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Abstract 

The paper deals with the well known set packing problem and its spe­
cial case when number of subsets is maximized. It is assumed that some of 
the problem coefficients are realizations of mutually independent random 
variables. Average case (i.e. asymptotical probabilistic) properties of se­
lected problem characteristics are investigated for the variety of possible 
instances of the problem. The important results of the paper are: 

• Behavior of the optimal solution values of the set packing problem is 
presented in the special asymptotic case, where mutual asymptotical 
relation between m (number of elements of the packed set) and n 
(number of sets provided) is playing essential role. 

• Probability of reaching feasible solution is reasonably high (i.e. ;;,: 
2/e, 2/e ""0.736); moreover it may be set arbitrary close to 1 (e.g. 
0.999), however deterioration in the quality of approximation of the 
behavior of the optimal solution values may be substantial. 

• Some relations between general case of the set packing problem and 
its maximization special case are investigated. 

1 Introduction 

Let us consider an m element set M and i[> a collection of n subsets M;, 
i = 1, ... , n, of the set M, i[> = {M1, M2, ... , Mn}. Set packing problem consists 
in finding set of disjoint subsets Wini[>, W <:;; i[>, where, M;, Mk E W if and only if 
M;nMk = 0, for every i, k, i c/ k, i, k E {l, ... , n}. Set packing problem is often 
formulated as the binary multiconstraint knapsack problem, see Nemhauser and 
Wolsey [7]: 

n 

zopr(n) = max I:; c; · x; 
i=l 

n 

subject to I:; aii • x; ,:::; 1 
i=l 

where j = l, ... ,m, x; = 0 or 1 

1 
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It is assumed that: 

Ci > 0, ai; = 0 or 1, i = 1, ... , n, j = 1, .. . , m. 

In fact aii, i = 1, ... , n, j = 1, ... , m, j E M, are defining <I>, set of subsets of 
M, namely Mi, i = 1, ... , n, <I>= {Mi, M2, ... , Mn}, in the following way 

{ 1 if j EM; 
aii = 0 if j </: M; ' 

where Ci is the value expressing the preference assigned to the set M;. Let us 
observe that definition of the sets M;, i = 1, . . . , n, does not require them to 
be disjoint. Namely ifthere exists j E {l, ... , m}, k i= l, k, l E {l, ... , n}, such 
that aik = aji = 1, then j EM belongs to both Mk and Mi, i.e. Mk n Mi i= 0. 
Choice of x;, fulfilling the constraints imposed in (1) is defining the packing 
of the set M into disjoint subsets M;, M; E W,where M; n Mk = 0 i i= k, 
i, k E {l, ... , n}, for every M;, Mk E W. Namely in (1) 

Vk, kE{l , ... ,n} , MkEiJ!, ifandonlyif:ljEMk:ajk"Xk=l. (2) 

Each of the constraints I:7=1 aii · x; ,( 1, j = 1, . . . , m is guaranteeing that 
each of the items j of the set M is assigned to at most one of the subsets 
Mi, Mi E iJ!. Optimisation criteria in (1) is securing the choice of best possi­
ble packing according to preferences expressed by c;, i = 1, . .. , n. If c; = c, 
i = 1, ... ,n, c - constant (e.g. c = 1), then optimisation problem seeks for 
the maximum amount of subsets M; to pack set M, known as Maximum Set 
Packing Problem. Maximum set packing problem maybe also formulated as the 
binary multiconstraint knapsack problem, similarly to (1), namely: 

n 
ZQPT(n) = max I: Xi 

i=l 
n 

subject to I; aii · Xi ,( 1 
i=l 

where j = l , .. . , m, Xi= 0 or 1 

(3) 

