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Abstract 

The paper cleals with the well known set packing problem and its spe­
ciał case when number of subsets is maximized. It is assumed that some 
of the problem coefficients are realizations of mutually independent ran­
dom variables. Asymptotical probabilistic properties of selected problem 
characteristics are investigated for the variety of possible instances of the 
problem. The important results of the paper are: 

• Behavior of the optima) solution values of the set packing problem is 
presented in the special asymptotic case, where mutual asymptotical 
relation between m. (number of elements of the packecl set) and n 
{number of sets provided) is playing essential role. 

• For the considered in the paper random model of the problem there 
is no fea.sible solution, but the trivia! ca.ses, with probability ap­
proaching 1, in the asymptotic ca.se. However probability of reach­
ing feasible solution is reasonably high (i.e. ;;, 2/e, 2/e "' 0.736); 
moreover it may be set arbitrary close to 1 (e.g. 0.999), but quality 
of approximation of the behavior of the optima! solution values may 
be very unsatisfactory then. 

• Some relations between generał case of the set packing problem and 
its maximization special case are investigated. 

1 Introduction 

Let us consider a m element set l\J and 4> a collection of n subsets Al,, 
i = 1, ... , n, of the set AI, 4> = { 1\11 , 1"!2 , ... , AI,.}. Set packing problem con­
sists in finding set of disjoint subsets '>' in 4>, '>' <;; 4>, where, M;, Ah E '>' if 
and only if M, n Ah = vl, for every i, k, i ie k, i, k E { 1, ... , n}. Set packing 
problem may be formulated as the binary multiconstraint knapsack problem, 
see Nemhauser and Wolsey [7]: 



n 
zopr(n) = max I:; ci· Xi 

i=l 
n 

subject to I:; a;, · x, ,:;; 1 
i= l 

where j = 1, .. ,1n, Xi= O or 

It is assumed that: 

Ci> O, aJi =Dor 1, i= 1, ... ,n, j = 1, ... ,1n. 

(1) 

In fact aji, i = 11 ••• 1 n, j = l, ... , 1n are defining <I>, set of subsets of /11, 
namely !vf;, i = l, ... , n in the following way 

{ 1 ifjEM; 
a;, = O if j 1/c M; 

where c; is the certain value expressing the preference assigned to /1.f;. Let us 
observe that definition of the sets /1.f;, i = 1, .. , n, does not require them to 
be disjoint. Namely if there exists j E { 1, ... , m}, k # l, k, l E {l, ... , n), such 
that a;k = a;1 = 1, then j EM belongs to both Mk and M1, i.e. /lh n /111 # 0. 
Choice of x;, fulfilling the constraints imposed in (1) is defining the packing 
of the set M into disjoint subsets Mi, M, E \Ji,where M, n l'vh = vl i # k, 
i, k E {l, ... , n}, for every Mi, Ah E \Ji. Namely in (1) 

Vk, k,E{l, ... ,n}, MkE\Ji, ifandonlyif:ljEMk:a;k-Xk=l. (2) 

Each of the constraints L;::1 a1i · Xi ~ 1, j = 11 ••• , 1n is guaranteeing that 
each of the items j of the set /I.I is assigned to maximum one of the subsets 
M;, M, E \Ji. Optimisation criteria in (1) is securing the choice of best possible 
packing according to preferences expressed by c;, i = 1, ... , n. If c; = c, i = 
1, ... ,n, c - constant (e.g. c = 1), then optimisation problem seeks for the 
maximum amount of subsets !II; to pack set !vf, known as Maximum Set Packing 
Problem. Maximum set packing problem maybe also formulated as the binary 
multiconstraint knapsack problem, similarly to (1), namely: 

n 

zopr(n) = max I:; Xi 
i=l 
n 

subject to L llji · Xi ~ 1 
i=l 

where j = 1, . . ,1n, Xi= O or 

(3) 

