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W Raporcie przedstawiono dwa artykuly dotyczqce modelowania matematycznego i
komputerowej identyfikacji dynamiki przeptywu masy szklanej w piecu wannowym do
produkcji szkla okiennego. Artykuly te zostaly zaprezentowane w postaci wykladow w Szkole
Letniej nt. Zaawansowanych Probleméw Mechaniki (Summer School on Advanced Problems
in Mechanics — APM’2001), ktora byla zorganizowana w lipcu br. w Repinie kolo
Petersburga (21-30.07.2001). Organizatorami Szkoly Letniej byly: Instytut Problemow
Inzynierii Mechanicznej Rosyjskiej Akademii Nauk z Petersburga (Institute for Problems in
Mechanical Engineering of Russian Academy of Sciences) oraz niemieckie Towarzystwo
Matematyki i mechaniki Stosowanej (Gesellschaft fuer Angewandte Mathematik und
Mechanik — GAMM). Artykuldy ukazq si¢ w materialach Szkoly Letniej w 2002 r., (Proceedings
of the XXIX Summer School on Advanced Problems in Mechanics, St. Petersburg (Repino),
IPME RAS 2002).
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On the solution of a nonlincar Navier-Stokes problem using the finite difference
method

J. Studzinski
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Summary. In (hls paper the solvabllity analysls and numerical calculations ol a quasi-
lincar, two-dienslonal problem of a viscous liquld flow in a reclangle are discussed. The
llow is described by the Navicr-Slokes, encrgy and conlinuily equalions. The analysis occurs
with help of the € -approximation and some {inite differcnecs are uscd 1o get the numerical
solution ol Lthe problem. The thecorems of the existence, uniqueness and convergence of thc
solution are prooved. The calculalions arc madc for some real data [rom a glass tank
furnace. In the paper an aticmp lo reconclle the theorelleal investigation wilh practical
applications Is made,
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1. Introduction

The problem under consideration is

2
Lw=-Bu+ A S, u; 25 1 Byradp + Fu=f
=l o

divu=0 x€Q (1.1)
u=y xel

where the domain £ is a bounded reelangle in 1\’2A with boundary I, Le. Q=Qur,

4
Q= {x: x=(x),%), 0 x; Sy, i = I,Z}and l"=UI"i (sce Fig. 1.1). Let us denote in (1.1)
=

2
w= (g g, u3) = (vy,v2, T, f=—(O10pghL, /1t and divu= 3‘—" V¥ is a vcetor
i=1 %
funetion ol the boundary conditions,
I 0 0 | 1 0 00O
a=Plo 1 o | =Yoo 1|  F=-2Blo o 4|,
o o e Blo o 000

Vy,¥y arc veloclly components, T Is lemperature, p ls pressure and p, g, ﬂ, ’1;,, u,c,, A
arc densily, acceleration of gravity, coclliclent of cxpansion, reference temperature, viscosily,
speceific heat and thermal conductivity, respectively.



System (1.1) arises from the steady-state Navier-Stokes problem upon complementing it with
the energy equation. The joint equations describe the two-dimensional viscous liquid flow in
which both forced and free convections (and not only the forced one as in the case of the
pure Navier-Stokes equation) are taken into consideration. They create a nonlinear boundary
value problem with non-homogenous boundary conditions that fits well for modelling e.g.
the molten glass currents in a glass tank furnace.

The analysis of system (1.1) consists in approximating the original equations by a new
boundary value problem with a small parameter £>0 and then in constructing flnite
difference approximation for the equations obtained. The existence and unigueness of the
solutions of both differential and difference problems are established and the appropriate
convergences of the solutions are shown. Subsequently some results of computer simulation
for a simplified version of a glass tank mathematical model are presented. The dimensions of
the model and the values of the coefficients which appear in the equattons refer to real
technological data from a conventional glass tank furnace.

2. The £ -approximation

Let us deflne the Hilbert space H' of vector functions u = (uy,u,,u3) equipped with the
scalar product and the norm

3 2
(u,v) =ZI u;v; +2Dju,~Djv,-
i=ln jl 2.1

Iy = ww,?

respectively, and the subspace H. c H' that complements with the H'-norm the set C5 of
the vector functions the carriers of which are closed and contained in 2. After introducing

into the set Cg the following scalar product

3 2
(uv)y = 2 IZD’-uiD_’-vidx
i=1 Q j=1

and complementing it with the norm

[y =wwf?

o
we get the Hilbert space U whose norm is equivalent to the H; -norm for bounded Q [7].

According to Temam [15} we can assume the existence in Q of an auxiliary vector function
weH! (implicitly defined) which satisfies the conditions: divw=0 on © and W= ¥ on
I'. Upon substituting u,=u—W we get from (1.1) the following homogenous problem



2
L(u,)=-Au, + Az i, %:i + Bgradp + Cgradu,, + Gu,, + f,,

i=t i

dTvuw =0 xe (2.2)
w =0 xel
2 (7!4 2
where  Cgradu,, = Z 3— Gu,, = Fu,, + Az U, (—)J—W— fw=1—-L,(Ww),
i=l i=l xj
2
L,(W)y=-Aw+ Z -JE+FW.
=l ‘)"i

By resolving the non-homogenous problem (1.1) to the homogenous one (2.2) we can simplify
radically the subsequent. investigations.

