) = ST Ars(A), B(A) = DT A5 bi(n).
i=1 i=t
By definition of ¢;(A) and aj;(A), see (4), we have:

2
a{A) 2 Z Ajrag(A) i=1,.00n,
Jj=1

and thevefore



wn(A) 2 Sa(A). (M
For certain A, x;(A) given by (4) may provide feasible solution of (1), i.e.:
s;(A) Sbj(n) forevery j=1,2. (8)
Then:
w(A) < sopr(n) € B}, < ¢, (A) = =.(A) + B(A) - S (A). (9)
If (8) holds, then the below inegnality also holds:
B(A) - S, (A} > 0.
From (7) we get:
Bulh) _ () | B(A)= 5,(4)

B(A) — 5,(A)
zn(A) m(A) = (A) ’

Sn(A)

<14

Therefore if (8) holds, then the following inequality also holds:

:opT(n) @,‘1 1/) (A) B(A)
1€ —F~+< <AL . 10
ENIY R VRIS ATy o
Formula (10} shows, that if there exits such a set of Lagrange multipliers A(n)
which is fulfilling the formula (8) and if the formula below holds:

. B(A() { (1)

wre Sy ()
then, due to (10), lim, o 'f’—’(",\’—(fs—% = 1 and therefore z;{(A{n)), 1 =1,...,n,
given by (4}, ts the asymtotically sub-optimal solution of the Two-Constraint
Binary Knapsack Problem (1). Moreover the value of z,(A(n)} is an asymptot-
ical approximation of the optimal solntion value of the Two-Constraint Binary
Knapsack Problem Le. zppr(n).

4 Probabilistic analysis

In the present section of the paper some probabilistic properties of the Two-
Constraint Binary Knapsack Problem (1) will be investigated. We have assumed
that ¢;, aj; 4 = 1,...,n, § = 1,2 are realizations of mutually independent
random variables and moreover ¢, aj; are uniformly distributed over (0,1].
Moreover we have assumed that 0 < § < b3(n) € ba(n) € n/2, bj(n) < bi(n+
1). In addition we will assume that Lagrange multipliers A; and Ag, Aa < Ay,
A = (A1, ha) are also deterministic. Monotonicity of constraints right hand
sides, bi(n} € ba(n), is in this case determining monotonicity of the Lagrange
multipliers, Ap < A1, This is often used in the literature probabilistic model
of the general knapsack probleimns and it suits very well also to Two-Constraint
Binary IKuapsack Problem (1).



Let us first observe that due to the assumptions made the following holds,
fori=1,...,n,7=1,2

(4} when z € 0 0 when 2 <0
Plaj; <x)=¢ 2 whenO<ae<1l,Plg<a)=( z whenO<zg1.
1 when x> 1 1 when x> 1

(12)

In order to proceed with probabilistic analysis of the Two-Constraint Binary

Knapsack Problem (1) it is necessary to consider probabilistic distribution of
the following random variables

A
Z/\j caz, k=1or?2
i=1

ozl z ifz>0 L [ 1 =2 o
Let (7)y = 2 0 otherwise 'Y | 2 ifj=1 » Then for or
i=1,...,n, j = 1,2, the following holds:
1
Fi(a, ) = P{Aj-a5<azl= j\—‘((:n)+ — (= A4 )
i
1
Fz,A) = P{d ai+X e ay<a)= /\i /Fx(a' — Aj-t, ANA;)dt =(13)
3

0

= —/\1—1/\—; ((z)i —(z - )\1)3_ ~(z— /\2)1 +{x— X — /\-2)2+)

The distribution functions of the vandoin variables a;;(A), ¢;(A).i=1,...,n,
J=1,2are:

Gji(v,A) = Plaj(A) <ab=
2
- P{“»""<'L'Uaj"2"vmz/\k'ﬂik2€i}= (14)
k=1

11

- 1—/ /Fl(r—/\1~t,A\/\j)drdl
i}

@

Hi(z,A) = Pla(A)<a}=

2
P{(‘.,-<.7'Uq2:::mZ/\k-a.,-k2ni}: (15}
k=1

Il

1
= 1- /Fz(z,A)dt,

Using above formulas (14) and (15) expectations of the a;;(A), ¢;(A) could
be expressed as follows:



/lsz_,-,-(I,A) = /IJ:/I.FI(T ~ Xz, M\)j)drde = (16)

[i 20
1
1
v (/:1: /((1 —x A ) = (=X — ,\Jv)_'_)drd.z;)
T »
L]

1

Ela(A) = / wdH (e, A) = / - Fylie, ) =

0

I

E(a;:(A))

I

(17

1
1 . ; .
- m/I ((#)5 = (@ = M) = (2= A)2 + (2= M — Ag)2)
0
1 .
= FE el b /:xw ((:1:— /\1)3 +{r—A)2 —(r— M — /\2)3_) dx

It is easy to observe that above formulas (16) and (17) may take different
values, depending on the mutnal relations between Ay, Ay and 2, r since several
items of the formulas above may become () or be strongly positive. 4 specific
cases could be distinguished for i =1,...,n, j=1,2:

1. Case of "large" values of the Lagrange multipliers 1 < Ay < ;. In this

case:

Elasi(A L A ! 8)
aji = T a T—x- A))rdr = ———— (1
5 Aj~/o 7/:-/\j( ’ IS

1
_ 1 3 1
B = s [f =g
4]

2. Case of "mixed" values of the Lagrauge multipliers Ay < 1 < A;. In this

) |

)



case:

/A 1
E(an(A)) Alz (/0 I/.A (r — % A )drda— 9)

e
- / i / (r—x Ay — A)drde | =
[i} Sz A+ As)

14— 6 = AJ +4A3

1

24 z2

1 ton 1332 —8)+6

= © - de )=~ 27 20272

N (/l; L‘[‘V\:(T - Ag)dr J.) 7 N N
1

Ela(h)) = ﬁ:_x (i —‘/I~(I—/\2)2d:l:> -

Ay

i

E(azi(A)

L g
m(z\Q—bA2+8).