Set packing problems arise in partitioning applications where there is strong 
demand that no elements of the set M are permitted to be included in more 
than one subset M;. Set packing problem (1) is well known to be NP hard 
combinatorial optimisation problem, see Garey and Johnson [3]. Moreover Set 
Packing Problem is one of the 21 first Karp's NP complete problems, see [4]. 
There are also two closely related combinatorial problems, namely set covering 
problem and set partitioning problem (also known as exact covering),where in 
both of them one is looking for the subsets Mkj, j = 1, ... , r, of the collection 
<I> of n subsets of M;, i = 1, . . . , n, where demand LJ;=l Mki = M holds, more­
over in the set partitioning problem there is additional demand, namely that 
all Mki are pairwise disjoint, i.e. Mk; n Mk, = 0, for every kj, ki , ki cl ki, 
j, l E {l, . .. , r }. Both problems may be also formulated as special cases of the 
binary multiconstraint knapsack problem, see Nernhauser and Wolsey [7]. Max­
imum set packing problem is also known as Maximum Hypergraph Matching. As 
latter, under certain conditions, it is equivalent to well known Maximum Clique 
problem, see Ausiello, D'Atri and Protasi [l]. Another example of the applica­
tion of the set packing problem in the graph theory is the so called independent 
set, i.e. set of graph vertices having no common edges. 
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Scheduling an airline flight crews to airplanes is good example of a practical 
application of the set packing problem. Each airplane must have a crew assigned 
to it, consisting of a pilot, copilot, and navigator. There is set of possible crew 
members, based on their training to operate relevant types of airplanes, as 
well as any personality conflicts. Considering all possible crews and airplanes 
combinations, each represented by a subset of items, our goal is to find such an 
assignment of crews to airplanes that each airplane and each crew member is 
in exactly one selected combination. From the mathematical point of view one 
is looking for a set packing, taking into account subset constraints. Simply in 
the considered time period the same crew members cannot be on two different 
airplanes and every airplane must have a crew, but not all of the crew members 
must be assigned. In the case of the set partitioning problem all of the crew 
members must be assigned and in the case of the set covering problem some 
crew members may be assigned to multiple airplanes. 

As it was already mentioned set packing problem is often formulated as the 
binary multiconstraint knapsack problem, see (1) and (3). However the above 
formulations constitute rather special case of it, see Martello and Toth [5]. Its 
peculiarity consists in following facts : 

• All the constraints left hand sides coefficients are equal either to 1 or to 0: 

aji = 0 or 1, i = 1, ... , n , j = l, ... , m. 

• All of the constraints right hand sides coefficients are equal to 1. 

• Number of constraints m maybe arbitrarily big in comparison to n (num­
ber of decision variables). 

In the general formulation of the binary multiconstraint knapsack problem it 
is only required that all of the knapsack problem coefficients, i.e. goal function, 
constraints left and right hand sides, are non-negative or, in order to avoid 
unclear interpretations, strictly positive. The latter especially applies to goal 
function and constraints right hand sides coefficients. It is usually also assumed 
that m (number of constraints) is not large with respect to number of decision 
variables n . 

It does mean that results obtained for the general knapsack problem, e.g. in 
the case of Lagrange and dual estimations or asymptotic probabilistic analysis of 
the optimal solution value behavior, may not be valid in the case of set packing 
problem specific formulations provided in (1) or (3) . In the present paper set 
packing problem (1) specific Lagrange and dual estimations are provided. Then 
for the random model of the (1) interesting results concerning the feasibility of 
the obtained solutions and asymtotical growth of the optimal solution values 
zopr(n), when n-, oo, are provided. 

2 Definitions 

The following definitions are necessary for the further presentation: 

Definition 1 We denote Vn ~ Yn , where n -, oo, if 

Yn · (l - o(l)) ,( Vn ,( Yn · (l + o(l)) 
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when Vn, Yn are sequences of numbers, or 

lim P{Yn · (I - o(I)) ~ Vn ~ Yn ·(I+ o(l))} = 1 
n-->oo 

when Vn is a sequence of random variables and Yn is a sequence of numbers or 
random variables, where limn4 oo o(l) = 0 as it is usually presumed. 

Definition 2 We denote Vn ::S Yn(Vn !'.: Wn) if 

Vn ~(I+ o(l)) · Yn (Vn ~ (I - o(I)) · Wn) 

when Vn, Yn (Wn) are sequences of numbers, or 

nl_!__.~ P{Vn ~ (1 + o(l)) · Yn} = 1 ( n½..~ P{Vn ~ (1- o(l)) · Wn} = I ) 

when Vn is a sequence of random variables and Yn (Wn) is a sequence of numbers 
or random variables, where limn-->oo o(l) = 0. 

Definition 3 We denote Vn ""Yn if there exist constants c" ~ c' > 0 such that 

c'·Yn::SVn::SC11 ·Yn 

where Yn, Vn are sequences of numbers or random variables. 

The following random model of (1) will be considered in the paper: 

• m, n, 0 < n ~ m!, are arbitrary positive integers and moreover n • oo. 

• c;, aj;, i = 1, ... , n, j = 1, ... , m, are realizations of mutually independent 
random variables and moreover e;, are uniformly distributed over (0, 1] and 
P{aii = 1} = p, where 0 < p :S: 1. 

