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Abstract

The paper deals with the well known set packing problem and its spe-
cial case when number of subsets is maximized. It is assumed that some
of the problem coefficients are realizations of mutually independent ran-
dom variables. Asymptotical probabilistic properties of selected problem
characteristics are investigated for the variety of possible instances of the
problem. The important results of the paper are:

s Behavior of the optimal solution values of the set packing problem is
presented in the special asymptotic case, where mutual asymptotical
relation between m (number of elements of the packed set) and n
{number of sets provided) is playing essential role.

For the considered in the paper random model of the problem there
is no feasible solution, but the trivial cases, with probability ap-
proaching 1, in the asymptotic case. However probability of reach-
ing feasible solution is reasonably high (i.e. 2 2/e,2/e =~ 0.736),
moreover it may be set arbitrary close to 1 {e.g. 0.999), but guality
of approximation of the behavior of the optiinal solution values may
be very unsatisfactory then.

Some relations between general case of the set packing problem and
its maximization special case are investigated.

1 Introduction

Let us consider a m element set Af and @ a collection of n subsets Af;,
i=1,...,n, of the set M, ® = {My, My, ... ,M,}. Set packing problem con-
sists in finding set of disjoint subsets ¥ in ®, ¥ C ®, where, M;, M), € U if
and only if M; N My, =, for every 4, k, i # k, i,k € {1,...,n}. Set packing
problem may be formulated as the binary multiconstraint knapsack problem,
see Nemhauser and Wolsey {7]:




n

zopr(n) =max Y ¢; - z;
11—_11
subject to Yoaj-a; <1
i=1
where j=1,..,m, z;=0 or 1

It is assumed that:

c;>0,a;=0o0rl, i=1,...,n,j=1,...,m

In fact aj;, ¢ = 1,...,n, j = 1,...,m are defining ®, set of subsets of A/,
namely M;, i =1,... ,n in the following way

1 ijeM;
STV 0 ifje M

where ¢; is the certain value expressing the preference assigned to M;. Let us
observe that definition of the sets M;, ¢ = 1,... ,n, does not require them to
be disjoint. Namely if there exists j € {1,... ,m}, k#1, kL€ {1,... ,n}, such
that aj; = aj =1, then j € M belongs to both My and M, i.e. My N M, £ §.
Choice of z;, fulfilling the constraints hmposed in (1) is defining the packing
of the set M into disjoint subsets Af;, M; € W,where M; NV My = B i # k,
i,k € {1,...,n}, for every A4, My € ¥. Namely in (1)

vk, kefl,...,n}, Mp eV, ifandonly if 35 € M : a2, = 1. (2)

Each of the constraints 3 & jaj;-®; < 1,7 = 1,...,m is guaranteeing that
each of the items j of the set M is assigned to maximum one of the subsets
M;, M; € U. Optimisation criteria in (1) is securing the choice of best possible
packing according to preferences expressed by ¢;, i =1,... ,n. If ¢; = ¢, i =
1,...,n, ¢ - constant (e.g. ¢ = 1), then optimisation problem seeks for the
maximum amount of subsets M; to pack set M, known as Mazimum Set Packing
Problem. Maximum set packing problemn maybe also formulated as the binary
multiconstraint knapsack problem, similarly to (1), namely:

n
ZOPT(TL) = max Z por)

=1

n (3)

subject to Yoaj-a; <1

where j=1,..,m, a;=0or 1

Set packing problem (1) is well known to be NP hard combinatorial opti-
misation problem, see Garey and Johnson {3}. Moreover Set Packing Problem
is one of the 21 first Karp’s AP complete problems, see [4]. There are also
two closely related combinatorial problemns, namely set covering problem and
set partitioning problemn (also known as exact covering),where in both of them
one is looking for the subsets Ay, 7 = 1,..., 7, of the collection @ of n subsets
of M;,7=1,...,n, where demand U;:I My = M holds, moreover in the set



partitioning problem there is additional demand, namely that all M, ; are pair-
wise disjoint, i.e. My, N My, =V, for every kj, ki, kj # ki, j,0 € {1,...,7}. Both
problems may be also formulated as special cases of the binary multiconstraint
knapsack problem, see Nemhauser and Wolsey [7]. Maximum set packing prohb-
lem is also known as Mazimum Hypergraph Matching. As latter, under certain
conditions, it is equivalent to well known Mazimum Clique problem, see Ausiello,

, D’Atri and Protasi [1].

Although set packing problem may be formulated as the binary multicon-
straint knapsack problem, it is rather special case of it, see Martello and Toth
[5]. Its peculiarity consists in 2 facts:

o All the constraints left hand sides coefficients are equal either to 1 or to 0:

aj; =0orl,i=1,...,n, j=1,...,m.

o All of the constraints right hand sides coefficients are equal to 1.

