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Abstract 

The paper analyzes the influence, exerted by the mutual relations of 
deadline intervals on behaviour of the optimal solution values for the ran­
dom Sequencing Jobs with Deadlines (SJD) problems. An asymptotically 
sub-optimal algorithm is proposed. It is assumed that the problem coeffi­
cients are realizations of independent lllliformly distributed random vari­
ables and deadlines are deterministic. The results, presented in the paper, 
significantly extend knowledge on behaviour of the optimal solutions to 
the SJD problem in the asymptotical case, 

Keywords: Scheduling, Combinatorial optimization, Probabilistic Analysis, Ap­
proximate Algorithm, Profit 

1 Introduction 

The sequencing jobs with deadlines problem (SJD) consists in maximizing the 
weighted number of jobs processed before their deadlines. Deadlines may be 
considered as special cases of due windows (due intervals), see Janiak et al. (8]. 
Each job j (j = l, ... , n) is to be processed on a single machine. It requires 
a processing time tj and has a deadline dj (n). Deadlines are assumed to be 
the functions of n in order to allow for the asymptotical analysis of SJD, when 
n ➔ oo. If the job is completed before its deadline, a profit Pi is earned. The
objective is to maximize the total profit, which could be considered as equivalent 
to minimizing the total cost or minimizing the weighted sum of late jobs. 

From the point of view of the deterministic scheduling problems theory, 
the SJD problem belongs to the class of the single machine scheduling (SMS) 
problems. More precisely, it is considered as a scheduling problem with opti­
misation criteria involving due dates, classified, according to Graham notation, 
as I II Ewj Uj , see Blazewicz et al. [3], p. 106. There are many research pa­
pers that deal with SMS problems, both due to their own scientific value and as 
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parts of more generalized and complex problems. The SJD problem often occurs 
as a sub-problem in various sequencing and scheduling problems. In Baptiste 
et al. [1] job sequencing problems with due dates and deadlines were consid­
ered. Paper by Catanzaro et al. (4] addressed the job sequencing problems with 
tool switching. In Baptiste and Le Pape [2] scheduling problems with setup 
constraints were analyzed. Detienne [5] considered scheduling problems with 
machine availability constraints. These ones are only few, out of many, prob­
lems where the SJD problem is included as the sub-problem. In many cases, 
the SJD problem may be used as relaxation of the more complex problems. 

It is assumed, with insignificant loss of generality, that jobs are indexed 
according to 

(1) 

Then, the SJD problem can be formulated as a binary (0-1) programming prob­
lem (cf. Lawler and Moore [11]): 

s.t.

zopr(n) = max I: PiXi
j=l 

i 

I; tjXj :S: d;(n), i = 1, ... , n 
j=l 

where Xj = 0 or 1, j = 1, ... , n 

(2) 

where Xj = 1 only if job j is completed before its deadline. Jobs on time should 
be processed in the order conform to (1), while completion of the late jobs is 
of no importance, since no profit is earned. If all Pi = 1, j = 1, ... , n, then 
the optimization goal is to maximize the number of jobs performed within the 
deadlines or, equivalently, to minimize the number of tardy jobs. Without loss 
of generality we also assume that 

0 < ti :S: di (n) and Pi > 0, j = 1, ... , n. 

SJD is well known to be an NP-hard problem, see Garey and Johnson [7], 
but it can be solved in a pseudopolynomial time by a dynamical programming 
method of Sahni [14]. In the literature, many algorithms have been proposed 
to solve the sequencing or scheduling jobs on a single machine. Many of the 
proposed solution techniques are based on (mixed) integer linear programming 
problem formulations, cf. Baptiste et al. (1], Catanzaro et al. [4] and Deti­
enne [5]. Another general technique which could be used is Branch and Bound 
method, see Baptiste and Le Pape [2]. There were also attempts to use genetic 
aJgorithms, see Sevaux and Dauzere-Peres [15] or the neural network approach, 
cf. El-Bouri et al. (6]. In the paper by Levner and Elalouf, see [12], an improved 
version of the polynomial-time approximation algorithm to solve the SJD prob­
lem was presented. The above list of references has illustrative purpose and it 
is far from being exhaustive. 