. Case of "moderate" values of the Lagrange multipliers Ay < Ay < 1,
A2 + Ay > 1. In this case:

Aje oAy

(=)
- / .1?/ (r—a-Aj = Aje)drda: | =
o [CEVES

13X~ 8T+ 647 —6A% + ). — A + 4% — 1

Ea;i(A)) = L </ull‘-/] (r—z- A )drdz— (20)

2 ADe ’
1 1 1
: _ LU N S SRR UIY S B
E(ci(A)) = FINDW (4 '/.L (x — A1) da ./.7. (x— M) dL) =
A A
1

2 12 R
= m(,\;—b,\1+sxl+,\;“b,\2+sx2—s).

4. Case of "small" values of the Lagrange nmltipliers Ay < A < 1,



Az + A1 < 1. In this case:

1 t 1
E(aji(A)) = —(/ .L/ (r—a-Aj)drde— (21
Aje (] ESY
1 1
— / 1,/ (r—a-A — Aj)drdz | =
o Jaae)
1 1 1
= g3
1 1] h
E(ci(A)) = T (Z— /:L'»(J;—~/\1)2d:u— /:1;- (& = Ag)%dz +
1 A2 J /
1
+ @ (2~ A~ Ag)dx) | =
Aty
1 1 1 1
= 5= Exﬁ - ik - 5,\3.

Probabilistic, or in other words average case, analysis counsists in deter-
mining such Lagrange multipliers A(n), A2(n) that when n — oc, @;(A(n)),
i=1,...,n, defined by (4) will provide solutions of the Two-Coustraint Binary
Knapsack Problem (1) which are, in the sense of convergence in probability, see
Loeve [5], providing solutions which are asymptotically feasible , i.e. s;{A(n))
is satisfying (8) and worcover if S, (A(n)) is fulfilling (11) then, dne to (10),
lim,, 00 soprl) = 1 apd z,.{A(n)) is suboptimal solution of the (1} and more-

20 (A{n))
over

sopr(n) = 2, (A(n)) = E(z,.(A(n))).
The above goal may be achieved by determining A(n) as the solution of the
following system of equations:

Bl (M) = Bi(n), E(salA())) = b, 22
where bi(n}) < by(n) and by(n} < by(n) and A(n) is fulfilling both (8) and (11).

Each of the 4 cases mentioned above should be considered independently. Let
us observe that E(s;(A(n))) = n- E(aj (A(n))), E(z.(A(n))) = n- E(er(A(n))).

Lemma 1 Ifei,aji=1,...,n, j =1,2, are realizations of mutually indepen-
dent randomn variables uniformly distributed over (0,1), and if bi(n) < by{n)
and 1 < Ag(n) < A(n) then

afnobi(n) - by (n Jnbm) bh(n
z\l(n)zm' R LS e 1) l(r)) 2(l), Aﬂn):ﬁ n - bi(n) - by(n) (23)

is the solution of (22} and

E(u(A(w)) = 3. 3 00D 0 (24)

10



Proof. Above formulas follow immediately from the (18} and (22). =
From the Lemma 1 assumptions and from (23) it follows that when:

n .
§ < V() < h(n) < ;_I,where 4 is a constant

then condition 1 < Az(n) < Ay(n) holds.
Lemma 2 Ifci,a;i=1,...,n, j = 1,2, are realizations of mutually indepen-

dent random variables uniformly distributed over (0,1), and if bj(n) < bh(n)
and Ag(n) 4+ A (n) <1 then

Min) = ; (36< P@ _ 8. b,lT(LN) +6> ’ 25)
dofn) = ; . (36< ——bllv(l") —48. _bi(l") +6)
is the solution of (22) and
BaAm) = 3 (24650 +6 b+ o)
+ 36 b (n) - by(n) —21. b ("))2 —94. (b{z(n))2
n n ~ "

Proof. From the (21) it could be obtained that Ay(n) and Ay(n) given by
formula (23) are solving the equation (22). =

In this case the condition Ay{n) 4 A1 (n) < 1 and formula (3) are providing
that following right-hand-sides of the constraints:

% <V (n) +Dby(n) 2 n,

are fulfilling assumptions of the Lemma 2.

5 Concluding remarks

In the present paper results describing probabilistic properties of the Two-
Constraint Binary Kunapsack Problem (1) in the case of smaller values of con-
straints right-hand-sides (when 1 < Ay(n) < A1(n), Le. large ) as well as large
values of constraints right-hand-sides (when Az{n) + A1(n) < 1, corresponding
to small valnes of Aj(n) and Aa(n)) are considered.

In the paper distribution functions of the various randomn variables repre-
senting important problems characteristics are presented.

The future research will be aimed at investigation of 2 remaining cases
(tuixed and wmoderate valnes) of the mmtual velations hetween Ay (1) and Ag (),
feasibility of the received solutions and estimations of the Two-Constraint Bi-
nary Knapsack Problemn (1) optimal solution values zopr(n) growth, when
n— 00.

11
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