Set packing problem (1) is well known to be NP hard combinatorial opti­
misation problem, see Garey and Johnson [3] . Moreover Set Packing Problem 
is one of the 21 first Karp's NP complete problems, see [4] . There are also 
two closely related combinatorial problems, namely set covering problem and 
set partitioning problem (also known as exact covering),where in both of them 
one is looking for the subsets lih;, j = 1, ... , r, of the collection <I> of n subsets 
of !Iii, i = 1, ... , n, where demand u;=l lih, = !II holds, moreover in the set 
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partitioning problem there is adtlitional demancl, namely that all Ah; are pair­
wise tlisjoint, i.e. l\lh; nAh, = 0, for every k;, k1, k; cp k1, j, l E {l, ... , r}. Both 
problems may be also fonnulated as special cases of the binary multiconstraint 
knapsack problem, see Nemhanser and Wolsey [7). Maximum set packing prob­
lem is also known as Maximum Hypergraph Matching. As latter, under certain 
conditions, it is equivalent to well known Maximum Clique problem, see Ausiello, 
, D 'Atri and Protasi [l). 

Although set packing problem may be formulated as the binary multicon­
straint knapsack problem, it is rather special case of it, see Martello and Toth 
[5). Its peculiarity consists in 2 facts: 

• All the constraints left hand sides coefficients are equal either to 1 or to O: 

a1i = O or 1, i = 1, ... , n, j = 11 ••• , 1n. 

• All of the constraints right hand sides coefficients are equal to 1. 

In the generał fonnulation of the binary multiconstraint kuapsack problem it 
is only required that all of the knapsack problem coefficients, i.e. goal function, 
constraints left and right hand sides, are non-negative or, in order to avoid 
unclear interpretations, strictly positive. The latter especially applies to goal 
fw1ction and constraints right hand sides coefficients. 

2 Definitions 

The following definitions are necessaJ"y for the further presentation: 

Definition 1 We denote V,, as Y,., where n--+ oo, if 

Y,, · (1 - o(l)) ,,; V,,,,; Y,, · (1 + o(l)) 

when V,1 , Y;1 are sequences of numbers, or 

"~~ P{Y,, · (1 - o(l)),,; V,,,,; Y,, · (1 + o(l))} = 1 

when V„ is a sequence of random variables and Y,, is a sequence of numbers or 
random variables, where lim,,_00 o(l) = O as it is usually presnmed. 

Definition 2 We denote V,, j Y,,(V,, c: W,,) if 

V,, ,,; (1 + o(l)) · Y,, (li,,;;, (1 - o(l)) · W,.) 

when '\1';1 , Y,1 (vVn) are sequences of numbers, or 

lim P{V,,,,; (1 + o(l)) · Y,,} = 1 ( lim P{V,, ;;, (1 - o(l)) ·W,.}= l} 
n-oo n.-oo 

when V„ is a sequence of random variables and Y,, (W,.) is a sequence of numbers 
or random variables, where li1nn-oo o(l) = O. 

Definition 3 We denote V,, ':"' Y,, if there exist constants c" ;;, c' > O such that 

where Y,1 , V,1 are sequences of numbers or random variables. 
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The following random model of (1) will be considered in the paper: 

• m, n, O< n ~ 1nł, are arbitrary positive integers and 1noreover n --t oo . 

• Ci, aji, i = 1, ... , n, j = 11 ••• 1 ni, are realizations of 1nutually indepen­
dent randmn variables and 1noreover ci, are unifonnly distributed over 
(O, 1] and P{aj, = 1} = p, where O< p $ 1. 

Let us observe that asymptotical relations O < n ~ m! and n ---, oo requires 
that also m ---, oo. As the matter of fact mutual asymtotical relation of the 
values of m and n may vary between 2 extreme cases n/m "' O or n "" m! as 
n---, oo 

Under the assumptions made about c,, aj,, and taking into account (1) the 
following always hold 

" 
O~ zoPT(n) ~L e.;~ n, (4) 

i=l 

Moreover, from the strong law of large numbers it follows that 

" 
I:c,"'E(ci)-n=n/2, Laj,"'P·n, Laj;S::p•m. (5) 
i=l i=l j=l 

Therefore, it is justified to enhance formulas (4) and (5) in the following way: 

n 1 n 1 
0~zopr(n)::,n/2, I:aj, ::, l, ifp<-or I:aj, ,::lwhenp >-. (6) 

n n 
i=l i=l 

Formula (6) shows that random model of set packing problem (1) is complete 
in the sense that nearly all possible instances of the problem are considered. 

