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The paper presents two approaches for determining of estimates of the equivalence 

relation on the basis of pairwise comparisons with random errors. Obtaining of the estimates 

requires an optimal solution of a discrete programming problem which minimizes sum of 

differences between relation form and comparisons. The problem is NP hard and can be solved 

with the use of exact algorithms for moderate size of sets, i.e. about 50 elements. In the case of 

larger sets, i.e. at least 200 comparisons for each element, it is necessary to apply heuristic 

algorithms. The paper presents the results (a statistical preprocessing), which allow determining 

of the optimal or suboptimal solution with acceptable computational cost. These comprise: 

development of a statistical tests producing comparisons with low probabilities of errors and a 

heuristic algorithm based on the comparisons. Thus, the approach proposed guarantees 

applicability of the estimators for any size of set. 

Key words: estimation of the equivalence relation, pairwise comparisons with random 

errors, nearest adjoining order idea 

1. Introduction

The estimators of equivalence relation based on multiple pairwise comparisons with 

random errors, proposed in Klukowski (2011, 2012), require optimal solutions of a discrete 

programming problem. The problem minimizes differences between relation form, determined 

in appropriate way, and comparisons. The estimates are consistent, under non-restricted 

assumptions about comparisons errors; the speed of convergence is of exponential type (see 

Klukowski 2011) - for increasing number of comparisons of each pair. The optimization 

problems can be solved with the use of appropriate algorithms: the complete enumeration - for 

sets including not more than several elements, discrete mathematical programming - up to 50 

elements (assuming single comparison of each pair), heuristic approach - for sets exceeding 50, 

especially in the case of multiple comparisons of each pair. Heuristic algorithms reduce 

computational costs, but can provide questionable solutions in the case of probabilities of 

comparisons errors not close to zero. However, large number of comparisons of any element, 

i.e. at least 200 single comparisons or 100 multiple comparisons, can be advantageous. It is so,

because such size of set allows some preprocessing- obtaining of new single comparisons with 
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significantly reduced probabilities of errors. The comparisons can be generated with the use of 

statistical tests proposed in the paper. Such the results can be used as the base of a proposed 

heuristic algorithm and also as a starting point for an exact discrete algorithm. The 

computational cost of "combined" approach is typically acceptable. This features make the 

approach proposed, based on nearest adjoining order idea (Slater 196 I), highly efficient and 

applicable for any size of a set. 

The paper consists of five sections. The second section presents the estimation problem, 

assumptions about pairwise comparisons and the form of estimator. In the third section are 

described concisely well-known exact optimization problems for equivalence relation, suitable 

for the sets with moderate number of elements. Next section presents statistical tests generating 

pairwise comparisons with reduced probabilities of errors, based on large number of initial 

comparisons, and the algorithm proposed. Last section summarizes the results. 

2. Estimation problem, assumptions about comparisons, form of estimators

2.1. Estimation problems 

We are given a finite set of elements X = {x1, ••• , x
m

} (3�m<CXJ). It is assumed that there 

exists in the set X the equivalence relation, i.e.: reflexive, transitive, symmetric. The relation 

generates some family of subsets x;, ... , x: (n;:: 2); each subset includes equivalent elements 

only. 

The family x;, ... , x: have the following properties: 

n 
• 

U Xq =X,
q=i 

x>""x> {O},

where: 

0 - the empty set, 

x;, x; EX; = x;, x; - equivalent elements, 

(!) 

(2) 

(3) 

(x; Ex) A (x; Ex)= x;,x; (i 7' j,r 7' s) - non-equivalent elements. 

(4) 

The relation defined by (I) - (4) can be defined, alternatively, by the values T(x;,x;) 

((x;,x) EX x X)): 



( ) -{o if exists r such that (x;, X j) Ex;,T x;,x1 -

l otherwise.
(5) 

2.2. Assumptions about pairwise comparisons 

The relation x:, ... , x� is to be determined (estimated) on the basis of N (J\121) 

comparisons of each pair (x;,x1) EX x X; any comparison gk 
(x;, x j) (k = l, ... , N) evaluates 

the actual value of T(x;, x j) and can be disturbed by a random error. 