Let us observe that asymptotical relations 0 < n ~ m! and n • oo requires 
that also m • oo. As the matter of fact mutual asymtotical relation of the 
values of m and n may vary between 2 extreme cases n/m "" 0 or n "" m! as 
n • oo 

Under the assumptions made about c;, aji, and taking into account (1) the 
following always hold 

n 

0 ~ zoPT(n) ~Le;~ n, (4) 
i=l 

Moreover, from the strong law of large numbers it follows that 

n m 

L c; ""E(c1) · n = n/2, L aii ""p · n, L aii ""p · m. (5) 
i=l i=l j=l 

Therefore, it is justified to enhance formulas (4) and (5) in the following way: 

n 1 n 1 
0 ~ zopr(n) ::s n/2, I>ji ::s 1, if p < - or Lai; t: 1 when p > - . (6) 

i=l n i=l n 

Formula. (6) shows tha.t random model of set pa.eking problem (1) is complete 
in the sense that nearly all possible instances of the problem are considered. 
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The growth of zopr(n) - value of the optimal solution of the problem (1) 
may be influenced by the problem coefficients, namely: 

n, m, Ci, aji, where i = 1, ... ,n, j = 1, . .. ,m. 

We have assumed that c;, aji are realizations of the random variables and there­
fore their impact on the zopr(n) growth is in this case indirect. Moreover, we 
have also assumed that m, n are arbitrary positive integers and n • oo. 

The main aim of the present paper is to perform probabilistic analysis of 
the considered class of random set packing problems in the asymptotical case, 
i.e. when n • oo. For the considered random model probabilistic analysis has 
2 strategic goals, namely: 

• To examine existence of the feasible solutions. 

• To investigate asymptotic behavior of zopr(n). 

Existence of the feasible solution, provided by x1 , ... , Xn, means that 
I:;;=l aji · Xi ~ l for all j = 1, . ... m. If any of the constraints is vio­
lated, i.e. :l j' such that L;=l aj'i · Xi ;, 1, then solution, provided by 
Xi, . .. , Xn, is not feasible. 

3 Lagrange and dual estimations 

When the general knapsack type problem, with one or many constraints, is 
considered then Lagrange function and the corresponding dual problems, see 
Averbakh [2], Meanti, Rinnooy Kan, Stougie and Vercellis [6], Szkatula [8] and 
[9] are very useful tools to perform various kind of analyses of the original prob­
lem. In the specific case of the set packing problem (i .e. all of the constraints 
right hand sides coefficients equal to 1) Lagrange function of the problem (1) 
may be formulated as follows: 

tci ·x;+ tAj· (1-taw x;) 
t Aj + t ( Ci - t Aj · aj) · x; 

where x = [x1, ... , Xn] and A = [A1, ... , Am] - vector of Lagrange multipliers. 
Moreover, let for every A, Aj 2: 0, j = 1, ... , m : 

</Jn(A) = max Ln(x,A) = max {f Aj + t (Ci - f Ajaji) x;}. 
xE{D,l}n xE{D,l}n j=l i=l j=l 
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Taking the following notation: 

{ ~ 
m 

x;(A) = 
if c; - L Aj · aji > 0 

(7) j=l 

otherwise. 

{ 
m 

c;(A) 
C; if c; - L Aj · aii > 0 

j=l 

0 otherwise. 

{ a~; 

m 

ai;(A) = 
if e; - L Aj · aii > 0 

j=l 
otherwise. 

we have for every A, Aj 2: 0, j = l, ... , m: 

r/>n(A) = t>.i + t (c; -t>.i · aii) · x;(A) = 

t >.i + t ( c;(A) - t >.i · ai;(A)) 

Obviously for i = 1, ... , n, j = l, ... , m, 

e;(A) = c; · x;(A), ai;(A) = aii · x;(A). 

Dual problem to set packing problem (1) maybe formulated as follows: 

(8) 

For every A 2: 0 the following holds: 

ZoPT(n) :S <I>~ :S r/>n(A) = Zn(A) + L Aj(l - Sj(A)). (9) 
j=l 

Let us denote: 

n n n n 

Zn(A) = LC;· x;(A) = L c;(A), Sj(A) = L aji · x;(A) = L aj;(A), 
i=l i=l i=l i=l 
m m 

Snm(A) = L Aj · Sj(A), A(m) = L Aj. 
j=l j=l 

By definition of c;(A) and ai;(A), see also (7), we have: 

m 

c;(A) 2: L Aj · aj;(A), i = l, ... , n, 
j=l 

and therefore 

zn(A) 2: Snm(A). (10) 
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For certain A, x;(A) given by (7) may provide feasible solution of (1), i.e. : 

Sj(A) ~ 1 for every j = l, ... , m. (11) 

Then: 

Zn(A) ~ zopy(n) ~ <I>~ ~ r/Jn(A) = Zn(A) + A(m) - Snm(A). (12) 

If (11) holds, then the below inequality also holds: 

A(m) - Snm(A) 2: 0. 