By applying the € -approximation with small paramicter € >0, Temam (1966}, to (2) we arrive
at the following transformed problem

Le(u,)=—Au, + P (ug) - —;— Bgl‘ad(d’fvue) +Cgradug +Guy=f,  xeQ

2.3)
u, =0 : xel
where
|2
I’,_.(uc)=5AZ(uuD‘-u£ +D;(ugug)) (2.4)

i=|
The € -approximation consisls in replacing the condition dTvuw =0 with dTvuc =—€p,

| >
and in addition the expression EA“ed'V“e to L(u,,). where f, = f,, and u,, p, arc some

approximations of the funculons u,,, p.

The benelits of the € -approximallon arc: reduction of the number of varlables in (he
cqualions (removal of the p-function), reductlon of the number of cquations (removal of Lhe
scparate continuily condilion), climination of the nonlincar components in the rclations
during the farther investigation concerning the exisicnce and uniqueness of the problemn
solution.

3. Solvabiiity of the differential boundary problem

0 0
Definition 3.1. Function u,, € U is a solution of (he problem (2.2) if for any ve U the integral

identity



2 2
(U, V)y +—;(2 Auy;Du,, ) —%Z(Auwuw,.D,-v) +(Cgradu,, ,v) + (Guty, ,v) = (f 1y V)
i=1 i=l

(3.1}

holds where dTvuw =diw=0 and(..} is the scalar product in the spuce L2@).

0 L

Definition 3.2. Function u, € U is a solution of the problem (2.3) if for any ve U the infegral
tdenttty

(ug W)y +(Pe(ug),v) + —L—(d?vue .dTvv) + (Cgradug ,v) + (Gug ,v) = (f¢,v) (3.2)
£

holds.
For farther consideration we will need the following Cauchy incquality
np. 1,4 I 1 "
ab<s—a” +—bY; abeR, m,pqg>0, —+—=1 {3.3)
pan P4

and the Holder tnequalities:

n n ) Vp,
'f[]u,E sn(ﬂud"dx] Y 1LY (9)) 3.4)
k=l

0 =1\

2 i Uik

i=l k=1

n fm U
S H(ZI“MI”‘ J : uy €R (3.5)
k=I\i=]

and also the following lemmas:

Lemma 3.1. For any funclion u € H(f Q). Qc R?, the inequality

4 20 )2
Ma <2l MU

. 2 4

holds where M.“ , mean the norms in L (Q) and L’ (£2). respectively (7).
Lemma 3.2. For any function u € H ,{ (£2) with the domain  bounded the tnequalily

2 1y
W <

i

holds where V| is the smallest cigenvalue of the Laplace operator —A tn §) for the zero
boundary conditions 7).



Lemma 3.3. A sequence of functions {u"} that converges weakly in H!(Q) for Qc R? s
converging strongly in I(Q) and L4(Q) [7].
Lemma 3.4. A system of the nonlinear equations
Hi(e)= Hi(c.eyy=h,»  EL2..k  ceRk,
P

k
has at least one solution if the inequality ZHi(c)c,- Zaolcl —K, holds for a,>0,
-

|d” =cf+..4cf.p>1 and K, 20 116].

Theorem 3.1. Forany f, € I? and forany € >0

(4]
(a) the problem (2.3) has at least one solution u, € U if the inequality

1
o=5-Z1—12||W1|U >0 (3.6)
7] 23"‘IAI
holds, where Zl—— X2= ’Fl andIAl are some norms of the matrices F and A,
vi?
respectively;

o
() for any solution u, € U the following estimation

1~ 2 1
Zo"us"z +;ﬁ"d1vu£" Sanfeﬂfr 3.7

(fev )

v My

{c) the series of the solutlorls of (2.3) determined approximately by the Galerkin method

(1]
Jor any function ve U ;

is true, where "ft-:llu' =sup

o
converges to any U, according to the U -norm.

We precede the proof of the theorem by some lemmas.

o
Lemma 3.5. For any function u € U the equality
(Pe(u),u)=0
holds.

This equality we get after multiplying the expression P,(u) (see (2.4)) by u in P and using
subsequently the Green formulas.



o
Lemma 3.8. For any function u€ U the equality
(Cgradu,u) =0
holds.

This equality we get after multiplying the expression Cgradu (see (2.2)) by u in I? and using
subsequently the Green formulas and the assumption divw=0.

[\]
Lemma 3.7. For any functions u, v, we U the inequality

P )

=1
holds where j4 =2"4|4].

This inequality we get after using successively the Holder inequalities (3.4) and (3.5).
(]
Lemma 3.8. For any function u€ U the inequality

[(Guw| <y + 2271 )"“Ilf/

holds.

This inequality we get after estimating the expression Gu (see (2.2)) from above and using the
estimates from lemmas 3.7, 3.2 and 3.1 successively, Le.

[(Gu,w) <|(Fu,u)| +

2
[A_Zl uiD.-W-u] <IFl” + 2l Pl B = 20y + 20 B -
i=

Proof. According to the Galerkin method we can write the approximate solution of (2.3} in the
k oo
form u: =Zc,“-v,- where ¢;; € R, k=1.2,... and {V"}i=l is a system of vector functions that
i=1
o
is complete in U. For u: and the set of v; we get from (2.3) an equivalent system of
nonlinear equations

(Leué‘ W)= —(Du,’s‘ RBES (P,:(u,'zc )ovi) - é(BgraddTvu: W)+ 38

+(Cgradu:,v,-)+(Gu:,vi) =(fe,v;)

After multiplying each equation of (3.8) by an appropriate ¢,; and summing all equations
the following relation