The growth of zopr(n) - value of the optima! solution of the problem (1) 
may be influenced by the problem coeflicients, namely: 

n, 1n, ci, aji, where i= 11 ••• ,n, j = 1, ... ,m„ 

We have assumed that c,, aj, are realizations of the random variables and there­
fore their impact on the zopr(n) growth is in this case indirect. Moreover, we 
have also assumed that m, n are arbitrary positive integers and n ---, oo. 

The main aim of the present paper is to perfonn probabilistic analysis of the 
considered class of random set packing problems in the asymptotical case, i.e. 
when n ---, oo. Probabilistic analysis has 2 strategie goals, namely: 

• To examine existence of the feasible solutions. 

• To investigate asymptotic behaviour of zopr(n). 

3 Lagrange and dual estimations 

When the knapsack problem, with one or many constraints, is considered then 
Lagrange function and the corresponding dual problems, see Averbakh [2], 
Meanti, Rinnooy Kan, Stougie and Vercellis [6], Szkatuła [8] and [9] are very 
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useful tools to perfonn various kind of analyses of the original problem. In 
the case of set packing problem Lagrange function of the problem (1) may be 
formulated as follows: 

L.,(x) te, x;+tAj•(l-taj;•x,)= 

= t Aj+ t ci - t Aj · aji) · Xi 

where x = [,v1 , ... , x.,) and A= [A 1 , ... , Am) - vector of Lagrange multipliers. 
Moreover, let for every A, Aj 2: O, j = 1, ... , m: 

<f,.,(A) = max Ln(x,A) = max LAj + L c, - LAjaji Xi . { m "( m ) } 
xE{O,l}" xE{O,l}" j=I i=I J=I 

Taking the following notation: 

x,(A) = 

c,(A) 

aj,(A) = 

if c, - I; Aj · aj, > O 
j=l 

otherwise. 
m 

if c, - I; Aj · aj, > O 
j=l 

otherwise. 
m 

if e; - I; Aj · aj, > O 
j=l 

otherwise. 

we have for every A, >..1 ~ O, j = 1, ... , m.: 

</>.,(A) 

Obviously for i = 1, ... , n, j = 1, ... , m, 

ci(A) =ci· Xi(A), aj,(A) =aj,· x,(A). 

Dual problem to set packing problem (1) maybe formulated as follows: 

5 
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For every A 2'. O the following holds: 

zoPT(n) :S <I>;, :S ą,.,(A) = z.,(A) + L A;(l - s;(A)). (9) 
j=l 

Let us denote: 

n n n n 

z.,(A) I:c, · x,(A) = I:c,(A),s;(A) = Laj, • x,(A) = Laj;(A), 
i=l i=l i=l i=l 
m 

s,.,.,(A) = L Aj. s;(A), A(m) = L Aj, 
i=l j=l 

By definition of c,(A) and aj;(A), see also (7), we have: 

c,(A) 2'. L Aj · aj;(A), i = 1, ... , n, 
j=l 

and therefore 

z.,(A) 2'. S.,,,,(A). (10) 

For certain A, x,(A) given by (7) may provide feasible solution of (1), i.e.: 

Sj(A) :S 1 for every j = 1, ... , m. (11) 

Then: 

z.,(A) :S zoPT(n) :S <I>;, :S ą,.,(A) = z.,(A) + A(m) - S.,,,,(A). (12) 

If (11) holds, then the below inequality also holds: 

A(m) - S„m(A) 2'. O. 

From (10) we get: 

ą,,,(A) z.,(A) A(m) - S.,,,,(A) A(m) - S,.,,,(A) 
z.,(A) = z.,(A) + z.,(A) :S 1 + S.,,.,(A) 

Therefore if (11) holds, then the following inequality also holds: 

1 < zoPT(n) < <I>;, < ą,.,(A) < A(m) . 
- z.,(A) - z.,(A) - z.,(A) - S,.,.,(A) 

(13) 

Formula (13) shows, that if there exits such a set of Lagrange multipliers A(n) 
which is fulfilling the formula (11) and if the formula below holds: 

r A(m) 
.. ~~ S,.,.,(A(n)) = 1 (14) 

6 



then x,(A(n)), i = 1, ... , n, given by (7), is the asymtotically sub-optima! 
solution of the set packing problem (1). Moreover the value of z,.(A(n)) is an 
asymptotical approximation of the optima! solution value of the set packing 
problem i.e. zopr(n). 