From (10) we get: 

r/Jn(A) = Zn(A) + A(m) - Snm(A) < l + A(m) - Snm(A). 
Zn(A) Zn(A) Zn(A) - Snm(A) 

Therefore if ( 11) holds, then the following inequality also holds: 

1 < zopy(n) < <I>~ < r/Jn( A) < A(m) . 
- Zn(A) - Zn(A) - Zn(A) - Snm(A) 

(13) 

Formula (13) shows, that if there exits such a set of Lagrange multipliers A(n) 
which is fulfilling the formula (11) and if the formula below holds: 

lim A(m) = 1 
n• oo Snm(A(n)) 

(14) 

then, due to (13), limn• oo ·~:rl;') = 1 and therefore x;(A(n)) , i = 1, . . . , n, 
given by (7), is the asymptotically sub-optimal solution of the set packing prob­
lem (1). Moreover the value of Zn(A(n)) is an asymptotical approximation of 
the optimal solution value of the set packing problem i.e. zoPT(n). 

In the case of Maximum set packing problem (3) c; = 1, i = 1, . . . , n, 
and moreover c, are no longer realizations of the random variables. There­
fore in the case of Maximum set packing problem (3) in the above formulas c; 
should be replaced with 1. As the consequence formulas where c; was involved 
will look differently, e.g. in (7) c; - I::;"=1 Aj · aii > 0 should be replaced by 
1 - I:;:'.,1 >-.i · aji > 0. It does mean that: 

{ 
m 

c;(A) = x;(A) 
1 if 1 - I; >-.i · aji > 0 

= j=l (15) 
0 otherwise. 

{ 
m 

aj;(A) = 
aii if 1 - I; Aj · aj; > 0 

j=l 

0 otherwise. 

In turn it means that c;(A) = x;(A), i = 1, ... , n, and therefore 
Zn(A) = L~=l X;(A). 

In either case, according to (2), aj,(A) = 1 is guaranteeing that item j is 
assigned to set M; . Obviously this also implies that Sj(A) = l. 
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4 Probabilistic analysis 

In the present section of the paper some probabilistic properties of the set pack­
ing problems (1) and (3) will be investigated. In the paper by Vercellis [10] 
there were some results of the probabilistic analysis of the set packing problems 
presented. In the present paper different approach is exploited. The random 
model of the specific knapsack problems (1) and (3) is significantly different 
from one considered in the case of the general knapsack problem in the earlier 
author papers, see Szkatula [8] and [9]. Namely constraints left hand sides co­
efficients aji, i = 1, ... , n, j = l, ... , m have in present case discrete probability 
distribution while in the general case they have uniform (continuous) distribu­
tion. Moreover all of the constraints right hand sides coefficients are equal to 
1 and m may be arbitrarily large in comparison to n. Therefore probabilistic 
analysis of the set packing problem (1) requires specific approach. 

Let us first observe that due to the assumptions made the following holds, 
for j = l , ... , m: 

1} = p, P{ai; = O} = 1- p, P{ai;(A) = 1} = 1- P{ai;(A) = O}, 

{ 
0 when x ~ 0 

P(c; < x) = x when O < x ~ l . 
1 when x ~ l 

(16) 

Moreover for the random variable L;;'=l,kh aii, due to the binomial distribu­
tion, the following holds for every r - integer, 0 ~ r ~ m - 1: 

Let us also assume that 

A={>.,· ··,.>-}, i.e. >-i = >-, >- ~ 0, j = l,· · · ,m. 

In the case of set packing problem (1) the following results hold. 

Lemma 1 If aii are realizations of mutually independent random variables 
where P{a.ii = 1} = p, 0 < p:::; 1, then 

Tn-1 ( ) 
P{ O.j;(A) = 1} = p - p ~ m; l ·pr· (l - p)=-r-l min{l, .>-(r + l)} . 

Moreover if A~ l / m then: 

P{a.i;(A) = 1} =p· (1-.>- · (m·p+ l-p)). 

Proof. From (7), (16) and (17) and taking into account that random vari­
able L;;'=l,k#i O.ji may take any integer valuer from the range [O, m - 1] with 
the probability given in (17) it follows that: 
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P{aii(A) = O} P {aii = 0 U aji = 1 n Ci <A· ( f aki + 1)} = 
k=l,k,'j 

1 - p + p · P { Ci < A · ( f. . aki + 1) } = 
k=l,kf'J 

1 - p + p ~ (m; 1) . pr, (1- pr-r-l min{l, .>-(r + 1)}. 