2 1,~ 2
||u§||u +(Po(uk ),ué‘)+£—y—“dlvu5“ +(Cgradul ,uk) + (Guk ,ub) = (f..u) (3.9
results. Using the lemmas 3.5, 3.6 and 3.8 we transform (3.9) into the inequality
2 1 ~ 2
k" ¥k k
u - )+—||d1vu " <(fo ug) (3.10)
II ey X4 P € fe €

where Yy, =%+ XZHWII v - The solvability of (3.8) for 1- 7, > 0 results from (3.10) and the

lemma 3.4. Using the Young inequality (3.3) with 17=1 to estimate (f, ,u:_f) from above we
get from (3.10) the relation ’

Zoluk HZ 1 "d;v,,g"z S—;Ilfeufr (3.11)

+___
U e

]
which means that the sequence {ué }k is uniform bounded in U for y ,>0. Consequently a

o [
function 4, € U and a subsequence {uf"} exist and ué‘" converges weakly to ¥, in U and

it converges strongly to u#, in L% and Lf according to the lemma 3.3,

To show that u, is a solution of the problem (2.3) we will find the limits of the components

of (3.8) for kn— e and for i fixed. To find the Wmit for (P,(u¥),v,) the following
transformation

1 & 1, & 1
(P.(ut ),v,-)=E(AZ(u§ —uaj)Dju:,v,-)+E(AZu£iju£,vi)—EZ(Au:j(uf ~u).Djv,) -
=i j

Jj=1 j=1

1& 4
—EZ(Auque ,Djv,-) (3.12)
j=1
and subsequently the lemma 3.7 and the fact of the strong convergence of u:" to ug in Lt
should be used. As a result we get

lim (P, (uf),v;) = (P (ue)v;) (3.13)
kn—yoo

Finding the limits for other components of (3.8) we take into consideration the weak

0
convergence of u:" to 4, in U and its strong convergence to u, in L* and also the

completeness of {vi};l in U. Consequently we get from (3.8) the identity (3.2) that shows
the truth of thesis (a).

We get the estimation (3.7) from (3.2) after inserting v =u, and then following the same way
as by getting the relation (3.11). This shows the truth of thesis (b).



L4
To show the strong convergence of u:' ' to 4, in U we transform (3.2) into the form

(Leug - Ltu: My = u: )=(u, - u,’:‘ Mg~ u: Yu +(Pe(ug)u, - u: )- (Pe(u{:‘ hte ~ ulf )+
+zb(d7v(u£ - u,’_f ),d?v(uE - u: N+ (Cgrad(u, — ulf Wit — u: )+(G(u, - u: Lt — ui‘.)
{3.14)

from which we get

2 1y~ 2
“u‘ —ué‘ﬂu +E"d|v(ue —u:)" =(Leug,ug -—u:)—(Cgrad(u,_. —ué‘ )ity —u:)—
—~(Glug —ub)ug —uk) = (foouy —ub) = (Po(up)uy —ub) + (Powk) ) ~ (P B by = 1,

We can find now the Wimit of /¢ for kn— oo using for it successively the lemmas 3.5, 3.6,
3.8, the relation 3.12 and (he property of the strong convergence of u:" lo u, in £. Then

we get hlim |I k"' 0. it shows the truth of thesis (c) and ends the proof of theorem 3.1 o
—>o0

Theorem 3.2. [f the estimation
Yo~ 2l el 261>0 . (3.15)

holds where Y= __Z_QW then the approximated solution of the problem (2.3) is unique.
2x,)

o
Wc precede the proof of the theorem by some lemmas.

Lemma 3.9. For any functions u, v the inequality

2
I(Pe(u) =P (v),u- v)| < xznuluﬂu - vllu
holds.
We get this inequalily using successtvely the lemmas 3.7, 3.1 and 3.2 to estimate from above

the following expression

2 2
(P ()= P.(v),u—v) =—;—(A2(u‘ - v;)D;u,u~ v)+?l-(A2 v;Dj(u—v)—
i=l

2 2
~5'Z(A(u,. —;)u,D; () —%Z(Av,-(u—- v),D; (4= v))
i i=|

that resulls front (2.4) like (3. 12) does.

Lemma 3.10. For any solutions ué , uﬁ of the problem (2.3) the inequality



2
(Lot~ Lot ol -ub) 2 (1= 24 = sl el ot - ],

holds.

Afler inserting u, = ué into (3. 13) and using successively the lenunas 3.9, 3.6 and 3.8 we get
the relation

2 1g- 2 2 2
] k1 k 1 k F { k 1 { k ] k
(Leug — Leug 1 _uE)Zl“E —Hg IU +€ﬂ Id'v(“t —u, )ll _XZI“EIUI"A: — g "U _X4l”c —ug IU

Jrom which the lemuma’s inequality results afler considering the estimation (3.7).

Proof. Let us assume that two different solutions ué, ubz. of the problem (2.3} exist and we
v o

will show thal they are cqual in U. For the solulions and for any function ve U ihe

following relation

(Lotd — Lou? ) = (ul = u2,v)y + (B (ul) ~ Bo(ul) ) + i(dTv(uL —ud) v+
+(Cgrad(u! ~u2),v) +(Gu} —ul),v)=0=1,

results from (3.2), After inserting v =u,': - u: and using the lemma 3.10 we get

>(1 - 1 2 2 -
ll 2( —X4 _xSIUeIU') Ue = Ug v "'2
from where with the help of (3. 14) the incquality

120
Ozlzzﬁ,llue—uquZO

o
holds. It mecans that ué = ug in U and this ends the proof o

Theorem 3.3. If € = 0 then from the sequence {ue} of the solutions of the problems family

(2.3) one can choose a subsequence thal converges strongly tn U to the solution u,, of the
problem (2.2).