In the general formulation of the binary multiconstraint knapsack problein it
is only required that all of the knapsack problem coefficients, i.e. goal function,
constraints left and right hand sides, are non-negative or, in order to avoid
unclear interpretations, strictly positive. The latter especially applies to goal
function and constraints right hand sides coefficients.

2 Definitions

The following definitions are necessary for the further presentation:
Definition 1 We denote V,, ® Y,,, where n — oo, if
Yo (1-0(1)) Vo < Vo (1+0(1))
when Vy,, Y, are sequences of numbers, or
Jim P{Yn - (1= 0(1)) S Va Yo (L4 0(1)} =1

when V;, is a sequence of random variables and Y,, 1s a sequence of numbers or
random variables, where limy,_.o 0(1) = @ as it s usually presumed.

Definition 2 We denote V,, X Y, (Vo = W,.) if
Vo < (L4 0(1)) - Yo (Vo > (1= o(1)) - W)
when V,,, ¥, (W,) are sequences of numbers, or
Lim PV < (14 0(1)) - Y} = 1( lim P(Va> (1-o(1)) Wa} =1)

when Vy, is a sequence of random variables and Y, (W,,) is a sequence of numbers

or random variables, where liny, o, o(1) = 0.

Definition 3 We denote V,, = V,, if there ezist constants ¢’ 2 ¢ > 0 such that
Y, 2V, 3

where Y, V., are sequences of numbers or random variables.



The following random model of (1) will be considered in the paper:
e m, n, 0 < n g ml, are arbitrary positive integers and moreover n — oco.

e ci,aj,t=1,...,n j=1,... m, are realizations of mutually indepen-
dent random variables and moreover ¢;, are uniformly distributed over
(0,1] and P{a;; =1} =p, where 0 < p < 1.

Let us observe that asymptotical relations 0 < n < m! and n — oo requires
that also m — oo. As the matter of fact mutual asymtotical relation of the
values of mn and n may vary between 2 extreme cases n/m = 0 or n =~ m! as
n— 0o

Under the assumptions made about ¢;, aj;, and taking into account (1) the
following always hold

n
0 < zopr(n) < Zci <n, 4)

i=1
Moreover, from the strong law of large numbers it follows that

n m

Zci'&‘E(cl)-nzn/'z, i:aj,-zp-n, Zaﬁzp-m. {5)

i=1 i=1 j=1
Therefore, it is justified to enhance formulas (4) and (5) in the following way:

ki3 n
. 1 1 '
0< zopr(n) Xn/2, E a;; X1, ifp< - or El aj; = 1 when p > o (6)
i

i=1

Formula {6) shows that random model of set packing problem (1) is complete
in the sense that nearly all possible instances of the problem are considered.

The growth of zopr(n) - value of the optimal solution of the problem (1)
may be influenced by the problem coefficients, namely:

n, m, ¢, aj;, wherei=1,...,n, 7=1,...,m.

We have assumed that c;, a;; are realizations of the random variables and there-
fore their impact on the zppr(n) growth is in this case indirect. Moreover, we
have also assumed that m, n are arbitrary positive integers and n — oo.

The main aim of the present paper is to perform probabilistic analysis of the
considered class of random set packing problems in the asymptotical case, i.e.
when n — oco. Probabilistic analysis has 2 strategic goals, namely:

e To examine existence of the feasible solutions.

o To investigate asymptotic behaviour of zppr(n).

3 Lagrange and dual estimations

‘When the knapsack problem, with one or many constraints, is considered then
Lagrange function and the corresponding dual problems, see Averbakh (2],
Meanti, Rinnooy Kan, Stougie and Vercellis [6], Szkatula [8] and (9] are very



useful tools to perform various kind of analyses of the original problem. In
the case of set packing problemn Lagrange function of the problem (1) may be
formulated as follows:

Lu(z) = i%”l‘ﬁi/\j' <1 “i“ji'mi) =
j=1 i=1

i=1
m n m
i=1 i=1 i=1

where @ = [21,... ,2,) and A = [Aq,..., Ay] - vector of Lagrange multipliers.

Moreover, let for every A, A; > 0,7 =1,...,m:

n n "
$u(A) = max Ln(z,A)=_max S+ d la—d Mg |
' i=1 j=1

1]
=€{0,1} 2€(01)" | &

Taking the following notation:

m
1 ife—> Ajra; >0
O %
0 otherwise.
C(A) _ Cc; ifCi—Zl/\j-aji>0
i = =
0 otherwise.
m
aji(A) = aje e AJ; A agi > 0
0 otherwise.
we have for every A, A; >0, j=1,... ,m:

” n

Palh) = D NH+I |a—D Ajray ) w(h) =
=1 i=1 J=1

m n

= DN G =30 anh)
i=1 i=1 g=1

Obviously for e =1,...,n, 7=1,...,m,
ci(A) = ¢ -2 (A), aj(A) = aj; - z(A).