Due to the (16) the first formula of the Lemma is proven. Because 

( m - 1) (m - 1)! 
r =r!•(m-1-r)!' 

then when A ,( 1/m the following holds 

P{aji(A) = O} = 1- p +AI (m - l)! · (r + l) , pr+l • (1- p)m-r-l (18) 
r=O r!•(m-1-r)! 

Let us observe that for every integers l, m, l, > 1, m ~ 2, and O ( p ,( 1 the 
following hold 

t (!) · pk, (1-p)l-k = (p+ 1-p/ = 1 
k=O 

r+l = m-(m-1-r) . 

Using the above mentioned formulas (18) may be rewritten as: 

P{aii(A) = O} = (
m-l (m - 1)! • m 

1-p+A·p "~----,pr, (l-p)m-1-r_ 
~r!•(m-1-r)! 

~(m-l)!•(m-1-r) r (l )m-1-r)--~ ·p' -p -
r=O r!•(m-1-r)! 

1- P + >- . P ( m ~ (m; 1) . Pr. (1- Pr-1-r -

-p ' (m - 1) ' (1 - p) 1 (m; 2) 'pr ' (1 - pr-2-r) = 

1 - p +A· p · (m - (m -1) · (1 - p)) = 
1 - p + >- · p · (m · p + 1- p). 

Finally above formulas can be summarized as: 

P{aii(A) = O} = 1 - p + >- · p · (m · p + 1 - p). (19) 

Due to the formulas (16) and (19) we have 

P{aii(A) = 1} 1 - P{aii(A) = O} = 
= p - A· p · (m · p + 1 - p) = p • (1 - A• (m • p + 1 - p)). 

• 
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As the direct consequence of the above formulas we have 

E(ai;(A)) = l • P{aj;(A) = 1} + 0 · P{ai;(A) = 0} = P{ai;(A) = 1}. (20) 

Now instead of A we will consider A(n). It does mean that for every value of 
integer n, we may consider different vector A(n) = {A(n), • • • , >.(n)}, >.(n)) 0. 
For every j, j = 1, • • • , m, we have: 

n 

_LE(ai;(A(n))) = n • P{ai;(A(n)) = 1} = (21) 
i =l 

n · p(l - >.(n) · (m · p + 1- p)). 

The above equation (21) is providing the opportunity to determine >.(n) 
solving E(si(A(n)) = a, where a> 0. When a= 1 than >.(n) is solving all of 
the constraints in the (1) as equations, in the sense of average (mean) values, 
E(I:7=1 aii · x;(A(n))) = 1 for all j = 1, . ... m. Unfortunately there is no 
guarantee that solution obtained is feasible, i.e. I:7=1 aii · x;(A(n)) ,;,; 1, for all 
j = 1, .... m. Therefore one may try to consider smaller values of a, 0 < a,;,; 1 
in order to increase the chance to obtain the feasible solution of the set packing 
problem (1). Below those ideas are considered in formalized manner. 

Lemma 2 For every a, a > 0 there exists m', n' > 1 such that for every 
m) m' and n;;, n', the following choice of >.(n): 

>.(n) = l - a/(n · p) is solving the equations E(si(A(n))) = a. 
m·p+l-p 

Corollary 1 If E(sj(A(n))) = a, then P{aj;(A(n)) = 1} = a/n. 

Proof. Proof of Lemma and Corollary follows immediately from formulas 
(20) and (21) and following fact that for all m) m 1 and n;, n': 

1 
>.(n),;,; -. 

m 

• 
Solution of the set packing problem (1) given by formula (7) is feasible 

(provides packing of the set M) if and only if the formula (11) holds. 

Theorem 1 For every a, 0 <a,;,; 1 there exists m', n', m', n' > 1, such that 
for A(n), providing E(sj(A(n))) = a, the following hold 

( °')n-1 a P{si(A(n)),;,;1}= 1-; ·(l+a-;) 

Moreover for every fixed value of a, a> 0, we have 

Proof. As it was already mentioned solution of problem (1) given by for­
mula (7) is feasible if and only if formula (11) holds i.e. si(A(n)) = 0 or 
siA(n)) = 1. For every A(n), random variable si(A(n)) = I:7=1 ai;(A(n)) may 
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take any integer value r from the range [0, n] with the probability given by the 
following formula: 

P {ta1;(A(n)) = r} =(;)·pr · (1- p)n-r , where p = P{a1;(A(n)) = l}. 