Proof. The proof consists of two sieps. We show the weak convergence of the solutions {uE}

in U to 4, in the first step and the strong convergence of {“e} in U to u,, in the second

one.

L]
We can sce from (3.7) that the scquence {uE} is uniformly bounded in U ie. such a

[ o
function u,, € U and a subsequence {um} exlst that {um} converges weakly in U to n,,



for £, = 0. Then {um} converges strongly to u,, in L? and L! according to the lemma
3.3 and also {dTvum} converges strongly Lo dTvuw in L2, Using (3.7) we get the cxistence
of a subscquence {d-i‘vumm} that converges strongly in L? 10 0 for Eun — 0. From it
dTvuw =0 holds. To show thal u,, is a solution of (2.2.} we wrile down the identily (3.2) lor

Ugyy € U and for any ve U for which divy=0 holds. Then we have Lhe relation

(Lettguys V) = (g, My +(Pe(tg,,), v) + -;!'L—l-(d-fvua,,,,,d'i'vv) + (Cgraduy,,,,v) +

H( Gy, V) =(fe,V)

Finding for it the limit for £,, — 0 under conslderation of (3.14), (2.3) and of the condition
divw=0 we get the identity (3.1). This ends the fivst step of the proof.

Now we form [rom (2.2) and (2.3) the relation

(Lu, = Loty sty = Ueyn) = (ty = Ugysthyy — U Yy +(P(u,), 0, ~ Ugyn) = (Pe(Ugyy )t — gy,) +

+(Bgrad(p — poyy oty — Ugyy) + (Clur,, — Ugn o thyy = Ugyy) +(Guy, — gy, ), 8, — g, ) =0
{3.16)

2 .
[ .
where P(u,,) = AZum-D,-uw. Peum =———di Vg, . If we find now the lmit for (3.16) for
i=l nm
€, — 0 taking for it under consideration {3.13), the lemmas 3.5, 3.6, 3.8, the condition

- ' . 2
divu,, =0 and the estimation (3.7) sucecssively, then we get  lim luw - “avmnu =0. That
0

ends the proof of the theorem

4. The difference approximation

To solve approximatcly the problemn (2.3) the finite differcnce mcthod will be used. In the
reclangle {2 we determine the following grid

Q) ={x x=(ihy,jhy), i=0},..,Ny, j=0l,....Ny, Nphy =my, k=12}.

Let us Introduce the Hilbert spaces Lf, and U}, of grid vector-funclions u,,r = (Upg Uy, Up3)

dectermined on ﬁ,, . The sealar product and the norm for L,z, arc as follows

3
(pvdp =l Y, Y wixv(x),  x=(x ,x;)

i=l xef), 4.1)
I“hll,, = (uh'uln);:n

and for U}, arc as follows

10



(up,vidu, = (Brp,vadn
4.2)
12

n“h“u_ =(Byup,up)p

where B, =-A, is the Laplace difference operator.

02

Let us introduce also the space Ly C Lf, equipped with the norm (4.1) and defined for the
functions u, that are determined on €2, and are zero on the grid bound T,

—_— o
Q, =Q;, UT}. We introduce either the space Uy c U, equipped with the norm (4.2) and
defined for the operator B, that is determined for the vector functions being zero on T,.

We take the following denotation
uy, (x) = uy (ihy, jhy) =u:{ . Oy = (u;fu —ul) Iy, Oyuy, E(uf{ - u;;_l’j)/ hy,
Oy, = Qqup +01up) 2. 3,0, E(M:Iﬂ'j —ZuE + u:;_l’j)/ h}

whereby the finite defferences concerning the variable x, are to write down analogically. We
have as well

- - = = 2 _
3,u,,={31u,,,32u,,}. axuh={3|uh,32uh}, —A,,uh E—c?xa,uh =Z¢9,-3,-u,, .

i=l
We can approximate now the differential problem (2.3} with the following difference problem
Lguy, = —Agu, + Pd,(u,,)——;-Bgradthv,,uh +Cgrad ,uy, +Guy = f,, x€, @3)
u, =0, xel

where
- y 2 N .

Pd,(uh) = EAZ(uhia,-uh + 3i(uhiuh ))
i=]

2 2
Cgradhuh =A2Whi3,~uh N Guh =Fuh +A2uh,-3,-Wh
) i=1 i=1 4.9

grad,,d?v,,uh = (D],Dz) > Di =%(9,-d?vhuh +§,-dTV,,u,,) > i= 1,2

N

2 _
divhuh =Zaiuh,~ , dthuh = 3,-uh,~
i=1

i=1 i

The functions f,,T=(f,,1,f,,2,f,,3)e Lf, and W,T:(Whl,WH,W“)EUh are some

approximations of the functions f, € L?and weH'.

11



5. Solvability of the difference boundary problem

We will show now the existence and uniqueness of the solution of the problem (4.3) and the
convergence of this solution to the solution of {2.3). For the farther consideration we will
need the following lemmas:

0
Lemma 5.1. For any function uy, € U the inequality

leskie < 2nlilenly,

holds where IHI 44 Means the norm in L‘,‘, that is the grid approximation of JARTIN
L]
Lemma 5.2. For any function uy, € Up the inequality

Bl <Sepill.  commm

holds [1].