Dual problem to set packing problem (1) maybe formulated as follows:

], = min b (7). (8

(=]




For every A > 0 the following holds:

m

zopr(n) <8} < $,(A) = za(A) + D A(1 — 5,(A). )
j=1

Let us denote:

w(d) = Semh) =3 ah)s() = Y e wm(h) = Y aju(A),
i=1 =1 i=1

i=1
m m
Sum(A) = 37X 5;(A), Ay =Y,
i=1

=1

By definition of ¢;{A) and a;;(A}, see also (7), we have:

m

e(h) 2> A au(A), i=1,... ,n,
=1
and therefore

2,(A) 2 Spm(A). (10)

For certain A, z;{A) given by (7) may provide feasible solution of (1), i.e.:

sj(A)y <1 forevery j=1,...,m. (11)
Then:
zo(A) < zopr(n) < B% < ¢, (A) = 2, (A) + A(m) — Spm(A). (12)

If (11) holds, then the below inequality also holds:

A(m) = Spm(A) > 0.

From (10) we get:
A(m) — Spum(A)
z"(A) B Zn(A) N Zn(A) sl Smn(A)

(8} _ () | AGn) — Sun(A)

Therefore if (11) holds, then the following inequality also holds:

zopr(n) On () _ A(R)
Zn(A) = Zn(A) = zn(A) = Snm(A). (13)

1<

Formula (13) shows, that if there exits such a set of Lagrange multipliers A(n)
which is fulfilling the formula (11) and if the formula below holds:

. A(m) -
P S .



then z;(A(n)), ¢ = 1,...,n, given by (7), is the asymtotically sub-optimal
solution of the set packing problem (1). Moreover the value of z,(A(n)) is an
asymptotical approximation of the optimal solution value of the set packing
problem ie. zppr(n).

In the case of Maximum set packing problem (3) ¢; =1, i =1,... ,n, and
moreover ¢; are no longer realizations of the randoimn variables. Therefore in the
case of Maximum set packing problem (3) in the above formulas ¢; should be
replaced with 1. As the consequence formulas where c; was involved will look
differently, e.g. in (7) ¢ — Z;';l Aj-aj; > 0 should be replaced by 1 — Z}”:l Aj
aj; > 0. It does mean that:

m
1 1= Y -a;>0
j=1

a(h) = w(h) = ; (1)
0 otherwise.
m
a; il-— Aj-aj; >0
au(h) = 7 ]é:l i@
0 otherwise,
In turn it means that ¢;(A) = x;(A), ¢ = 1,... ,n, and therefore z,(A) =

Yiizi(A)
In either case, according to (2), a;;(A) = 1 is guaranteeing that item j is
assigned to set Af;. Obviously this also implies that s;(A) = 1.

4 Probabilistic analysis

In the present section of the paper some probabilistic properties of the set pack-
ing problems (1) and (3) will be investigated. In the paper by Vercellis (10]
there were some results of the probabilistic analysis of the set packing problems
presented. In the current paper different approach is exploited.

Let us first observe that due to the assuimnptions made the following holds,
for,j=1,...,m

Plaji = 1} =p, Plaj =0} =1 -p, Plaji(A) =1} =1~ P{a;:(A) =0},
0 when v €0

Ple; < #)=¢ 2 whenO<a<gl1l . (16)
1 when x 2 1

Moreover for the random variable ;% 5 @i, due to the binomial distribu-
tion, the following holds for every r - integer, 0 < r < m — 1:

- m—1
P o= S = . _ 7n~1'—1l
> a=ry=("71) 0o n a7
hk=1,ks#j
Let us also assume that
A={A- AL te A=A A20,7=1,--,m.

In the case of set packing problem (1) the following results hold.



Lemma 1 If aj; are realizations of mutually independent random wvariables
where P{aj; =1} =p, 0 < p <1, then

m—1

Plaj(A)=1}=p-p ) (m; 1) (1= Py min{1, A(r + 1)),

=0

If, moreover, A < 1/m then:
Plaji(A) =1t =p-(1-A-(m-p+1-p))

Proof. From (7), (16) and (17) and taking into account that random vari-
able 37\, 1., aji may take any integer value 7 from the range [0, — 1) with
the probability given in (17) it follows that:

Plaji(A) =0} = Pla;;=0Ua;; =1Nc¢c;<A- Z ap;+1 =
=1,k
= l-p+p-Ple< i Z i +1] 3=
k=1,k55

m—

= 1—p+pz ( )~p"-(1—p)’"_"‘lmin(l,/\(r-i—1)}.