In the literature, a certain simplified version of the SJD problem was con­
sidered. In this case all jobs have identical processing times, i.e. t; = c, c > 0, 
i = 1, ... , n where c is some constant. For this version of the SJD problem 
many efficient greedy type algorithms were proposed, cf. Puntambekar [13]. 
Moreover, greedy type algorithms are often used in this context in the teaching 
process at the universities, cf. Kocur [10]. 
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It can be easily observed that SJD is a special case of the well known binary 
(0-1) multi-constraint knapsack problem, cf. Kellner et al. (9), according to the 
following formulation: 

zopr(n) = max �� CiXi s.t. �� aj;X; :S bi(n), x; E {O, 1}, i, j = 1, .. .  ,n L....,,=1 L....,,=1 
(3) 

where, in (3), Cj = Pj, aij = tj, 1 :Si :S j, O;j = 0, j < i :Sn, bj(n) = dj (n), 
j = 1, ... , n. When all constraints, but last, in (2) are dropped, then SJD 
problem is reduced to the classical (single constraint) knapsack problem: 

zopr(n) = max �� PiXi s.t. �� t;xi :S dn (n), x, E {O, 1}, i = 1, ... , n. 
L__,t=l L....ti=l 

(4) 
It is well known that multi-constraint knapsack problem is NP hard in the strong 
sense, while both SJD and single-constraint knapsack problems are NP hard but 
not in the strong sense, cf. Garey and Johnson [7]. 

There are various approaches to deal with uncertainty, e.g. defined as 
randomness of the problem data ( coefficients), in the case of job sequencing 
or scheduling problems, cf. Xia et al. [17]. In the paper by Szkatula [16] 
asymptotic growth (as n ----+ oo) of the value of zopr(n) for the class of ran­
dom SJD problems was analyzed. The goal of the present paper is to investi­
gate the influence of the intervals of deadlines on asymptotical behaviour (as 
n----+ oo) of the optimal solution values zopr(n) in the case of random version 
of the SJD problem, where intervals of deadlines are defined by behaviour of 
d1(n),d:i(n) - d1 (n), ... ,dn(n) - dn-i(n),more precisely by their mutual rela­
tions. A simple heuristic algorithm for solving the SJD problems is proposed 
and it is proven that in the average case it is asymptotically sub-optimal. The 
obtained results are significantly extending the ones presented in the paper by 
Szkatula [16]. 

The results achieved constitute a contribution to the field of scheduling prob­
lems as well as to the probabilistic analysis of the combinatorial optimization 
problems. These results could be also useful for constructing and testing ap­
proximate algorithms for solving SJD problems. 

The following notation is used throughout the paper: v;, � Y,,, n ----+ oo 
denotes: 

• Yn · (1 - On(l)) :S V,, :S Yn · (1 + on(l)) if Vn and Yn arc sequences of
numbers;

• lim,.--,00 P{Y,, · (1 - o,. (1)) :S V,, :S Y,, · (1 + o,. (1))} = 1 if V,, is a sequence
of random variables and Yn is a sequence of numbers or random variables,
where on(l) > 0 and limn--,00 on(l) = 0, as usual.