One can see that these lemmas are difference equivalents to the lemmas 3.1 and 3.2.

Theorem 5.1. For any function f, ELi and for any h=(h;,h;)>0

o
{a) the problem (4.3) has at least one solution u, € Uy, if the inequality

1 _
Xoo =5 %11 —122||Wh||u, >0 -1

holds where Yy, = |F|;° and ¥, =ZU4|AIC<1’12=

o
(b) for any solution u, € Uy the following estimation

1 ¥ = 21
Zoolall, +2—£;("d1vhu,,“: +"d1v,,u,,”h)s5||f,,||z; 5.2)
is true where ||f"||fl‘, =sup.(|]'t:_’!‘|)"2i for any function vy € Elh.
vy h U,

We precede the proof of the theorem by 4 lemmas which are the difference equivalents to the
lemmas 3.5, 3.6, 3.7, 3.8, respectively, and which are to prove similarly as the last ones.

o
Lemma 5.3. For any function u, € Uy the equality

(Py. (uh),uh) =0

12



holds.

o
Lemma 5.4. For any function u;, € Uy, the equality

(Cgrad,,uh,uh)h =0
holds.

To get this equality the conditions dTVhWh = dTV,,Wh =0 are to be used.

o

Lemma 5.5. For any functions uy,, vy, wy, € Uy the inequality

2 ~
(zu] < ool bly, Plhe
h

i=1

holds where X3 = 2V4IA| =X3-

[}
Lemma B.6. For any functions u,, v, € Up the inequality

|(Gunva)y|< vy + 22 uly Meally, vl

holds.

To get this inequality the lemmas 5.5, 5.1 and 5.2 must be used.

Proof. The problem (4.3) is a system of N=(N;~1)(N, —1) nonlinear algebraical equations

0
determined inUpj. A solution of this system one can formulate as a grid function

N AN 0
uy = ZCiV;. where ¢; € R and {v;,} . is a base in Uj. Then we can write down the vector
f=
i=1
equation (4.3) as the equivalent system of scalar equations

(Lentt Vidn =), ELLN (5.3)

After multiplying each equation of (5.3) by corresponding ¢; and summing all equations we

get the relation

(Ld,u,,,u,,),, = ““huz + (Pﬁh (u,, ),u,,),, + L("d-l’v,,u,,llz +I|d?thhH2) +
U, e h h

+(Cgradhuh,u,,)h + (Guh,uh)h = (f,,,uh),,

from which with the help of the lemmas 5.3, 5.4 and 5.6 the inequality

13



1, 2 |, 2
"u,,"zh(1—)_/44)+E("d1vhu,,||h+"d1v,,u,,uh)S(fh,uh)h (5.4)

results where Y44 =X11 + X 22 "Whﬂu . One can see from (5.4) and the lemma 3.4 that the

equation system (5.3) and also the problem (4.3) has at least one solution for 1—- ¥ ®> 0
and for h=(h,,h,) fixed. This proves the thesis (a).

If we will use the inequality (3.3) with 11 =1 to estimate (5.4) we will get the estimation (5.2).
It shows the truth of the thesis (b) and ends the proof of the whole theorem »

Theorem 5.2, [f the estimation

1—144—155||fh||uh 26;,>0 (5.5)
holds where Y55 =—L22—V—2— then the solution of the problem (4.3) is unique.
(2% 00)

We precede the proof of the theorem by 2 lemmas which are the difference equivalents to the
lemmas 3.9 and 3.10 and which are also simirlarly to prove.

o
Lemma B.7. For any functions u,, v, € Uy the inequality

(Pey () = Py, (v ),y = vp)p < Xzz““ﬁllu, Joen - "h"f;,

holds.

We get this inequality after transforming (4.4) similarly as it was done in the lemma 3.9 and
using successively the lemmas 5.5, 5.1 and 5.2 to estimate the transformation.

°
Lemma 5.8. For any functions u,, v, € Uy the inequality

(Leptp ~ Lepvp g = Vi) 2 (1= X aa ~ ZSS"thlU;)II“h - Vh||f,A

holds.

From (4.3) we will get the relation

(Lepup — Legvy,up —vg)p =—(Ap(uy —vp) ey —vy)y + (P (ug) = Pep (Vg )s 8ty — vy )y +
+ﬁ((d?vh(u,, — o TV, Gty — v + @AV (= v A3 it — v,,)),,)+

+(Cgradh(uh - Vh),uh _Vh)h + (G(uh —v;,),u,, "Vh)h
(5.6)

from which the lemma’s inequality results after using successively the lemmas 5.7, 5.4 and 5.6
and considering the estimation (4.6).
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Proof. Let us assume that for a fixed h=(h;,h;) two different solutions u;,, u,% of the
o
problem (4.3) exst. For any function v, €U, we get from (4.3) the expression

(Ld,u,l, - Ld,uz,vh)h =0=1] from which (5.6) results after inserting v, Eu}, - u,z,. Using
the lemma 5.8 and considering (5.5} we will get from (5.6} the estimation

2 o
12 611“";1 - u;2,I|U 2 0 which shows that u,l, = u;‘: in Up. This ends the proof e
Ll

Theorem 5.3. If

{a) the function u, € I‘}h is a solution of the problem (4.3} and
{b) the functions @), d;i, are the segmental constant extensions in ) of the functions
uy,, d;uy,, respectively,
then from the set {h} of different discretization steps of £ one can choose such a sequence
{h,, }" converging to zero that Uy, and 9,H,, are converging strongly in LZ(Q) to u, and
D;u,, respectively, where u, is the solution of the problem (2.3).