In the case of Maximum set packing problem (3) c, = 1, i = 1, ... , n, and 
moreover c, are no longer realizations of the random variables. Therefore in the 
case of Maximum set packing problem (3) in the above formulas c, should be 
replaced with 1. As the consequence formulas where c; was involved will look 
clifferently, e.g. in (7) c, - I:,';:,1 Aj· aj, > O should be replaced by 1- LJ':,,1 Aj· 
a;, > O. It does mean that: 

{ 
m 

e;(A) = x,(A) 
if 1 - L, Aj ·a;,> O 

(15) j=l 
o otherwise. 

{ 
m 

a;,(A) 
a3i if 1 - L, >.; · a;, > O 

j=l 

o otherwise. 

In turn it means that c,(A) = :r,(A), i = 1, ... , n, and therefore z,.(A) = 
I:.:'.a1 x,(A). 

In either case, according to (2), a;,(A) = 1 is guaranteeing that item j is 
assigned to set M,. Obviously this also implies that Sj(A) = 1. 

4 Probabilistic analysis 

In the present section of the paper some probabilistic properties of the set pack­
ing problems (1) and (3) will be investigated. In the paper by Vercellis [10] 
there were some results of the probabilistic analysis of the set packing problems 
presented. In the current paper clifferent approach is exploited. 

Let us first observe that due to the assumptions made the following holds, 
for 1 j = 1, ... ,ni: 

l}=p, P{a;,=0}=1-p, P{a;,(A)=l}=l-P{aj,(A)=O}, 

{ 
O when x,;;; O 

P(c, < x) = x when O< x,;;; l 
1 when x:;, 1 

(16) 

Moreover for the random variable 'E,~".,,1,k,.e; a;,, due to the binomial distribu­
tion, the following hol ds for every r - integer, O ,;;; r ,;;; m - 1: 

P { f ak, = r} = ("'; 1) p' (1 - p)m-,-1. (17) 
k=l,k#j 

Let us also assume that 

A = { >., · · · , >.}, i.e. >.; = >., >. :;, O, j = l, · · · , m. 

In the case of set packing problem (1) the following results hold. 
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Lemma 1 I/ a;, are realizations of mutually independent random variables 
where P{a;, = l} = p, O< p :<::= 1, then 

m-1 (m-1) 
P{a;,(A)=l}=p-p~ r ·p'··(l-p)"'-r-lmin{l,,\(r+l)}. 

I/, moreover, ,\ ( 1/ m then: 

P{a;,(A) = l} =p· (1-,\- (m·p+ 1 -p)). 

Proof. From (7), (16) and (17) and taking into account that random vari­
able I:~".:t,k,"j a;, may talce any integer value r from the range [O, m - 1] with 
the probability given in (17) it follows that: 

P{a;,(A)=O} = P{aj,=OUa;,=lnc,<A· ( f ak;+l)}= 
k=1,k,"j 

1 -p + p · P { c, < ,\ · ( f aki + 1) } = 
k=1,k,"j 

1 - p+ p ~ (m; 1) • p'. • (1 - p)"'-r-l min{l, ,\(r + 1)}. 

Due to the (16) the first formula of the Lemma is proven. Because 

( m-1) = (m-1)! , 
r r!-(m-1 -r)! 

then when ,\ ( 1/m the following holds 

P{a;,(A) =O}= 1 -p +,\I: (m- l)!. (r + l) · p•·+l · (1-pr-•·-l (18) 
,·=O r! · (m - 1 - r)! 

Let us observe that for every int.egers l , m, l, > l, m ) 2, and O ( p ( 1 the 
following hold 

~ G) . pk. (1 _ p)l-k 

r+l 

8 

(p + 1 - p)1 = 1 

m- (m - 1- r). 