In Section 2 some useful duality estimations of (2) are presented. These 
estimations are exploited in Section 3, which presents probabilistic analysis of 
the SJD problem. Both Sections 2 and 3 are partially based on the paper by 
Szkatula [16]. Please refer to it for a more detailed presentation. Section 4 
contains the main results of the paper, related to the deadline intervals and the 
approximate algorithm. Section 5 discusses obtained results. 
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2 Lagrange function and dual estimations 

Let us consider the Lagrange function of (2), cf. Szkatula [16]: 

F,,(x, A) = tPjXj + t .\ · ( d;(n) - L:=l t1xj) = 

1=1 t=l 
n n 

L Aidi(n) + L (Pj -Aj • tj) • Xj 

i=l j=l 

where a:= {x1, ... ,xn }, A= {>.1, ... An }, Aj = I:�=j >.;. Let for every A,Aj 2'. 0, j = 1, ... , n 
n n 'Pn(A) = xE{o".f}

" Fn(x, A)= ?>;d;(n) + L (Pj -Aj • tj) · Xj (Aj) = 

•=1 J=l 

tPj(Aj) + tA; · (d;(n)-L;=l tj(Ai))
where 

Let us denote: 

n i Zn(A) LP
1

(A1 ); s;(A) = Ltj(Aj)i 
j=l j=l 

n n Dn(A) L Ai· d;(n); Sn(A) = L Ai· s;(A) =
i=l i=l 

n 

L Aj · tj (Aj); <p,,(A) = Zn(A) + Dn(A) - S,,(A).
j=l 

The problem dual to SJD (2) is then as follows: 

(5) 

By the construction of z,,(A), Zn (A), Sn (A), D11(A), <p
,,
(A) and <l!�(A) we

have for any A 2': 0:

and 

Zn(A) 2'. Sn(A)

Zn(A) S: ZoPT(n) S: 'P: S: 'Pn(A) = Zn(A) + Dn(A) - Sn(A). (6) 
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3 Probabilistic analysis 

The following random model of the SJD problem (2), cf. Szkatula (16], will be considered: 
• n � l, n is a positive integer, n ➔ oo, i, j = 1, ... , n
• ti, Pi, are realizations of mutually independent random variables and moreover tj

, Pi, are uniformly distributed over the (0, l] interval; 
• 0 S d1(n) S d2(n) S · · · S dn(n) and A= {,\1, ... , An} are deterministic,dj (n) are functions of n.
Let us compute the distributions and average values of t;(A;), p;(Ai ), as functions of n, A; in the asymptotical case, when n ➔ oo: 

G;(Ai,x) = P{t;(Ai)<x}=P{t;<xUt;>xnp;<A;-ti}= 
t +x ?1- tli� 

1-_L+x· 1-tli 2A; 2 A; S 1 

A;> 1 
if 
if 

0 < x S min { 1, f,} 
1 x > min { 1, f,} 

H;(A;, x) P {Pi (A;) < x} = P {p; < x u t; > x n p; < A; • t;} = 

{
1 - 1-,,2 if A;� 1 A· 2-�� if x S Ai S 1 2 + 2-A; 
X if A; S x S 1 1 if x�1 

E(t;(A;)) = j x · dG;(A;,x) = { 1 °� fu
O 

2 3 

E(p;(A;)) = /
1 

x · dH;(A;,x) = { �t A2 2 -6 

if A;� 1 if O::,'.A;Sl 
if A;� 1 
if DSA;Sl. 

The asymptotical analysis of the SJD problem consists in observing the behaviour of certain problem characteristics when n ➔ oo. Therefore, it is assumed that some of the problem parameters may functionally depend on n,which is denoted by (n). This especially applies to deadlines d;(n) and Lagrangemultipliers A(n), ,\;(n), A;(n), i = 1, ... , n. This notation will be used when dependence on n is essential in terms of the context, and may be omitted, for brevity purposes, in general formulas, when dependence on n is not important. We are looking for such ,\1(n), ... , ,\n(n) � 0 that 
E(s;(A;(n))) S d;(n), for all i = 1, ... , n. (7) 

By assumption Aj = L;:,,1 A;, Aj � 0, j = 1, ... , n, and then we have
A1 � A2 � · · · � A11 and therefore E(t1(A1)) S E(t2(A2)) S · · · S E(t11 (A11)). (8) 
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Let us observe that if for certain i, 1 S i < n 