The following assumptions are made: 

A 1. The number of subsets n is unknown. 

A2. The probabilities of errors gk 
(x;,x 1)-T(x;,x 1) (k = 1, ... , N) have to satisfy the 

following assumptions: 

P(gk(x;,x)-T(x;,x) = KiJ I T(x;,x;) = KiJ);,: l-5 

(KijE{O,l}, 6E(0,½)), 

P(gk (x;,xj)-T(x;,xj) = Kif I T(x;,xj) =Kif)+ 

P(gk 
(x;,xj)-T(x;, x 1) = Kif I T(x; ,x j) *Ku)= I. 

(6) 

(7) 

A3. The comparisons g k 
(x;, x j); ((x;, x j) EX x X ; k = l, ... , N) are independent random 

variables. 

The assumptions A2 - A3 reflect the following properties of distributions of comparisons 

errors: • each probability of a correct comparison is greater than of incorrect one (inequalities 

(6), (7)), • zero is the median (in "sharp" form) and mode of each distribution of comparison 

error, • the comparisons are realizations of independent random variables, • the expected value 

of any error can differ from zero. 

2.3. The form of estimator 

The estimator presented in Klukowski (2011 Chap. 3, 2012), is based on the total sum of 

absolute differences between relation form (values T(x;,x)) and comparisons gk (x;,x1) 

((x;,x1) EX x X) . The estimates will be denoted i 1 , ... , i,, or T(x;,x1) .  They are obtained on 

the basis of the discrete minimization problem: 

min { . _L I /gk (x;,x1)-t(x;,x)I}, 
X r• •··• Z rEF X <l,J>ERm k=l 

(8) 

where: 
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Fx - the feasible set: the family of all relations x 1 , ••• , x r in the set X, 

t(x;, x;) - the values describing any relation {x1, ..• , x ,} from Fx,

Rm - the set of the form Rm
= {< i,j> /I.:;, i,j.:;, m; j > i}. 

The number of estimates, resulting from the criterion function (8) can exceed one, the 

minimal value of the function (8) is equal zero. 

2.4. Properties of estimators 

The analytical properties of the estimates, resulting from (8) are based on the random 

variables: I11,,, Lk lgk (x;,x 1) -T(x;, x J )I- The following results have been obtained by the author 

(Klukowski 2011): 

(i) the expected values : and

E(I 11,, Lk lg 
k (x; ,x 1)-T(x; ,x J )I), i.e. corresponding - respectively - to actual and to any other 

relation T(x;,x1), satisfy the inequality : 

(9) 

(ii) the variances of the above random variables divided by the number of comparisons N

converge to zero, as N ➔ oo, i.e.: 

. I N I I -1,m Var(N 
. _I I gk (x;,x1)-T(x; ,x1))-0, 

N➔co <l,J>ERmk=l 

(iii) the probability of the 

Z: 11,,,Ik / gk (x;,x1)-T(x;,x1)/ converges to one, as N ➔ ro, i.e.: 

(I 0) 

lim P(. _I f lgk (x; ,x1)-T(x;,x1)/< . _I f fgk(x; ,x1)-T(x;,x1)/)=I ,
N ➔00 <1,J>ERm k=I <t,J>ERm k=i 

(II) 

moreover: 



l-exp{-2N(½-5)2} (12) 

(inequality (12) is based on the Hoeffding (1963) inequality). 

The relationships (i) - (iii) guarantee consistency and fast convergence to actual relation. 

3. Optimization problems for the equivalence relation

The optimal solutions of the problem (8) can be obtained with the use of the discrete 

optimization algorithms, applied also in cluster analysis. They are usually formulated for fixed 

number n (because there exist methods for determining this number - see e.g. Gordon 1999, 

point 3.5). The discrete algorithms are presented: in Hansen et al (1994), 

Hansen, P., Jaumard, B. (1997), Chopra, R. Rao, M.R. (1993), Gordon (1999, Chap. 3). 