From the above formula and Corollary 1 it follows that 

P{s1(A(n)),,;; 1} = P {ta1;(A(n)) = 0 U ta1;(A(n)) = 1} = (22) 

(1-;f +a(1-;f-1 = (1-;f-1 -(l+a-;) 

The proof is finished by observing that lim (1 - £<.)n-l = e-"' and lim £<. = 0 
n • oo n n • oo n 

• 

Corollary 2 P{sj(A(n)) ,,;; 1} = 1 if and only if n = l. When a ---+ 0 as 
n---+ oo then 

Jim P{sj(A(n)),,;; 1} = 1. 
n-->oo 

However if a, a> 0, is a constant then: 

J.!.,~ P{sj(A(n)) ,,;; 1} < 1 (23) 

Proof. Formula (23) follows immediately from the Theorem 1. • 
The above Theorem 1 and Corollary 2 to it have interesting interpretation, 

which may be observed on few examples presented below: 

Example 1 

When a= 0.01 then lim P{sj(A(n)),,;; 1} 
n-->oo 

When a= 0.1 then J.!.,~ P{si(A(n)),,;; 1} 

When a= 0.5 then lim P{sj(A(n)) ,,;; 1} 
n-->oo 

When a= 1 then Jim P{sj(A(n)),,;; 1} 
n-->oo 

0.999 

0.995 

0.9098 

~ :::, 0.736 
e 

Interpretation of the above examples is following. The closer the value of 
a is to 1, i.e. set packing problem (1) right-hand-side values the better ap­
proximation of the optimal solution values may be provided, however with Jess 
satisfactory value of the limn-->ooP{sj(A(n)),,;; 1}. However, for any value a, 
0 <a,,;; 1, limn-->ooP{sj(A(n)),,;; 1} t 2/e, where 2/e:::, 0.736. Due approxi­
mations of the optimal solution values are provided in the next section. 

In the case of maximum set packing problem (3) situation is significantly 
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different. Namely according to (17), where -y = ± - 1, A = -ytl: 

It is pretty obvious that only m values of -y, (and respectively .>-) should be 
considered namely -y = 0, 1, ... , m -1, (.>- = ~. m:1 , . .. , 1) because 

P { f . aki = r} = 0 for r < 0 and r > m - l. 
k=l,kf3 

The above facts have very serious consequences for the probabilistic analysis of 
the maximum set packing problem (3) . Namely using formula (24) with -y = 0 
and -y = m - 1 (.>- = ~ and A= 1) and taking into account (20) it follows that 

p. (l - p)m-l :'.':'. E(ai;(A)) = P{aj;(A) = 1} :'.':'. 1 

The latter means that, when considering A(n), n--+ oo, in order to solve 

E(sj(A(n))) = a or P{aji(A(n)) = 1} = ~. i = 1, . .. , n, j = l, ... , m (25) 
n 

the following condition should hold: 

Ct 

n :'.'o P. (l - p)m-1. 

As the matter of fact (25) is implying asymtotical relations between n, m, p and 
a . It may be difficult to obtain exact solution of (25) due to the finiteness of 
the set of values of Lagrange multipliers A (>- = ~. m:1 , ... , 1) and the formula 
(24). Frequently there may exist only approximate solutions of (25). 

5 Behavior of the optimal solution values 

Main goal of this paper is to analyze the behavior of the optimal solution value 
of the set packing problem (1) in the asymtotical probabilistic case. Moreover 
it was author intention to use simple and easy to follow probabilistic apparatus. 
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In order to proceed with this analysis one may need to exploit the probabilistic 
properties of the random variables c;(A(n)), i = 1, • • • , n. The construction of 
the random variables c;(A(n)) is defined by formulas (7) and (16) respectively. 
Distribution functions of the random variables e;(A(n)), i = 1, • • • , n are given 
by the following formulas, where O < x ~ 1: 

m 

P{c;(A(n)) < x} = P{c; <Xu C; 2: X n C; ~ A(n). 2>ji} = (26) 
j=l 

m 

x + P{x ~ C; ~ A(n). 2::>j;}. 
j=l 

Let us observe that P{x ~ e; ~ A(n) • I:7=1 aj;} is by definition equal to zero 
if c; < x or c; > A(n) · Z::7=1 aji• Therefore (26) may be rewritten as 

m 

r=l 

m 

m 

j=l 

x + L(rA(n) - x)+P{Laii = r}. (28) 
r=l j=l 

The above formula may enable us to calculate the mean value of the random 
variables c;(A(n)), i = 1, • • • ,n. Namely: 