Proof. We obtain from (4.6) that the sequence {“h} of the solutions of (4.3) is uniformly
o 02

bounded in Up and also in Lx(£2,) for x,, >0. The result is that the sequences of the

step functions {ﬁh} {3,17,,} which are induced by the grid functions u,, Jd;uy,,

respectively, are uniform bounded in I (€2) I5]. It means that such a function u, € Hg and

a subsequence {ﬁh,,}e{iih} exist that #,, converges strongly to ¥, and J;ii;, converges

weakly to D;u, in I? for h, —>0.

For showing the strong convergence of d;Hj, to D;u, in L? we form the grid function ugy,
that is a grid cutting of the limit function u,. Then from the sequence of the step functions
{ﬁm} which are induced by ugy one can choose such a subsequence {iidm,} that iy,

converges strongly to u, and d;iiy,, converges weakly to D,u, in I? for A, — 0. It means
that (i, — Benam) CORVeTges strongly to 0 and (9, — J;Hg,,) converges weakly to O
in L* and also that (up,, — Uepmm) CONVerges strongly to O and (9;Upmm ~ O; Uemm)

converges weakly to 0 in Li [17}. We can write down the expression
(Lehhnm — Lo Ughnm s Ypnm = Yghnmdn = S Unpm = Yehnm )b — (Len Yehnm » Yhnm = Yehnm )

from which using (4.3) for u, =u,,, and using (5.6) for w, =u,,, and v, =ug,, we get
the relation
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2

2
1 = = 2
l“al(uhnm - udlnm)" + E(Ildlvh(uhnm - udmm)|: +||dl Vi (Uppm — udmm)ﬂh)=
h

2
. (fh’uhnm = udmm)h - Z(ai“dmm’ai(uhnm - udmm))h - (5.7)
i=1

1 (- . - -
_E;;((dl Vilginm Q1 Vg (U = U N + (A 1V gt , A1V, (g — “dmm))h)—

(P, (Upm s U, — Yennm ) — (Cgrad ity Uy — Uehwm) b — (Gltppm s Uhm — Ughinm) 1
Finding the limit for (5.7) for h,,, — 0 we get that the right side of the relation converges O.
It means that J;(#p,, = Ug,,) converges strongly to O in Lf, and subsequently
(@ Fhm — O Wighnm) converges strongly to O in L and finally 9, iy, converges strongly to
Diue in Lz.

In the second step we show that u, € Hé is the solution of the problem (2.3). Using (4.3} we
can write down the expression

2
~ -~ 3 ~ ~ ~ 1 o~ ~
(LeTig,, ¥3) =~ 90Ty, ) + (Pey (g ), v,,)—z(Bgrad,,dz Vailg, Uy) +

i=]

(5.8)
+(Cgrad iy, , ) + (Gilg,, %) = (Fy. %)

where the functions i, V,,GLZ mean segmentally constant extensions of the grid

functions ug,, Vg ELi which are some grid cuttings of 4, and of any function veHé,

respectively. Finding for (5.8) the limit for # — 0 we get the integral identity (3.2). This ends
the proof e

6. Iterative algorithm

The difference approximation of the differential problem (2.3) leads to the system (4.3) of
nonlinear algebraical equations which should be solved approximately with iterative
methods. One can use here the following algorithm (3]

Byult! = Boul —y(Lgyuf — f). n=0,1,... (6.1)
o o

where Bj,:Up — Uy is a positiv, linear and self conjugated operator, l.e. B, :B,: >0. We
can take B, =—A,.

For farther consideration we will need the following lemmas [4]:
Q
Lemma 6.1. For any functions uy, v, € Up the inequality

(Ld,uh - Lehvh,uh bt "h)h ?_62"14’, - th:/h (6.2)
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- holds where 8, =1— Y44 — 133““h"u, :

We will get this inequality from the relation (5.6) after using successively the lenunas 5.7, 5.4
and 5.6. :

Lemma 6.2. For any functions u;,, v, € loJ;. and for B, =—-A, the inequality

(B3 (Lent = L), Lty = Leavi )y S 83y — V:.ﬂf,_ 6.3)
holds where

Oy=(l+ x22(2““hllu‘ +s - Vh“u. )+ i"‘ It Xzz(C;lMIIWAIM +lo. w2

For proving the lenuna we ntroduce the auxiliary function

-1 _
(0= {B/. (Lytty = Lgyvy) » ::: ?h
’ h

and with the help of it and of (4.3) we can formulate the relation

(B3 Loy~ Lyvi)s Lyt — Lewva)n = (Loytty, — Ly i Sy)n =

= (B3, (uy, = vi )3y + (P () = Pey (Vo83 +
1 - ~ 3 = 6.9)
+2—Eﬁ((d|v,,(u,, - v,,),dlv,,s,,),, +(dlv,,(u,, - v,,).dlv,,s,,),,)+

+(Cgrad, (uy, —v4),5,)p +(Gup —vpdsy )y

We will get (6.3 after estimating the components of the right side of (6.4) using successively the
Hélder inequality (3.5) and the lemunas 5.1, 5.2, 5.5 and 5.6.