Using the above mentioned fonnulas (18) may be rewritten as: 

P{aj,(A) = O} = 1 , ('~ (m - l)! · m r ( )m- 1-,· - p+A•p L_,~-~---p • 1-p -
r=O r!-(m-1-r)! 

'~1 (m-1)! · (m-1-r) r ( )m-l-r)-- L., -~~--~- -p - 1 - p -
r=O r!-(m-1-r)! 

l-p+>-·p(m'%: ("';l) Pr (l-p)"'-1-r_ 

m-Z (m -2) ,. m-2-,·) - p • (m - 1) · (1 - p) ~ r · p · (1 - p) = 

1 - p + >. · p · (rn - (m - 1) · (1 - p)) = 
1-p+>. · p· (m · p+ 1-p). 

Finally above formulas can be swnmarized as: 

P{aJ,(A) =O}= 1-p+>. ·p· (m· p+ 1-p). (19) 

Due to the fonnulas (16) and (19) we have 

P{ a1,(A) = 1} 1- P{a1,(A) =O}= 

= p- >. · p · (rn · p + 1- p) = p · (1 - >. · (m · p + 1- p)). 

• 
As the direct consequence of the above formulas we have 

E(aJ;(A)) = 1 · P{aJ;(A) = 1} +O· P{aJ;(A) = O} = P{a1;(A) = l}. (20) 

Now instead of A we will consider A(n). It does mean that for every value of 
integer n, we may consider different vector A(n) ={>.(n),••• , >.(n)}, >.(n)~ O. 
For every j, j = 1, • • • , 1n1 we have: 

n 

LE(aJ;(A(n))) =n• P{aJ;(A(n)) = l} = (21) 
i=l 

n-p(l ->.(n)· (rn·p+ 1-p)). 

Lemma 2 For every et, et > O there exists m' n', m', n' >, 1 such that for every 
m ~ rn' and n~ n' , the following choice of >.(n): 

1- et/(n · p) 
>.(n)=-~~~ is solving the equations E(sJ(A(n))) = et. 

m·p+l-p 

Corollary 1 If E(sJ(A(n))) = a, then P{aj;(A(n)) = l} = a/n. 

Proof. Proof of Lemma and Corollary follows immediately from formulas 
(20) and (21) and following fact that for all m ~ m' and n~ n': 

>.(n) ,;; .!__ 
m 

• 
Solution of the set packing problem (1) given by formula (7) is feasible if 

and only if the formula (11) holds. 
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Theorem 1 For every a, a: > O there exists rn.', n', 1n', n' > 1, such that Jor 
A(n), providing E(s;(A(n))) = a:, the _following hold 

( "')n-1 c, P{sj(A(n)),;;l}= 1-- -(l+a --) 
n n 

Moreover for every fixed value of a:, a > O, we have 

l+o: 
,:~~ P{s;(A(n)),;; l} = ~ 

Proof. As it was already mentioned solution of problem (1) given by for­
mula (7) is feasible if and only if formula (11) holds i.e. s;(A(n)) = O or 
BJ(A(n)) = 1. For every A(n), random variable s;(A(n)) = I:;:'.:1 a;,(A(n)) may 
take any integer value r from the range [O, n) with the probability given by the 
following formula: 

P {ta;;(A(n)) = r} = (;) · f,r · (1-f,)"-', where f, = P{a;,(A(n)) = l}. 

Fi-om the above formula and Corollary 1 it follows that 

P{s;(A(n)),;; l} {
" n } P ~ a;;(A(n)) = O U ~a;;(A(n)) = 1 = (22) 

( c,)" ( c,)n-1 ( "')n-1 c, 1 - ;;: + c, 1 - ;;: = 1 - ;;: · (l+ c, - ;;: ) 

The proof is finished by observing that lim (1 - f!C) n-I = e- " and lim f!C = O 
n-CXl n n-CX) n 

• 

Corollary 2 P{s;(A(n)),;; l} = 1 ({and only (fn = 1. Wheno:--> O asn--, oo 
then 

nl~m
00 

P{s;(A(n)),;; l} = 1. 