E(s,(A(n))) = d,(n) and d1+1(n)-d,(n) < E(t;+1(A;+1(n))) (9) 
then 

E(s;+1(A(n)) > d;+i(n) 
which means that if for some sets of deadlines d1 (n), d2(n), · · · , d,,(n) the vector 
A(n), such that (9) holds, is determined, then (7) will not be fulfilled for all 
i = 1, ... , n. This will be caused by monotonicity of Aj(n) and E(ti(Ai(n)),
see (8). Hence, in Szkatula [16) a recursive Algorithm 1 determining A(n), 
>.;(n) 2: 0, i = 1, ... ,n, guaranteeing that for each d1(n) S d2(n) S · · · S d,.(n) 
(7) will be fulfilled, was proposed. This algorithm is presented below in a
new and simpler formulation, which is, moreover, more suitable for further
presentation.
Algorithm 1 Procedure to determine o i ( n) and Aj ( n), j = l, ... , n 

Initialization Step: Let l t-- 0, do(n) f- 0 
Main Recursive Step: Let 

(10) 

and 

(11) 

fork=l+l, ... ,j*. 
Checking Step: if j* = n then the procedure is completed. Otherwise, we put 
l t-- j* and Main Recursive Step is repeated until j* = n.

In Algorithm 1, the values of o1 (n), ... , On(n) and A1 (n), ... , An(n) are de­
termined. Below, some of their features are analyzed under the following as­
sumptions: 

• 01(n) S 02(n) S ... S 5n(n);
• I:}=15i(n) S d;(n). If o;(n) < 5;+1(n) then I:�=15j(n) = d;(n);

• A ·(n) = { ✓ 6.0:(n) if O < Oj(n) S ¼1 ,j = 1, ... ,n; � - 3 • oi(n) if½ < oi(n) S ½ 
• A1(n) 2: A2(n) 2: ... 2: An(n);
• If Oj(n) = Oj+1(n) then AJ(n) = Aj+1(n), >.j (n) = 0, E(sJ(A(n)) :S dj(n);
• if 5i(n) < 5i+i(n) then Aj(n) < AH1(n), >.i (n) > 0, E(sj(A(n))) = dj(n);
• L�=l >..;(n)•(I:}=1 Oj(n)) = L�=l >..;(n)•E(s;(A(n))) = I:7=1 >.;(n)·d;(n); 

• E(p·(A-(n))) - V 3 1 { 
Ii. o •(n) if O < 53-(n) :S -61 3 3 -

f + r oi(n) · (1 - oi(n)) if¼ :S oJ (n) :S ½ 
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Hence: 
n E(Zn(A(n))) LE(p(Aj(n))) = 

j=l 

= � (Tj (n) G + �oi(n)(l - oi(n))) + 'fj(n)✓2 · &;(n))

h . ( ) _ { 1 if¼ < &i (n) s ½ d _ ( ) _ l ( ) . _ l w ere Tj n - 0 otherwise an Tj n - -Ti n , J - , ... , n. 
The main result from Szkatula [16] is stated in the theorem given below. 

Theorem 1 Let pj, ti , j = 1, ... , n, be realizations of mutually independent 
random variables uniformly distributed over (0, 1], d1 (n) 5 d2(n) 5 ... 5 dn(n),
dj (n) be deterministic, and Oj (n) be defined by the above Algorithm 1. If 

then: 

The main idea of the proof of Theorem 1 is based on showing that: 
Zn (A(n)) R:J E(zn (A(n))) R:J <i?n (A(n)) and E(zn(A(n))) R:J Zn (A(n)) 

and using (6). For further details the Reader is kindly referred to Szkatula [16]. 
4 Intervals of deadliness and the approximate 

algorithm 

Construction of the &i (n), j = 1, ... , n, provided by the Algorithm 1 and de­scribed in the Section 3, indicates that values of the llj (n) as well as their prop­erties significantly depend on the mutual relations between dj(n), j = l, ... , n. The assumption that dj
(n) are monotonic, cf. (1), is essential in the construc­tion of the Algorithm 1 and, as the consequence, in Theorem 1. Formula (10) clearly indicates that values 1'1 (n), ll2(n), ... , lln(n) depend on 