Theorem 6.1. If for the operator Lyu, in(4.3)
{a) the inequalities (6.2) and (6.3) hold for §,(1)>0 and for 6,(t) and - §3(1) being
bounded and nongrowing functions, where (€(0,r), u,=uj, v, Eu,‘,. u, - vy =z and

u;,‘ . u,: are an approximaled and the exactly solution of the problem (4.3), respeclively;
n
4 <r
o i "
©@y>0ing.1),
then for By, = -A,, the inequality

et - 85! L + - L], <pinfe],, 65

holds. Here p(y)=(l1-2y5,(r)+ 7253(r))"2 and such the value 7y, exists that p(y)<|
Jor 0<y <y, and minp(y) = p(r")=(1-83(nN63' (N where ¥* = 5,(nd3'(n.
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The proof of this theorem is given by Djakonov [3). ‘The truth of (6.5) shows the convergence
of the iterative algorithin (6.1).

7. Numerical calculation

As a complecment to the theorclical discussion somme numerical caleulations were done for
the boundary value problem representing a model of the molten glass flow in a real tank
furnace. To shorten the computing time the model cquations (1. 1) were taken in a simplified
form with the matrix A changed as follows

00 0
A=Lloo o
H 00c,uld

This stmplification means physically that the influence of the inertial forces on the liquid
motion has becn omitted because of the small velocities of the glass flow.

The simplificd problem (1.1) can be written in the scalar form

u(D=v| + D%v,): Dp

(D} vy +D3vy)=Dyp- pgB(T-T,)
ADIT+D31) = pe,(v,D, T+ v,D, 1)
Dyvy +Dyvy =0

(7.1)

with the boundary conditions added which result from the practice and which are: vy =0
and vy =0 on the boltom and on the side walls of thc glass tank (Le. on
[y, Ty and Ty of ); vy =v((x)) and v, =v,(x;) on the free surface of the glass mass

(lc. on T’y of Q) with v, beeing quadratic in scctions 1 and 3 of the tank: T=T(¥ on all
boundarics and the function is lincar on the side tank walls and it is cubic clscwhere,

The boundary condilions for the function p arc unknown and this makes ncecssary to
transform (7.1). It is then advisable to replace the velocities vy, v, by the current function
¥ where

v - dy
V) =d, ——, Vy==—d,— (7.2)
| 0 axz 2 0 3x|
A
with a, = 9. and Ay = 3.(7;,) . Using (7.2) one can transform (7.1) to the following form

4 4 4

Iv, , dv v ppar_,
&l oo} oxd  pay Iy

I’ 9T Ay dy o _dy or =0
dxz 3X2 l 3x2 3X| axl aX2

7.3

(7.4)
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that consists of only two equations in contrary to the four ones in (7.1). The reduction of the
number of equations shall cause a better convergence of the future iterative algorithm. On
the other hand the order of the new equation (7.3) inreased to four and such an order
change leads usually to a worse stability of difference quotients.

The boundary conditions for the equations (7.3}, (7.4) are

i
=0, —=0 for x, =0
v o, X2
oy
y=0, —=0 for x;=0 and x; =L
oy
o
v=y(x), ——=0 for xp=0 and 0<x; <]
axZ
2
V/=![/H, ’a—zl‘—_- for 12=H and IISXISL-I2
o)
; oy
l[l=l[12(xl), -ax—=0 for Xy =0 and L-12 leSL
2
T=T(x)=ax} +bxl +cx; =0 for x, =0
T=Ty(xy)=ax; +b, for x; =0
T=Ty for x=H and 0<x; <}

T=T3(x)=a3(x =) +b30n = h)* + e300 - ) +dy
for x; =0 and L-l,<x <L
T=T,(xy)=a4x; +by for x;=L (7.5)

.

where L and H mean the length and hight of the tank furnace and I;, /, indicate three

sections on the surface of the melt (see Fig. 7.1). These relations related to the walls and the
bottom of the tank result easy from the boundary conditions concerning the velocities

vy and v, and the temperature T as given generally with the equations (7.1). Some more
detailed assumptions connected with the tank surface have to be done. In the first surface
section (0<x, </;) the raw materials are put into the tank and there v; =0 holds and a

quadratic function for v, is assumed [8]. In the second section(/; £x; S L-1;) v, =0 and
Dyv;=0 are assumed from which 1y =const resulis. In the third
section (L —l, < x; < L) in which the glass sheet is drawn out of the tank alsov; =0 holds
and a quadratic function for v, is assumed. There is stated that the temperature is
constant (T =const) and equivalent to the melting point of the glass in the first section of

the tank surface and it changes according to a third order function in the region J, <x; <L
consisting of secttons 2 and 3.

All parameters in the equations (7.3), (7.4) are constant with the exception of i and A for
which the following approximations
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{p =cxp(A + B/ (T'- C})) (7.6)

A=Ay exp(By(T - Cy))

hold [9].

A discrcic approximation of the equations {7.3), (7.4) occurs wilth the classical difference
quoticnts. They lcad, however, in the case of high order derivations to a bad stability at Lhe
edge of the diffcrence cquations. This is explained by an inaccurate approximation at the
edge of the knotted grid [2]. Becuase of that some new central difference quotients have been
devcloped for the fourth order derivations of

'y RPLAL) 29+ Vi

3xi‘ lz,4

4 (7.7)
Iy ey “2Y Vi

x; h3

They contain a smaller number of the grid knotted points than the classical diffcrence
quotients. This allows to approximate more appropriate the edge region of the grid and to
choose some greater discretization steps while calculating the equations.