However if c,, c, > O, is a constant then: 

(23) 

Proof. Formula (23) follows immediately from the Theorem 1. • 
The above Theorem 1 and Corollary 2 to it have interesting interpretation, 

which may be observed on few examples presented below: 

Example 1 

When a:= O.Ol then lim P{ s,(A(n)) ,;; 1} 0.999 
n-oo 

When c, = O.I then ,:~'!, P{s;(A(n)),;; l} 0.995 

When o:= 0.5 then .. ~~ P{s;(A(n)),;; 1) 

When c, = 1 then lim P{s;(A(n)),;; l} 
n-oo 

10 

0.9098 

~ ""0.736 
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Interpretation of the above examples is following. The closer the value of 
c, is to 1, i.e. set packing problem (1) right-hand-side values the better ap­
proximation of the optima! solution values may be provided, however with less 
satisfactory value of the limn-oo P{s;(A(n)) ,;; l}. However, for any value a, 
O< a,;; 1, limn-ooP{s;(A(n)) <s l},: 2/e, where 2/e"'" 0.736. Due approxi­
mations of the optima! solution values are provided in the next section. 

In the case of maximum set packing problem (3) situation is much different. 
Namely according to (17), where "f = ł - 1, A= ~t1 : 

P{a;,(A) = l} P {a1, = 1 n>-· ( f aki + 1) :,; 1} = (24) 
k=l,k#J 

P · p { A · ( f llki + 1) :'Ó 1} = 
k=l,k#J 

{ 
m 1 } 

P · P L aki :'Ó }; - 1 = 
k=l,k#j 

P fp{ f ak;=r} = 
r=O k=l,k-#-j 

_ '\""' m - 1 r ( )m-,·-1 hJ ( ) -P·L., ·p·l - p . 
r=O r 

It is pretty obvious that only m values of "I, (and respectively >.) should be 
considered nrunely --y = O, 1, ... , ni - 1, (.\ = ¾, m~l' ... , 1) because 

P { f ak, = r} = O for r < O and r > m - 1. 
k=l,k#j 

The above facts has very serious consequences for the probabilistic analysis of 
the maximum set packing problem (3). Namely from formula (24) with "I = O 
and "I= m - 1 (>- = ;!; and ). = 1) and from (20) it follows that 

p · (1 - pr-1 :,; E(a;;(A)) = P{a;;(A) = l}:,; 1 

The latter means that, when considering A(n), n--+ oo, in order to salve 

a 
E(s;(A(n))) = a or P{a;,(A(n)) = l} =~•i= 1, ... , n, j = 1, ... , m (25) 

the following condition should hold: 

C, 

n :,; p·(l - p)m- 1· 

As the matter of fact it is implying asymtotical relations between n, m, p and 
c,. If (25) has solution then choice of the A(n) solving (25) maybe complicated 
becanse of the formula (24). 
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5 Behavior of the optima! solution values 

In order to analyse the behaviour of the optima] solution value of the set packing 
problem (1) one may need to exploit the probabilistic properties of the random 
variables c,(A(n)), i = 1, · · · , n. The construction of the random variables 
c,(A(n)) is defined by formulas (7) and (16) respectively. Distribution func­
tions of the random variables c;(A(n)), i= 1, · · · , n are given by the following 
formulas, where O < x S 1: 

P{c,(A(n))<x} = P{c,<xUe;::,:xnc,SA(n)·I:>1;}= (26) 
j=l 

x + P{.,: Sc, S A(n) · I:>1;}. 
j=l 

Let us observe that P{ x S c, S A(n) · I:;'.,,1 aj;} is by definition equal to zero 
if c, < x or c, > A(n) · I:;'.,,1 aji• Therefore (26) may be rewritten as 

P{c,(A(n))<x} = x+LP{xSc,SA(n)-rnI:>j,=r}= (27) 
,·=1 i=l 

:v + L(rA(n) - x)+P{Laji = r}. (28) 
r=l j=l 

The above formula may enable us to calculate the meru1 value of the rru1dom 
variables c,(A(n)), i= 1, · · • , n. Namely: 

E(c,(A(n))) = lx· d(P{ c,(A(n)) < x}) = (29) 

1 A(n)-m ( m m ) 

2 + [ x· ~(rA(n) -x)~· P{_ł;aj;=r) 