An initial approach (Rao 1971) has a form: 
n m m 

min{ L L L dk/ZkJZ !) 
)=I k=I l=I 

L Z kJ = I (k =I, ... , m) , 
)=I 

ZkJ E {O, I} (j =I, ... , n; k =I, ... , m),

where: 

dk! - distance (dissimilarity) between elements X k ,X/, 

(13) 

(14) 

(IS) 

ZkJ - decision variable equal I ifan element X k is assigned toj-th cluster, zero otherwise. 

The problem (13) - (IS) has quadratic criterion function, linear constraints and {O, I }  

variables. It can be  applied for  single comparison of each pair i n  the following way: distances 

dkl ought to be replaced by comparisons gk
(x,-,xj) and optimal solution z� determines the 

form of n subsets. The problem can be applied also for the case N> I using median from 

comparisons g1 (x1,xj), ... , gN
(x;,xj). 

The problem (13) - (IS) is hard to solve in original form and, therefore, is linearized by 

assuming Y
kij=Xkj+xu-1 and adding constraints Y

kij�Xkj, Y
kij�XkJ· The modified 

problem has also some drawbacks, especially large number of variables. Therefore, others 

approaches have been proposed - for the problem of the minimum weight equivalence relation 

(Hansen P. et al 1994, Hansen, P., Jaumard, B. 1997): 
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m-1 m 

min{ I I dk/Zk!} k=I l=k+I 

Zk.J+ z1q-Zkq s I (k =I, ... , m), 

-Zkj+z1q+Zkq s I (l = k+l, ... , m-1), 

Zk1+z1q+zkqSl (q=l+l, ... , m-1), 

ZkjE{0,l} (k=l, ... ,n-1; l=k+l, ... ,m). 

(16) 

(17) 

(18) 

(19) 

(20) 

The problem (16)-(20) can be solved with the use of the dual linear relaxation and revised 

simplex algorithm. However, the approach need not always provide optimal solution and other 

approaches have been developed too (see Hansen et al 1994, Hansen, P., Jaumard, B. 1997); in 

general, they can be used for the number of elements not (significantly) greater than 50. 

4. The algorithm based on test reducing probabilities of errors

The problem (8) can be effectively solved with the use of heuristic algorithms in the case 

of probabilities of errors close to zero. Such the probabilities indicate low fraction of incorrect 

comparisons - their expected value is equal (m(m - I) /2)t5N. Large number of elements, i.e. 

m � I 00 , together with multiple comparisons ( N > I) or m � 200 , allows obtaining of "new" 

comparisons with significantly lower probabilities of errors than Ii . The base for such 

comparisons are statistical tests which verify identity of distributions of parallel comparisons: 

The null hypothesis has a form Ho : all comparisons g k (x;, x j) and 

g k (x,, x j) (k = 1, ... , N; r * i,j; i * j) have the same distributions, under alternative H 1 : 

some of these comparisons have different distributions. The hypotheses can be replaced by: 

Ho: x;, x, are equivalent and Hr: x; ,x, are not equivalent. The test statistic, proposed below, 

is based on values of the comparisons g k (x;, x j) and g k (x,, x j) (k 
= 

I, ... , N; r * i, j); it has, 

for (m -l)N � 200 , Gaussian limiting distribution. The test allows determining of both errors; 

it is proper to fix them on similar level. It is clear that such the test reduces significantly the 

probability of error Ii . 

4.1. The test for equivalency of elements 

The test proposed is based on random variables: 

1
1 if gk(x;,Xj) = gk(x,,xj), 

7J irjk = 

0 if gk(x;,x1) * gk(x,,xj). 
(k=l, ... ,N; ui,j) (21) 
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The parameters of these (zero-one ) variables are as follows: the expected value assumes, 

under HO , the form: 

(22) 

the variance -the form: 

(23) 

If H i is true the parameters of the variable 77;,Jk assume the form:

E(7J;rJk [H1)=2o(l-5) and Var(77i1:J
k [H1)=2o(l-35 +452 -253 ). 