To be more precise, from the construction of llj (n), Ai (n) = I:�=i A;(n), 
j = l,,,., n, it follows that: 
if &i (n) if &1 (n) < 

&H1(n) then A1 (n) = AH1(n), Aj (n) = 0, E(sj (A(n))) s dj (n); &H1(n) then Aj (n) > AH1(n), Aj (n) > 0, E(sj (A(n))) = di (n). 
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From the duality theory it follows that if ,\(n) = 0, then the corresponding 
constraint in (2) is "inactive". It means that its satisfaction is secured by 
other "active" constraints for which ,\j(n) > 0, i,j E {1, ... ,n}. Formula (10) 
makes it possible to distinguish three different classes of c5j(n), Aj(n), ,\;(n), 
i,j = 1, ... , n. 

Lemma 1 If for all j = 2, ... , n 

then 

j-1
dj-1 (n) 2'. -.- · dj(n) 

J 
(13) 

c51(n) = ... = c5n(n); A;(n) = Ai+1(n) = An(n),,\;(n) = 0,i = 1, ... ,n -1. 
(14) 

Proof. If (13) holds, then in Algorithm 1, according to formula (10), Main 
Recursive Step is performed only once with j* = n and (14) will follow imme­
diately from (11). ■

In the case considered in Lemma 1 only the last constraint is active and the 
SJD problem is reduced to the single-constraint knapsack problem (4). 

Lemma 2 If for all j = 2, ... , n 

then 

j-1
dj-1(n) < -.- · dj (n) 

J 
(15) 

c51(n) < c52(n) < ... < c5,,(n); A1(n) > A2(n) > ... > A,,(n), ,\;(n) > 0, (16) 

for i = 1, ... , n. 

Proof, If (15) holds, then in Algorithm 1, according to formula (10), the 
Main Recursive Step is performed n times with j* = 1, 2, ... , n, and (16) will 
follow immediately from (11). ■ 

Lemma 2 deals with the situation when all n constraints are active. 

Lemma 3 If there e:i;ists jt, l < jt < n -I such that 

j-l . . jl+l 
dj-i(n) 2'. -

j
- · dj (n), J = 2, ... ,Jt; and djl+l (n) <

jt 
+ 2 · dj1+2(n) (17)

then 

c51(n) = ... = c5j,(n) < c5j1+1(n); A1(n) = ... = Aj1(n) > Aj1+1(n), ,\;(n) = 0, 
(18) 

where i = 1, ... , jt. 

Proof. In this case, when (17) holds, then in Algorithm 1, according to 
formula (10), first execution of the Main Recursive Step yields j* = jt. Then, 
starting with l = .i I+ 1, the Main Recursive Step will be performed at least once 
more and (18) will follow immediately from (11). ■ 
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In Lemma 3 a mixed case is considered, where some, at least first jt, con­straints are inactive, while some constraints, at least one (jt + l)'th will beactive. It also may happen that this situation will be repeated several times.For example, there may exist jll and jilt, jl < jll < jlll < n, such that con­straints jl + l, .. . 'jll are active, constraints jll + l, ... 'jlll are inactive and so on. For any given set of deadlines d1 ( n), d2 ( n), ... , dn ( n) Lemmas 1, 2 or 3 arecovering all possible relations between deadlines and the resulting "activity" status of constraints. Therefore, these three lemmas allow for introducing re­cursive intervals of deadlines corresponding to the three cases considered. Thetheorem below presents the main result of this paper. 
Theorem 2 If for all j = 2, ... , n - 1

(19)
holds, then Lemma 1 holds and (14) describes mutual relations between oi(n),Aj(n), >.;(n), i,j=l, ... ,n. Ifforaltj=2, ... ,n-l 

di(n) E (-,-1--
1 

· dj_1(n), -,-1--
1 

· di+l (n))J- J+ (20)
holds, then Lemma 2 holds and (16) describes mutual relations between Oj(n), Ai(n), >.i(n), i,j = 1, ... , n. If there exists jt, 2 < jl < n - l such that for all
j = 2, ... ,jl - l 

[ j j ] jl-/- l dj (n) E -. -1 · dj+1(n), -. -1 · dj-1(n) and dj1+1(n) < -. -2 · dj1+2(n)
J + J - JI+ (21)holds, then Lemma 3 holds and {18) describes mutual relations between Oj (n),Aj (n), >.;(n), i,j = 1, ... , n. 