1 m A(n)•k ( m m ) 

2+I: J x L(rA(n)-x)~ · P{Lai; = r) dx= 
k=I A(n)•(k-1) ,·=k j=I 

l m A(n)-k m 

2 - L J :v · P{Laii = r}dx 
k=I A(n)•(k - 1) j=l 

Let us observe that, similarly to the formula (17), the rru1dom variable I:Z:a1 aji, 
due to its binomial distribution, has the following distribution fw1ction for every 
r - integer , O~ r ~ m.: 

P {f aki = r} = (';') · pr · (1 - p)m-r and moreover (t(2k -1)) = r 2 . 

k=l k=l 

Therefore the formula (29) could be further simplified as follows: 
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E(c;(A(n))) _l_ - f ( /\(y-k xdx) • (rt="k (';') • pr • (1 - p)m-r) = 
2 k=l /\(n)•(k-1) . 

~ - (A(;))2 t?2k - 1). (~ G') . Pr. (1 - p)m-r) = 

~ -(A(?2 t (t(2k -1)) , ( (';') . pr. (1 -p)m-r) = 

~- (A(;))2tr2, ((';) pr·(l-p)m-r). 

Let us observe that the following formula holds for O < p ~ 1 and m = 1, 2, ... 

Prom Lemma 2 (where E(s1(A(n))) = a, and >.(n)= ~~;~(;'.:.W) and due to the 
formula (9) we will therefore receive 

E(zn(A)) = - 1- -~~~ ·m·p·(m·p+l-p) = n ( (1-a/(n·p)) 2 
) 

2 m·p+l - p 

n n·p n n·p 
( 

m·p·(l - ~)2 ) ( (1-~)2 ) 

2 1 - m • p + 1 - p = 2 1 - 1 + (1 - p)/(m · p) · 

If (11) holds then due to the fonnulas (12) and (13), where A.(m) = I: >-;(n) = 
j=l 

m • >.(n), E(Smn(A(n))) = c, • m • >.(n), one may receive much stronger results 
for O < c, :;;; 1, namely: 

( zoPT(n)) 1 ( A.(m, n) ) 1 
1:;;; E Zn(A(n)) :;;; ;, where E S„m(A(n)) =; and (30) 

"( (1-a/(n·p)) 2 ) 
E(z,.(A(n))) = 2 1 - 1 + (l _ p)/(m. p) . (31) 

Formulas (30) and (31) may provide us with some estimations of the set 
packing problem (1) optima] solution values zopr(n) growth, when n --+ oo. 

Corresponding to Example 1 estimations of the E ( :'.,";;';,:; ) for the different 
values of c, are provided in the Example below, where appropriate value of 
E(zn(A(n))) is given in the formula (31): 
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Example 2 

When a O.Ol then 1 ,;; E ( ;~(~~~;) ,;; 100 with approx. probablity 0.999 

When a 0.1 then 1 ,;; E ( :,~t;:;~~;) ,;; 10 with approx. probablity 0.995 

When a 0.5 then 1 ,;; E ( ;,~(~~~;) ,;; 2 with approx. probablity 0.9098 

When a = then E ( ;~~;~;) = 1 with approx. probablity ~ ;,s O. 736. 

Since n ,;; m! and moreover n -> oo then obviously also m _, oo. According 
to formula (31) asymptotic growth of the E(z,,(A(n))) may be influenced by 
both n and m. Let us consider the following mutual asymptotic dependence of 
the both parameters: 

n= /3 · ml", where /3 is constants, O <,,;; m, /3 > O. (32) 

If O < , ,;; m then condition n ,;; m! is always fulfilled asymptotically since, due 
to the Stirling's formula, for every constant /3 > O there exist constant m' ;;, 1 
such that for all m ;;, m' the inequality n ,;; m! holds .. 