(24) 

It is obvious that: 

and that the difference of both expressions is equal: I -46(1-b'). 

The same parameters can be dete1mined for the variables 77;,;k (k = I, . . .  ,N), i.e. forj=i. 

They assume the form: 

E(7J;,;k [Ho)=l-5, 

Var(77irik [Ho)= 5(1-5), 

E(77irik [Hi)= 5, 

Var(TJ;,;k [H1)=5(1-5). 

(26) 

(27) 

(28) 

(29) 

The variables 77;,;k 
have higher expected value and lower variance than the variables 

77;rjk (j CF- i) · 

The above results show that the distributions of the variables: 

i N 

I 
I N 

I (m-l)N L. L E(77irjk Ho) and (m-l)N L. L E(77irjk Hi) (30) 
'"',} k=I NI,) k=i 

are not the same: the expected value of the variable corresponding to H i is lower, while the 

variances of both variables are the same. Thus, the null hypothesis can be formulated in the 

form: 

N Ho: L L E(77ir/k)= N(m-l )((l-b')2 +s2)+N(l-b'), (31 ) 
rc1:-i,j k=l 



the alternative: 

N 

H1: I I E(17 i,jk)<N(m-l)((t-b')2+,52)+N(l-o); (32) 
r,; i,j k=I 

The variance of both variables is equal: 

N N 

Var( L L 1/;rjk IHo)=Var( L L 1/;rjk IH1)= 
r,;i,j k=l r,;r,j k=l 

2(m-l)No(l-3o +4o2 -203)+No (1-5). 
(33) 

In the case of large mN, the hypotheses (31), (32) can be replaced by: 

• . I 
N 

2 2 Ho-(m-l)N L L E(17 irjk)=(l-o) +o , 
r,;1,J k=I 

' . I 
N 

2 2 H,.(m-l)N L L E(17 irjk )<(l-o) +o . 
r,;1,1 k=I 

The test statistics for null hypothesis assumes the form: 

(34) 

(35) 

N((l-o/+o2+1=Q. -1 -20(1-30 +402-203)+ sci-si ).(36)m-1' (m-l)N (m-1)2N 

The test has one sided rejection region, i.e. values lower than the value, corresponding to 

assumed significance level a. 

The example. 

Let us examine the example: O = 0,1; m= I 00; N=3. The difference of expected values of 

individual statistics equals 0,64, the statistics 

E(T/;,;k I Ho)-E(T/;,-;k I Hi) equals 0,8, the variance of the distribution (36) is equal 0,0005 

(standard deviation 0,02236). In the case of elements x; E % : and Xr E % ; , (i a= r, p .= q) 

included in different subsets, each with 10 elements, the difference of statistics (31) and (32) is 

equal 0, 1244. Therefore, the test based on Gaussian distribution guarantees both probabilities of 

errors lower than 0,003 and the expected value of incorrect comparisons lower than 15 (total 

number of comparisons equals 4550). 

It is clear that, before estimation, the actual form of the relation is not known; therefore, 

the probabilities of the secorid type errors, cannot be determined precisely. Thus, it is rational to 

determine this probability for the subset X :in with minimal possible number of elements and 

to use the number for evaluation of the probabilities of both errors in the test. The minimal 

subset ought to include at least several percent of number m. Thus, "small" subsets (outliers), 
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e.g. including less than 5-10% of elements of the set X, ought to be detected and excluded; their

elements can be associated with an estimate based on a reduced set, as a next step. The detection

of elements from small subsets can be done also on the basis of a statistical test. The null

hypothesis assumes the form: L;;,;T(x; ,x;) "?: m -v-1 (i = I, ... ,m) under alternative: 

I J;,i T(x;, x;) < m -v -1 , where: v natural number satisfying v � ((m -1) , where ( "?: 0,05. 