Proof. In order to prove Theorem 2 it is sufficient to observe that Lemma 1 demonstrates (19), Lemma 2 demonstrates (20), and Lemma 3 demonstrates(21). ■ The results, summarized in Theorem 2 and Lemmas 1-3 go far beyond theresults presented in Szkatula [16], cf. Theorem 1. These results allow to analyzethe impact of the mutual relations of the deadlines di(n), j = 1, ... , n, on behaviour of the optimal solution ZoPT(n) in the asymptotical case, i.e. whenn ➔ oo, for the considered random model of the SJD problem (2). Formulas (19), (20) and (21) define in the recursive manner the deadlineintervals. If deadlines dj(n), j = 2, .. . ,n - 1, belong to the correspondingdeadlines intervals, as presented in (19), (20) and (21), then it is guaranteed that oi(n), Ai(n), >.;(n), i,j = l, ... ,n, will belong to one of the three differ­ent classes defined by Lemmas 1-3 and Theorem 2. This provides for certainflexibility in defining actual values of deadlines, since they may vary within the proposed deadline intervals. Because of the recursive definition of the deadline intervals, first and last deadlines may have special influence on the interval con­struction. The three examples, presented below, illustrate the above defined 
classes of oi(n), Aj(n), Ai(n), i,j = 1, ... , n.
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Example 1 

Let 

j 1 . n 
dj (n) = 

2 
and then clj (n) = 

2
, J = 1, ... ,n; dn(n) = 2

.

In this case, assumptions (13) of Lemma 1 and of Theorem 1 are fulfilled and 
according to (12) we have: 

1 
ZOPT(n) ::::; - . n 

2 
(22) 

which means that in this case only the last constraint is active, optimal solution 
has the maximum possible value and all jobs will be processed before their 
deadliness in the asymptotical case for the considered random model of the SJD 
problem. 

Example 2 

Let 

j2 2j -1 . n 
dj (n) = - and then <5j (n) = -2-, J = 1, ... ,n; dn (n) = -2.2n n 

In this case, assumptions (15) of Lemma 2 and of Theorem 1 are fulfilled. All 
constraints are active, all jobs will be processed before their deadlines and there­
fore (22) will hold. 

Example 3 

Let 

j d h 6 ( ) 
1 . • • r nl 

4 
an t en j n = 

4
, J = 1, ... , n , n = 

2 ,

j2 2j-1 . *. n - and then clj (n) = --, J = n + l, ... ,n; dn(n) = -.2n 2n 2 

In this case, assumptions (17) of Lemma 3, where jt = n •, and of Theorem 1
are fulfilled. According to (11), clj (n) = ½, j = n* + 1, ... , n, and from (12) we 
have: 

zoPT(n)::::; � ·n- � ·n• -� 
2 32 2' 

which means that in this case some constraints will be active, while some inac­
tive, and the optimal solution value is smaller than the possible maximum one. 
Some jobs will not be processed before their deadlines (providing no profit) in 
the asymptotical case for the considered random model of the SJD problem. 

An illustrative heuristic, greedy type algorithm, designed to solve the SJD 
problem (2) in the general deterministic case, is presented below. This algorithm 
is using the procedure equivalent to the one applied in the Algorithm 1. 
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Algorithm 2 
Initialization Step: Let l +- 0, ck(n) +- 0l'v!ain Recursive Step: Let 

and 
j* = max {m I dm(n) - d1(n) = min dj(n) - d1(n)}l<mSn m - l l<JSn j - l 

Xj +- Xj(A.1 • ), j = l + l, ... ,j*, refer to (5). 
Checking Step: if j* = n then the Algorithm 2 is completed. Otherwise, weput l +- j* and the Main Recursive Step is repeated until j* = n. 