E(c;(A(n))) = fo 1 x · d(P{e;(A(n)) < x}) = (29) 

1 A(n)·m ( m m ) 

2+ [ x• ~(rA(n)-x)~·P{~aj;=r} 

1 m A(n)•k ( m m ) 

2 + L J x L(rA(n) - x)~ · P{Lai; = r} dx = 
k=1A(n)·(k-l) r=k j=l 

l m A(n)•k m 

2-L J x·P{Lai;=r}dx 
k=l A(n)·(k-1 ) j=l 

Let us observe that, similarly to the formula (17), the random variable I:;;'=1 aji, 
due to its binomial distribution, has the following distribution function for every 
r - integer, 0 ~ r ~ m: 

Therefore the formula (29) could be further simplified as follows: 
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E(ci(A(n))) 

Let us observe that the following formula holds for 0 < p:::; 1 and m = 1, 2, ... 

From Lemma 2 (where E(si(A(n))) = a, and .>-(n) = 1;,';.;ft.~) and due to the 
formula (9) we will therefore receive 

E(zn(A)) = - 1- -----'--'----C."- • m · p · (m · p + 1 -p) = n ( (1-a/(n·p)) 2 
) 

2 m·p+l-p 

n n·p n n·p 
( 

m • p • (1 - ~ )2 ) ( (1 - ~ )2 ) 

2 1 - m • p + 1- p = 2 1 - 1 + (1 - p)/(m · p) · 

If (11) holds then due to the formulas (12) and (13), where A(m) = f Aj(n) = 
j =l 

m · .>-(n), E(Snm(A(n))) =a· m · .>-(n) and .>-(n) = 1;,';.;.£(;:!J, one may receive 
much stronger results for 0 < a ~ 1, namely: 

,< (zoPT(n)) ,< ..!_ ( A(m,n) ) _ ..!_ 
1 "'E zn(A(n)) "'a' where E Snm(A(n)) - °' and (30) 

E(zn(A(n))) = ~ • (1 - (l - a/(n · p)) 2 
) • 

2 1+(1-p)/(m·p) 
(31) 

Formulas (30) and (31) may provide us with some estimations of the set 
packing problem (1) optimal solution values zopy(n) growth, when n --+ oo. 

Corresponding to Example 1 estimations of the E ( =~rli~';l) for the different 
values of a are provided in the Example below, where appropriate value of 
E(zn(A(n))) is given in the formula (31) : 
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Example 2 

When a 0.01 then l,,;; E (::w~D ,,;; 100 with approx. probability 0.999 

When a 0.1 then l ,,;; E ( ::0(~~~) ,,;; 10 with approx. probability 0.995 

When a 0.5 then l ,,;; E ( ::0(~~~) ,,;; 2 with approx. probability 0.9098 

When a = 1 then E ( ::0(~~~) = 1 with approx. probability ~ "'"0.736. 

The smaller is the value of a the higher is probability of providing feasible 
solution of the set packing problem (1) but quality of the approximation, pro­
vided by (30) and (31) is deteriorating. Obviously approximation is not "strict" 
in the sense that, as a increases,only the upper bound on the expected value 
of the approximation quality increases. However when a is very small, e.g. 
a= 0.01 in the above example, then expected values of all constraints left hand 
sides in (1) are very small either, i.e. E(sj(A(n))) = a, j = 1, ... ,m. This 
in t urn may indicate that only trivial solution like x;(A(n)) = 0, i = 1, .. . , n, 
of the original problem may be provided. Anyhow moderate values of a, e.g. 
a = 0.5 or a = 1, in the example above are providing reasonable compromise 
between quality of the approximation and feasibility of the solution. 

Since n ,,;; m! and moreover n -+ oo then obviously also m-+ oo. According 
to formula (31) asymptotic growth of the E(zn(A(n))) may be influenced by 
both n and m . Let us consider the following mutual asymptotic dependence of 
the both parameters: 

n = (3 · m-Y, where (3 is constants, 0 < 'Y,,;; m, (3 > 0. (32) 

If O < 'Y ,,;; m then condition n ,,;; m! is always fulfilled asymptotically since, due 
to the Stirling's formula, for every constant (3 > 0 there exist constant m' ;;:: 1 
such that for all m ;;:: m' the inequality n ,,;; m! holds .. 