After the approximation is done the following diffcrence schemes

]
Vi =(|6¢12('Vi+|j Vi)t |6:l—2('4’¢j+1 +Vi) -
“2Wirtjer = 2V i FV e —2W )~ 2V i F W e — 2V W jeg) +(7.8)

P.t,’p'fiﬁzhlh,l 5 |
i = T ) B4+ L d )

|
Ty =(d(Tigy + Tiap) + = Ty + T +
d (7.9

Ay
+-&-((7},'+| =T baj =V i) = Tiaj = T )XV g =V ) (U +;))

result from (7.3), (7.4) for &£1,2,...,M and j=1.2,...,N where f', i., H are some standarization
constants; d =Hhy/Lhy: My, h, are discretization steps; b =L/(M+1) and
Iy =HIN+1).

The schemes (7.8}, (7.9) are solved by means of the relaxation method using the following
ilerative algorithm

V"g'“ =(l-0)W) +oy; {7.10)
T =(1-0)Tj +0,Tj @10

where @y, @; arc rclaxation cocllicients and T, ¥ arc calculated from the equations
(7.8) and (7.9) in cach iteration n=0,1,2,...
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For thc numerical calculation the values of the physical cocllicients and of the space
dimensions of the model were chosen according o those of a real lank [urnace. The
convergenee of the ierative algorithun was relatively fast with highly satisfactory accuracy of
the caiculation obtained. Some examplary results of the tempcrature and current liclds arc
shown in Figure 7.2. They were obtained for the grid of 600 modes wilth the accuracy ol
calculation {07 for Tand 10 for . The computation was stopped afier the total number

of 2900 ilerations {or both (he temperature and current schemes. The iteration number for
the temperaturc scheme was 800 and for the current scheme was 2100.

8. Conclusions

in this paper Lthe s-approximation method for the analysis and the finile differences method
for solving of a nonlinear boundary value problem were used. The non-homogenous
boundary problem consists of Navier-Stokes and cnergy equations and they describe the
flow of viscous incompressible liquid. For illustrating the theorelical considcration the
computation ol a glass tank lurnace was made. This tank [urnace is a practical example of
using the Navier-Stokes and energy equations for mathematical modeclling,

The theorcms of existence and uniqueness of the problem solution and the theorems of the
convergence ol both mcthods are presented. The theorems of existence and uniqueness arc
conditional, i.e. they are true if some conditions are fulfilled. These conditions arc the
inequalitics (3.6) or (4.5) in the case of existence of Lthe solutions of the differential or
difference equations and the inequalilies (3.15) or. (5.5) in the case of uniqueness of these
solutions. These conditions are rather strong but in general they depend on the liquid
paramcters and on the dimenstons of the area where the equations are determined.

Analysing the conditions one mecls an additional trouble with the existence of an auxillary
function W (or its difference approximation Wj,) that is defined implicitly and which helps Lo

transform the primary non-homogenous problem (1.1) into the homogenous one {2.2). Let us
take for example the inequalily (4.5) that conditions the existence of the solution of the
dilference problem (4.3). We can show it in the form

= l
||Wl.ﬂU. <W(] ~|Fles) 8.1)

where |A|=pmax(cy 1A, 11y, |F|=pg[i/ U and ¢, =mymy. From {8.1) resulls thal the
cxistence of the postulated function W, depends on the viscosily ft and on the conductivity

A of the liquid and also on the dimensions my,m, of £2. That means that the incquality
{8.1)is true if 4 and A are big enough and if £ is rather small.

The general conclusion is that the solution of the boundary value problem (2.2) exisls for big
cnough values of I and A and for small enough values of £2 and of the norm IW'U where

the function W characterizes the inhomogenous boundary condilions . This conclusion
holds also for the simplified problem (7.1).

If the problem consists of only the Navier-Stokes equation with the homogenous boundary
conditions as well as with the inhomogenous ones the problem solution exists
unconditionally. Only il the uniqueness of the solution Is required the value of ¢ should be
large enough and - in the case of the inhomogenous problem - the value of an appropriate
norm of the boundary function § should be small enough [15].

A1




The theorctical results arc conflrmed with the numerical computation. The mathcmatical
modecl of the glass mass flow is characlerized by the relative large values of the paramclers
1t and A. The dimensions of the considered glass tank furnace, i.c. of Lhe arca Q, arc also
large. There were some troublcs at the beginning of the calculation with the convergence ol
the iterative algorithm (7.10),(7.11) that is a particular form of thc algorithm (6.1). These
troublcs were climinated after introducing the ncw difference quotients (7.7).
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Figure 7.1.

Figurc 7.2.

Index of Figurcs

Domain Q of the boundary value problem (1.1). The boundary conditions are:
v,=0for xel Ul Ul and v, =y (x) for xely; v, =0 for

xeMUIL, UL, and v, =@(x) for x ely; y(x) =¢(x) =0 for

xe(l UF:)OFJ; T=g,(x)forxel’, and §,(x)=C,,,(x) for x efinl,
i=1,2,3,and &, (x) =&, (x) for xe[ N Ta.

The boundary conditions delined for cquations (7.1) as well as for cquations (7.3
and 7.4): the boundary valucs for velocitics v,,v, (figurc a), currcat

function y (figurc b), and temperature T (figurc c). Functions y ,, ¥, , and
1,,T,,1,,T,,T, correspond with those in equations (7.5); /; marks the highest
and the lowest temperaturc points in the glass tank.

Computed temperature (figure a) and current distribution (figurce b) in the glass
melt for the longitudinal section of the glass tank furnace; 7., = 1461 °C,
T =1210°C, y,, =768cm? /s,y . =-538cm’ /s.
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