Algorithm 2 has extremely low computational complexity of order of O(n).It does not require sorting of elements as greedy type algorithms usually do. From the computational point of view, the most expensive are max and minoperations, which have computational cost of O(k), where k is the number ofelements of the corresponding set. In the case when max and min operations are repeated k times over sets of order of k elements, the computational complexity will be of the order of O(k2). According to Lemmas 1 - 3, this situation cannotoccur, since either the Main Recursive Step will be executed only once (Lemma 1) or it will be executed several times (n times in the case of Lemma 2 and the maximum of n - l times in the case of Lemma 3) but the number of elements ofthe corresponding sets will be small, i.e. of order of fi,, where n is the number of jobs (i.e. the size of the problem) and m is the number of necessary repetitions of the Main Recursive Step. Therefore, the overall computational complexity of Algorithm 2 will be of the order of O(n). In the sense of the worst case analysis this algorithm always provides feasi­ble solutions of the SJD problem (2), which is guaranteed by (23), but it doesnot have any guarantees of the accuracy of the solutions provided. Therefore, in the sense of the worst case analysis Algorithm 2 is an heuristic algorithm. However, for the random model of the problem (2), considered in this paper,Algorithm 2 is asymptotically sub-optimal. In the random case Algorithm 2is behaving identically to the computational procedure described in the Algo­rithm 1. Asymptotical suboptimality of Algorithm 2 follows immediately fromTheorems 1 and 2. The proposed algorithm is based on the main results ofthis paper, presented in the Lemmas 1-3 and Theorem 2, and it has mainly an illustrative purpose. A commonly used practice in testing of algorithms proposed for job sequenc­ing or scheduling problems is to generate a number of random problems, whosecoefficients are usually random integers from the intervd.ls [0,100] or [0,10], cf.El-Bouri et al. [6], Sevaux and Dauzere-Peres [15], Baptiste and Le Pape [2],Baptiste et al. [1], Detienne [5], Levner and Elalouf [12], and Catanzaro etal. [4], just to mention a few representative examples. Behaviour of the SJDproblem solutions, in the light of the results provided by the probabilistic anal­ysis, may serve as the proper substitution for the computational tests, e.g. inthe case of Algorithm 2, thus saving time and computational effort. 
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5 Concluding remarks 

In the present paper one of the classical scheduling problems - Sequencing Jobs 
with Deadlines problem (SJD) was considered. Probabilistic analysis of the 
impact of mutual relations between deadlines and their functional properties 
was performed for the random model of the SJD problem. As the result of 
this analysis, three specific categories of mutual relations between deadlines 
were identified. Then, on the basis of the results provided in Lemmas 1, 2, 
and 3, Theorem 2 was formulated, in which recursive deadline intervals for the 
considered random model of the SJD problem were defined. In this framework, 
the roles of the first and last constraints, d1 ( n) and dn ( n), respectively, are 
crucial. Deadline intervals may provide substantial flexibility in formulating 
SJD problems, because mutual relations between deadlines may be analyzed in 
a more convenient manner and their influence on the SJD problem solutions (the 
list of the jobs to be performed before their deadlines and providing maximized 
profit) is demonstrated in the convenient and convincing manner. 

Another interesting result of the study, reported in the paper, is a simple 
heuristic algorithm of very low computational complexity, which in the average 
case, i.e. for the considered random model of the SID problem, is asymptotically 
sub-optimal. 

These results are enriching the knowledge base for the Scheduling Prob­
lems, especially for the Sequencing Jobs with Deadlines problem and may also 
positively influence the solvability of the SJD problem instances in practical 
applications. 
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