The test can be based on the properties of the statistics: f I J;,i If=! g k (x;, x;) .  Its expected 

value and variance can be determined under null hypothesis - they are equal, respectively, 

(m -1 -v )(I - o) and ( m -1 -v )o(I -o) IN ; for the alternative the expected value is lower than 

(m -1-v)(l -o). In the case mN � 200 the Gaussian asymptotic distribution can be applied. 

Rejecting of the null hypothesis, for an element x; , means that it does not belong to a small 

subset; rejecting it to whole set X indicates lack of small subsets. 

The comparisons obtained after above preprocessing (with low probabilities of errors and 

without small subsets) are satisfactory for heuristic algorithms, performing partitioning or 

agglomeration of elements. The algorithm proposed below belongs to the second group. 

4.2 The form of the algorithm 

The comparisons obtained on the basis of the hypotheses Ho and H i are denoted 

r=r(x;,x;) (<i,j>ERm)- The result r(x;,x;)=O corresponds to Ho , while r(x;,x;)= l 

- to H i . The comparisons r(x;, x;) allow determining, for each element x; EX, two sets: the

first one 4'(x;) comprises indexes of equivalent elements (acceptance of Ho ), the second 

fl(x;) - indexes of non-equivalent elements (Hi ). It is clear that equivalent elements x;, x J 

(Ho ), have the same sets fl(x;)= D(xj); the sets 4'(x;) ,  4'(x;) satisfy the relationship 

4'(x;)-{j}='l'(xj)-{i}. Thus, the algorithm minimizing the function (8) can be based on 

detection of subsets i
r 

(r = 1, ... , n) with these features or close to them. 

START 

I 0. To verify the null hypothesis Ho (defined by (31 )) for (x;, x ;) E X x X under

alternative H1 (32) on the basis of comparisons gk
(x;,x;), g

k
(x,,x;) 

(k =I, ... , N; r * i,j) assuming equal probabili-ties of both errors (the results r = r(x;, x 1)

(i =I, ... , m, j * i) ). 
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To determine the sets Q(x;) , 'l'(x;) for each element x; EX 

2°. To merge elements of the set X having (exactly) the same sets Q(x; )  and sets 'l'(x;) 

satisfying conditions: 'l'(x; )  -{j} = '!'(x 1)-{i}; remaining elements assume, temporarily, as

single element subsets. The family of subsets created in this way is denoted i q ( q =I, ... , ii)

(or t(x; ,x ;)) ; the subsets are indexed accordingly to number of elements; ordering of subsets 

having the same number of elements is optional. 

To determine the value of the criterion function (8) after this operation; the value is 

denoted F cur . 

To determine the upper limit md of a difference I 1,,;jr(x; ,x 1)-r(x,,x A (r ctc i): 

md = int[(2a(l -a)(m-1) + 3((2a(l -a)(l -2a(l -a))(m -1) ))0 •5 + 0,5] where: 

significance level in the test HO, int[ z] -integer part of z; 

and assume a value of the current limit Vd = l. 

a-

3° . To determine the set I\. including elements x; of the set X, satisfying the conditions: 

• x;EX
q 

(lsqsii) ,

• LJ,e;jr(x; ,xi)-r(x,, x1)j:-:::vd for each element x,Ei
s 

(sctcq),

• Xr E % s ⇒ Xr Ii" I\.·

4°. Check the number of elements of the set I\. (denoted #I\.).

If#/\.=Oand vd<md then increase Vd by one (vd:=vd+l) and go to 3°. 

If # I\. =O and v d = m d go to 7°. 

5°. To determine elements of the set I\. which decrease the value F cur , after joining to 

a subset i
s 

selected in point 3°; to determine the value of the criterion function (8), 

corresponding to each joined element. 

To remove from the set A all elements, which do not decrease the criterion function (8). 