Under the above assumption the following Lemma holds 

Lemma 3 ff asymptotical dependence (32) holds then: 

2 ·a+ /3 • (1 - p) . m•-1 
E(z,,(A(n))) ;,s 2 when n-> oo (33) 

·p 

Proof. When (32) holds then (31) may be refonnulated as follows: 

2m •a• /3 • p + m' • ;32 . p. (1 - p) - a 2 . m-s+I 
E(z.,(A(n))) = 2/3. p. (m. p + 1 _ p) 

Taking into account previously made assumptions on <>, /3, -y and p proof of the 
formula (33) is straightforward. • 

Corollary 3 Depending on the value of,, O < , ,;; m, the .following cases of 
the asymtotical behaviour of E(z,.(A(n))) may be distinguished: 

l .':" when0<,<1 

,J!:!, E(z,.(A(n))) = 2°' ..{: /32~(l - p) when, = 1 

oo when, > 1 

(34) 

Due to the formulas (13) and (30) E(z,.(A(n))) is reasonable asymptotic ap­
proximation of the optima! solution of the set packing problem (1) i.e. E (zoPT(n)). 
The above Lemma and Corollary, especially fonnulas (33) and (34), provides in­
teresting insight into asymptotical behavior of the value of E( z,. (A( n))). N amely: 

When n= o(m) then lim E(z,,(A(n))) = .':"_ 
m-oo p 
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It does mean that in this case values of /3 and I are neglectable so is the mutual 
asymptotic dependence of both n and m. 

2a+/3· (l-p) 
When n ce m then E(zn(A(n)))"' 2P · 

In this case level of proximity of n and m is substantial and is expressed by 
value /3. 

/3 (1 - p) 
When m = o(n) then E(zn(A(n))) se'--"--'-'-. m• - 1 

2·p 

In the latter case dependence on °' is neglectable, /3 and p are defining constant 
multiplier. 

In 2 first cases, where 1 ,;:; 1, there is no asymptotical influence of the vaiue 
of m (and therefore of n either) on the asymptotical value of E(zn(A(n))). 
However in the case when 1 > 1, there is very strong dependence from both m 
and 1 . 

On the other hand parameters a, and p have substantial influence on the 
asymptotical behavior of E( Zn ( A( n))), w hen 1 ,;:; l. N amely the bigger is value 
of a, °' > O, and/or smaller is vaiue of p, O < p ,;;; l, the bigger is value of 
E(zn(A(n))). Consequence of the above statement is following 

• The bigger is value of °' the less probability of feasibility of the corre­
sponding solution of the set packing problem (1) is, see Theorem l. 

• The smaller the value of pis the sparser the initial subsets lvli, i = 1, · · · , n, 
of the original set M may be. 

In the case of the maximum set packing problem (3) situation is different. 
Namely: 

P{ci(A) = l} 

l~J (m) · p" · (l - p)m- r where AE{_!_, - 1-, ... , 1}. 
~ r 111.1n - I 
r=O 

If there exist A(n) and o: solving (25) and assuring s;(A(n)) ,;;; 1, j = 1, · · · , m 
then 

ll/~(n)J 
E(z,.(A(n))) =n· ~ (';) · p,. · (1- Pr-•· 

may serve as approximation of the value of zopr(n) as it was in the case of the 
set packing problem ( 1) above. 
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6 Concluding remarks 

In the present paper some results describing probabilities properties of the set 
packing problem (1) and the maximum set packing problem (3) are summarized. 

In the paper distribution functions of the various random variables repre­
senting important problems characteristics are presented. Moreover some re­
sults concerning the feasibility of the received solutions and estimations of the 
set packing problem (1) optima! solution values zopr(n) growth, when n--+ oo 
are provided. 

Examples 1 and 2 shows that the higher is accuracy of approximation of the 
optima! solution value the !ower is probability of the feasibility of corresponding 
solution. For example w hen a = 0.5 the quality of approximation is pretty toler­
able, with relatively high probability of the feasibility of the solution. Moreover 
when a = 1 the quality of approximation is very good with reasonable proba­
bility of the feasibility of the solution, approximately equal to O. 736. Lemma 3 
shows possible asymptotical behavior of the optima! solution values when there 
is certain mutual asymptotic dependence of the parameters n and m. 

In the case of Maximum Set Packing Problem there are some problem specific 
peculiarities which have been prelirn.inary investigated in the present paper. 

Some of the important avenues for the futurn research is convergence of the 
approximate solutions to the optima! solution and possibility of investigating 
realistic approximations of their values. 
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