Under the above assumption the following Lemma holds 

Lemma 3 If a.symptotical dependence (32) holds then: 

E(zn(A(n)))"'" 2 · °' + (3 · (l - p) · m-Y-l when n-+ oo (33) 
2-p 

Proof. When (32) holds then (31) may be reformulated as follows: 

2m · a· (3 • p+m--r • (32 • p· (l-p)- a 2 . m--r+1 

E(zn(A(n))) = 2(3 ( 1 ) 
·p· m·p+ -p 

Taking into account previously made assumptions on a, (3, 'Y and p proof of the 
formula (33) is straightforward. • 

Corollary 3 Depending on the value of 'Y, 0 < 'Y ,,;; m, the following cases of 
the asymtotical behavior of E(zn(A(n))) may be distinguished: 

lim E(zn(A(n))) = { 
m--+= 

a 
when O < 'Y < l 

p 
2a+f3·(l-p) 

when 'Y = l 
2p 

oo when 'Y > l 
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Due to the formulas (13) and (30) E(zn(A(n))) is reasonable asymptotic ap­
proximation of the optimal solution of the set packing problem (1) i.e. E (zopr(n)). 
The above Lemma and Corollary, especially formulas (33) and (34), provides in­
teresting insight into asymptotical behavior of the value of E( Zn ( A( n))). Namely: 

When n = o(m) then lim E(zn(A(n))) = ~-
m->oo p 

It does mean that in this case values of f3 and -y are negligible so is the mutual 
asymptotic dependence of both n and m. 

When n"' m then E(zn(A(n))) ::,j 2a + f3 · (l - p). 
2p 

In this case level of proximity of n and m is substantial and is expressed by 
value (3. 

When m = o(n) then E(zn(A(n))) ::,j f3 · ;1 - p) . m--,-l 
·p 

In the latter case dependence on a is negligible, f3 and p are defining constant 
multiplier. 

In 2 first cases, where -y ~ 1, there is no asymptotical influence of the value 
of m (and therefore of n either) on the asymptotical value of E(zn(A(n))) . 
However in the case when -y > 1, there is very strong dependence from both m 
and 'Y· 

On the other hand parameters a, and p have substantial influence on the 
asymptotical behavior of E(zn(A(n))), when -y ~ 1. Namely the bigger is value 
of a, a > 0, and/or smaller is value of p, 0 < p ~ 1, the bigger is value of 
E(zn(A(n))). Consequence of the above statement is following 

• The bigger is value of a the less probability of feasibility of the corre­
sponding solution of the set packing problem (1) is, see Theorem 1. 

• The smaller the value ofp is the sparser the initial subsets M;, i = 1, • • • , n, 
of the original set M may be. 

In the case of the maximum set packing problem (3) situation is different. 
Namely 

P{c;(A) = 1} P{x;(A) = 1} = P { >- • (.~ ak;+ 1) :S 1} = 

{ ( 
m ) 1 } ll/>.J { m } 

P 2>ki + 1 :S ~ = L P L ak; = r = 
k=l r=O k=l,k,6j 

lI/>-J 
L (m) ·pr· (1 - p)m-r where>. E {~, - 1-, ... , 1} 
r=O r m m -1 

If there exist A(n) and a solving (25), with sufficient level of accuracy, and 
assuring Sj(A(n)),::;; 1, j = 1, • • • ,m then 

[1/>.(n)J 

E(zn(A(n))) = n. ~ (;) .pr. (1- p)m-r 
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may serve as appropriate approximation of the value of zopr(n) as it was in 
the case of the set packing problem (1) above. 

6 Concluding remarks 

In the present paper some results describing probabilistic properties of the set 
packing problem (1) and the maximum set packing problem (3) are summarized. 

In the paper distribution functions of the various random variables repre­
senting important problems characteristics are presented. Moreover some re­
sults concerning the feasibility of the received solutions and estimations of the 
set packing problem (1) optimal solution values zopr(n) growth, when n--+ oo 
arr prnvi cfocl. 

Examples 1 and 2 shows that the higher is accuracy of approximation of the 
optimal solution value the lower is probability of the feasibility of corresponding 
solution. For example when a = 0.5 the quality of approximation is pretty toler­
able, with relatively high probability of the feasibility of the solution. Moreover 
when a = 1 the quality of approximation is very good with reasonable proba­
bility of the feasibility of the solution, approximately equal to 0.736. Lemma 3 
shows possible asymptotical behavior of the optimal solution values when there 
is certain mutual asymptotic dependence of the parameters n and m. 

In the case of Maximum Set Packing Problem there are some problem specific 
peculiarities which have been preliminary investigated in the present paper. 

Some of the important avenues for the future research is convergence of the 
approximate solutions to the optimal solution and possibility of investigating 
realistic approximations of their values. 
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