If the set A is empty then go to 7° . 

To identify an element x; guaranteeing maximal decrease of the criterion function; if 

there exists other element x, (r ctc i) (or elements) with the same comparisons 

gk (x,,x 1) (r # i, k = I, ... , N) join all these elements to i s and to determine the value F cur. 
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In the case of multiple elements providing the same decrease of the criterion function (8), 

apply the sequence of criterions: • maximal power of (absorbing) set #i
s

, • minimal power of 

the set # i q including an element x;, • random selection. 

6°. To check the value F cur. 

If F cur = 0 then go to I o0
. 

If Fcur > 0 then to exclude from the set A the element(s)joined in point 5°; if the set A 

is not empty, after the exclusion, then go to s0
. 

If the set A is empty and v d < md then increase the value v d by one (v d := v d + I) and 

go to 3°. 

7°. To determine the set ti, comprising elements of the set X, having significant 

contribution to the value of criterion function F cur, i.e. all elements x; satisfying the inequality: 

I /t(x;,xj)-r(x;,XJ/>mh, 
}'�I 

where: 

mh = (m -1)a + 3(a(I -a)(m -1 ))0•5 . (*) 

If the set ti is empty go to I o0
• 

8°. To determine the best relocation of each element of the set ti, i.e. into a subset 

X
q 

(Is; q s; n) (also "new" subset X
n+I

) providing maximal decrease of the criterion function 

(8); remove from the set ti the elements which do not decrease the criterion function. 

If the set ti is empty then go to I o0
. 

If the set ti is not empty then select an element x; providing maximal decrease of the 

value F cur . In the case of multiple elements having the same comparisons 

gk(xn x) (r * i, k =I, ... , N) select all these elements. In the case of different elements 

providing the same decrease of the value F cur assume the sequence of criterions: • maximal 

power of (absorbing) set #i
s

, • minimal power of the set including selected element 

(elements), random selection. 

9°. To relocate the element (or the elements having the same comparisons 

gk(Xr ,Xj) (r * i, k =I, ... , N)) selected in point 8° and to determine the value of Fcur. 
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To remove the relocated elements from the set l'i. If the set l'i is not empty go to 8°. 

If the set /;; is empty, but previous relocation has decreased the value of the criterion 

function go to 7°. 

10°. Assume Xq (q =I, ... , n) as the estimate Xq (q =I, ... , n).

END 

The above algorithm is composed of two phases. The first phase is agglomeration of elements 

with similar sets no, 4'0. Initially, the elements with the same sets no and sets 4'(·) 

satisfying the conditions 'l'(x;) -{j} = 'f'(x 1)-{i}, obtained as a result of verifying of the 

hypotheses Ho and Hi , are agglomerated (point 2°). Next, remaining elements are examined: 

the elements with a difference I:1.,;/r(x; ,x ;)-y(xr ,x 1 
)I not greater than one, for each xr from 

a subset is (I ::; s :<; ii), are detected; next they are agglomerated in the case of decreasing of 

the criterion function (8). Such the agglomeration is repeated for next values of the difference; 

its maximal value md is determined on the basis of the sum of: expected value of the variable 

(I:1.,;!r(xn x;)-r(x;,x;)I) , ((x;,x,.)Ex; (1:s;q:s;n)) and its three standard deviations. 

The formula determining md results from binomial distribution with probability a 

(significance level in the test). 

The next steps of the first phase lead to estimates decreasing the criterion function (8). 