Due to the (16) the first formula of the Lemma is proven. Because

(mr_l) :r!-((;::ll)ir)!‘

then when A € 1/m the following holds

Plaj(A) =0} =1~ +Am219"———rf—l) (L -p)mTTh (18)
fasi(h) =0} = P (m—-1-7)f K P

Let us observe that for every integers {, m, [,> 1, m 2 2, and 0 € p < 1 the
following hold

!
! . _k

Z(k)-P"-(l~p)l £ = +1-p'=1

k=0

r+1 = m—-(m—-1-r).



Using the above mentioned formulas (18) may be rewritten as:

planly (m—1)1-m

1—p+/\'1)(z T m-1-rt P~

r=0

m—1
B Z (m—1}-(m~1~r) B Vp)’"‘l—') _

Plaji(h) =0}

Il

= hfm—1-—r)!
m—1
= I—-p+Ap (m Z (mr— 1> p e (L—p)m it
e m—2 9
—p-m-1)-(1-p) Y ( . ) e —pr"”-") =
r=0

= l-p+A-p-(m~(m-1)-(1-p)=
= 1l-p+A-p-(m-p+1-=p).

Finally above formulas can be summarized as:

Plas() =0} =1~ p+ A-p-(m-p+1-p) (19)
Due to the formulas (16) and (19) we have
Plaj(d) =1} = 1-Plau(a)=0} =

= p=-Ap-(mp+l-p=p-(1-A-(m-p+1-p))

[ ]
As the direct consequence of the above formulas we have

E(aj,‘(A)) =1- P{aj,‘(A) = 1} +0- P{aj,'(A) =0} = P{aj,-(A) =1} (20)
Now instead of A we will consider A{rn). It does mean that for every value of

integer n, we may consider different vector A(n) = {A(n),---,A(n)}, A(n) 2 0.
For every j, j =1, - ,m, we have:

B(si(A(m)) = Y Ela(A()) =n- Plaj(A(n)) =1} = (21)
=1

= n-p(l=A(n) (m-p+1-p)).

Lemma 2 For every «x, c > 0 there exists m’ n', m’, n' >, 1 such that for every
m > m' and n > n', the following choice of A(n) :
_1-a/(n-p)

Aln) = P g 5 soluing the equations E(s;(A(n))) = a.

Corollary 1 If E(s;(A(n))) = a, then P{a;(A(n)) =1} = a/n.

Proof. Proof of Lemma and Corvollary follows immediately from formulas
(20) and (21) and following fact that for all m 2 m’ and n > n":
1
An) < —
[ ]
Solution of the set packing problem (1) given by formula (7) is feasible if
and only if the formula (11) holds.



Theorem 1 For every ¢, « > O there exists m/, n’, ', n’ > 1, such that for
A(n), providing E(s;(A(n))) = «, the following hold

7

Pls(Am) < 1) = (1- %) T ita- %)

Moreover for every fized value of o, > 0, we have

lim P{s;{A(n)) <1} = Lta

n—oo e

Proof. As it was already mentioned solution of problem (1) given by for-
mula (7) is feasible if and only if formula (11) holds ie. s;(A(n)) = 0 or
5;(A(n)) = 1. For every A(n), random variable s;(A(n)) = 31, a;i(A(n)) may
take any integer value r from the range [0, n] with the probability given by the
following formula:

r

P {Zaﬁ(l\(n)) = r} = (”) (L= p)*", where p = Plaji(A(n)) = 1}.

=1
From the above formula and Corollary 1 it follows that
n n
Pls{(A(n)) <1} = P {Zaﬁ(f\(")) =0UY  au(Aln) = 1} = (22)
i=1 i=1
ann -1 ayn—1 @
(=2 +e(1-2) =(-3) a4e-D)

The proof is finished by observing that lim (1 - %)"_1 =e “and lim & =0
= n—oo n—oo ™

Corollary 2 P{s;{A(n)) <1} =1ifandonlyifn =1 Whena — 0 asn — oo
then

lim P{s;(A(n)) <1} =1

n—oo
However if o, a > 0, is a constant then:
lim P{s;(A{n)) <1} <1 (23)
00
Proof. Formnula (23) follows immediately from the Theoremn 1. =

The above Theorem 1 and Corollary 2 to it have interesting interpretation,
which may be observed on few examples presented below:

Example 1

When o = 0.01 then lim P{sj(A(n)) <1} = 0.999

When o =0.1 then lim P{s;(A(n)) <1} = 0995
OO

When a = 0.5 then lim P{s;(A(n)) <1} = 0.9098
n—00

2

When a=1 then lim P{s;(A(n)) <1} = o 0.736

n—oo

10







































