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Abstract

The paper deals with the well known set packing problem. It is as-
sumed that some of the problem coefficients are realizations of mutually
independent random variables. Average case (i.e. asymptotical proba-
bilistic) properties of selected problem characteristics are investigated for
the variety of possible instances of the problem. The important results of
the paper are:

e Behavior of the optimal solution values of the set packing problem is
presented in the special asymptotic case, where mutual asymptotical
relation between m. (number of elements of the packed set) and n
(number of sets provided) is playing essential role.

For the considered in the paper random model of the problem there
is no feasible solution, but the trivial cases, with probability ap-
proaching 1, in the asymptotic case. However probability of reach-
ing feasible solution is reasonably high (i.e. > 2/e,2/e =~ 0.736);
moreover it may be set arbitrary close to 1 {e.g. 0.999), but quality
of approximation of the behavior of the optimal solution values may
be very unsatisfactory then.

1 Introduction

Let us consider a m element set M and ® a collection of n subsets A,
i=1,...,n, of the set M, & = {M;,My,...,M,}. Set packing problem con-
sists in finding set of disjoint subsets ¥ in ® ¥ C @, where, M;, M, € ¥ if
and only if M; N M, = W, for every ¢, k, 1 # k, i,k € {1, n}. Set packing
problem may be formulated as the bmaly multzconstl amt knapsack problem,
see Nemhauser and Wolsey {6]:

1
zopr(n) =max Y ¢; -
i=1
n
subject to Saj-ox; <1 (1)
i=1
where j=1,..m, ;=0 o 1




It is assumed that:

¢;>0,a5=00rl,i=1,...,n,j=1,...,m
In fact aj, 2 = 1,...,n, 7 = 1,...,m are defining @, set of subsets of Af,
namely M;, i =1,... ,n in the following way
= 1 ifjeM;
TV 0 ¢ M

where ¢; is the certain value expressing the preference assigned to M;. Let us
observe that definition of the sets M;, i = 1,... ,n, does not require them to
be disjoint. Namely if there exists j € {1,... ,m}, k#1, &1 € {1,... ,n}, such
that ajp = aj; =1, then j € M belongs to bath My, and M), i.e. Mg N M # 0.
Choice of 2;, fulfilling the constraints imposed in (1} is defining the packing
of the set A into disjoint subsets M;, Af; € U, where M; N A =W ¢ £k,
i, ke {l,...,n} for every M;, M), € ¥. Namely in (1)

vk ke{l,...,n}, Myel, ifandonly if 3j € My : agp - v = 1.

Each of the constraints )~ aji-2; € 1, j = 1,... ,m is guaranteeing that each
of the items j of the set A is assigned to maximum one of the subsets M, M; €
. Optimisation criteria in (1) is securing the choice of best possible packing
according to preferences expressed by ¢;, i =1,...,n. lf ¢; =¢, i =1,...|n,
¢ - constant (e.g. ¢ = 1), then optimisation problem seeks for the maximum
amount of subsets M; to pack set M, known as Mazimum Set Packing Problem.

Set packing problem (1) is well known to be AP hard combinatorial opti-
misation problem, see Garey and Johnson {2). Moreover Set Packing Problem
is one of the 21 first I{arp’s NP complete problems, see [3]. There are also
two closely related combinatorial problems, namely set covering problem and
set partitioning problem (also known as exact covering),where in both of them
one is looking for the subsets My;, j = 1,...,r, of the collection ® of n subsets
of M;, i =1,...,n, where demand U;:] My; = M holds, moreover in the set
partitioning problem there is additional demand, namely that all A7), are pair-
wise disjoint, i.e. My, N My, =0, for every kj, ki, kj # &1, 5,1 € {1,... ,r}. Both
problems may be also formulated as special cases of the binary multiconstraint
knapsack problem, see Nemhauser and Wolsey (6]

Although set packing problem may be formulated as the binary multicon-
straint knapsack problem, it is rather special case of it, see Martello and Toth
[4]. Its peculiarity consists in 2 facts:

o All the constraints left hand sides coefficients are equal either to 1 or to 0:

aj;=0o0rl,i=1,...,n,j=1,...,m.
o All of the constraints right hand sides coefficients are equal to 1.

In the general formulation of the binary multiconstraint knapsack problem it
is only required that all of the knapsack problem coefficients, i.e. goal function,
constraints left and right hand sides, are non-negative or, in order to avoid
unclear interpretations, strictly positive. The latter especially applies to goal
function and coustraints right hand sides coefficients.




2 Definitions
The following definitions are necessary for the further presentation:
Definition 1 We denote V,, = Y,,, where n — oo, if
Yo (1—0(1)) SVa <Y (140(1))
when V,,, Y,, are sequences of numbers, or

hm P{Y, (1—-0(1)) < Vo <Y, (1+0o(1))} =1

n-—00

when V,, is a sequence of random variables and Y;, is a sequence of numbers or
random vartables, where im,,_,oo 0{1) =0 as it is usually presumed.