The phase is finished after exhaustion of elements with the difference 

I:1.,;/r(x; ,x1
)-y(xr ,xJ not exceeding md • 

The second phase is oriented at "improvement" of the estimate obtained. The elements x;

of the current estimate i q (I $ q $ n) having significant contribution to the criterion function

(8) are detected. The threshold value of the contribution mh is determined on the basis

of expected value E(I:1.,;lt(x; ,x;)-r(x; ,x1
)1) ((x; ,x,.) Ex; (I::; q::; n)) and three standard

deviations of the variable. The elements with significant contribution I_ IT (x;, x )- r(x;, x 1/ 
J"'' 

are relocated to subsets guaranteeing a decrease of the criterion function. The phase is finished 

after exhaustion of such elements. 
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The estimate with the criterion function equal to zero is equivalent to exact optimal 

solution, while with low value - can be close or equal to exact. It is clear that comparisons 

r(x; ,x;) having very low probabilities of errors (not greater than 10·3) are also usable for

discrete programming algorithms for the sets X having more than 50 elements. A computations 

cost may be acceptable in this case. 

The literature of the subject contains many other heuristic algorithms - see Hansen, et al 

(1994). The estimate obtained in such a way can be verified with the use of tests stating existence 

of the relation against randomness of comparisons or equivalency of all elements - see e.g. 

Klukowski (201 I), Gordon (1999, Chapt. 7); verification of individual subsets X
r 
(I� r � n) 

can be done with the use of the (e.g.) Cochran test. 

5. Concluding remarks

The paper presents the algorithms for solving of the optimization problem necessary for 

obtaining the estimates of the equivalence relation, on the basis of pairwise comparisons with 

random errors. The criterion function of the problem expresses the difference between relation 

form and comparisons. They are applicable for moderate (about 50 elements) and large sets (at 

least I 00 elements with multiple comparisons). The moderate case can be solved with the use 

of well-known exact algorithms. Large number of comparisons indicates another approach - it 

allows construction of the tests generating "new" comparisons with significantly reduced 

probabilities of errors. Such the comparisons allow applying of the heuristic algorithm proposed 

in the paper. The result of such algorithm can be final, if the value of the criterion function 

approaches zero or close to zero, or provides starting point for exact algorithms. Thus, the 

approach based on minimization of differences between comparisons and relation form is useful, 

computationally efficient and reliable for any size of the set. 

References 

[I] CHOPRA, R., RAO, M.R., The partition Problem. Mathematical Programming, 1993, 59,

87-115.

(2) DA YID, H. A., The Method of Paired Comparisons, 2nd ed. Ch. Griffin, London 1988.

(3) GORDON, A. D., Classification, 2nd ed. Chapman&Hall/CRC, 1999.

(4) HANSEN, P., JAUMARD, B. Cluster analysis and mathematical programming.

Mathematical Programming, 1997, 79, 191-215.

(5) HANSEN, P., JAUMARD, B., SANLA VILLE, E., Partitioning Problems in Cluster

Analysis: A Review of Mathematical Programming Approaches. Studies in Classification,

Data Analysis, And Knowledge Organization, Springer-Verlag, 1994.



14 

[6] HOEFFDING, W., Probability inequalities for sums of bounded random variables. JASA,

1963, 58, 13-30.

[7] KLUKOWSKI L., Some probabilistic properties of the nearest adjoining order method and

its extensions. Annals of Operational Research, 1994, 51, 241-261.

(8] KLUKOWSKI L., The nearest adjoining order method for pairwise comparisons in the 

form of difference of ranks. Annals of Operations Research, 2000, 97, 357-378. 

[9] KLUKOWSKI, L., Methods of Estimation of Relations of Equivalence, Tolerance, and

Preference in a Finite Set. IBS PAN, Series: Systems Research, Vol. 69, Warsaw 2011.

(10] KLUKOWSKI, L., Estimators of the Relations of Equivalence, Tolerance and Preference 

Based on Pairwise Comparisons with Random Errors. Operations Research and Decisions, 

2012, 22, 15-34. 

(I OJ RAO, M.R., Cluster Analysis and Mathematical Programming. Journal of American 

Statistical Association, 1971, 66, 622-626. 

(11] SLATER P., Inconsistencies in a schedule of paired comparisons. Biometrika, 1961, 48, 

303-312.



15 

The paper is extended version of the text presented at BOS'2016 Conference, 13-14 Oct. 

Warsaw, Poland 