Definition 2 We denote V,, X Y, (V,, = W,,) if
Vi< (l+o(1)) Yo (Vo2 (1-0(1)) W)

when V,,, Y, (W,,) are sequences of numbers, or

JLII;QP{W; <(Q4+0(1)) V) =1 (1}E&P{Wl 2(1-0(1)) Wa.}=1)
when V,, 1s a sequence of random variables and Y, (W,,) is a sequence of numbers
or random variables, where lim,, o 0o(1) = 0.
Definition 3 We denote V,, ® Y, if there exist constants ¢’ > ¢’ > 0 such that

uZVaxd"Ya

where Y,,, V,, are sequences of numbers or random wvariables.

The following random model of (1) will be considered in the paper:

o m, n, 0 < n < ml, are arbitrary positive integers and moreover n — oo.

e, a,t=1,...,n, j=1,...,m, are realizations of mutually indepen-
dent random variables and moreover c;, are uniformly distributed over
(0,1] and P{aji =1} =p, where 0 < p < 1.

Let us observe that asymptotical relations 0 < n < m! and n — oo requires
that also m — oo. As the matter of fact mutual asymtotical relation of the
values of m and n may vary between 2 extreme cases n/m = 0 or n = m! as

n— 0o
Under the assumptions made about ¢;, aj;, and taking into account (1) the
following always hold

n
0 < zopr(n th (2)
i=1
Moreover, from the strong law of large numbers it follows that

ici%Ecl ) n=n/2, ZaﬁNp n. (3)

=1 i=1




Therefore, it is justified to enhance formulas (2) and (3) in the following way:

n "
. 1 1
0 < zopr(n) X n/2, z;aji <1, ifp< o or Zl:aji > 1 when p > - (4)
i= i=
Formula (4) shows that random model of set packing problem (1) is complete
in the sense that nearly all possible instances of the problem are considered.
The growth of zopr(n) - value of the optimal solution of the problem (1)
may be influenced by the problem coefficients, namely:

n, m, ¢, aj;, wherei=1,... ,n, j=1,... ,m

‘We have assumed that c;, a;; are realizations of the random variables and there-
fore their impact on the 2ppr(n) growth is in this case indirect. Moreover, we
have also assumed that m, n are arbitrary positive integers and n — oo.

The main aim of the present paper is to perform probabilistic analysis of the
considered class of random set packing problems in the asymptotical case, i.e.
when n — oo0. Probabilistic analysis has 2 strategic goals, namely:

e To examine existence of the feasible solutions.

e To investigate asymptotic behaviour of zppr(n).

3 Lagrange and dual estimations

When the knapsack problem, with one or many constraints, is considered then
Lagrange function and the corresponding dual problems, see Averbakh (1],
Meanti, Rinnooy Kan, Stougie and Vercellis 5], Szkatula [7] and [8] are very
useful tools to perform various kind of analyses of the original problem. In
the case of set packing problem Lagrange function of the problem (1) may be
formulated as follows:

n m "
Ln(I) = Z(:i-.'r:i +Zx\j~ <1 —Zaji Azi) =
=1 i=1

i=1
n m

j ci—g Ajrag| T
1

1
7]

bl

+

j=1 i=1 jo=
where = = [z1,... ,2,] and A = [A, ..., Ay - vector of Lagrange multipliers.
Moreover, let for every A, A; 2 0,7=1,... ,m:
m n m
Ba(A) = L, Ly, A) = X, JZ; Aj+ ; ¢~ ; Ajag; |z




Taking the following notation:

"
1 ife— Ajraji >0
wa) = P ®
0 otherwise.

"

¢ ife; — Z)\j-aj,'>0
=1

otherwise.

m
a;; if ¢ — Aj-a; >0
a;:(4) o ng 7

i

£
e
i
e N
o

0 otherwise.

we have for every A, A; 20, j=1,... ,mu

i’\i +i (Cw - i/\i 'ajz‘) “zi(A) =
=1 i=1 i=1
DN+ (Cz‘(A) DL aj,-(A))

J=1 i=1 i=1

i

Pa(A)

I

Obviously fori=1,...,n, j=1,... ,m,
ci(A) =ci-x;(A), a;i(A) = aji - z:(A).

Dual problem to set packing problem (1) maybe formulated as follows:

®;, = min Bn(A). (6)

For every A > 0 the following holds:

m

20pr(n) S B}, < b, (A) = 2a(B) + D N1~ 5;(A)). (1)

=1

Let us denote:

n

2m(B) = D e wmilh) = clh),si(B) = aji-ulA) =3 au(A),
i=1 =1

i=1 i=1
Sum(B) = "N s5(A), Am) =N
=1 i=1
By definition of ¢;(A) and a;;(A), see also (5), we have:

e(B) 2> X au(A), i=1,... ,n,

j=1

and therefore




Zn(A) > Snm(A)- (8)

For certain A, z;(A) given by (5) may provide feasible solution of (1), i.e.:

sj(A) <1 forevery j=1,...,m. (9)
Then:
2n(A) < z0p7(n) < @Y < Bu(A) = z0(A) + A(m) ~ Sum(A).  (10)

If (9) holds, then the below inequality also holds:

A(m) — Spm(A) > 0.
From (8) we get:

PnlA) _ za(A) +

A(m) — Spm(A) A(m) — Snm(A)
Z"(A) Zn (A) sty ’

Zn(A) - Snm(A)

Therefore if (9) holds, then the following inequality also holds:

zopr(n) < i < ¢, (A) < A(m)

PSS S a(h) S Ban(A)

(11)

Formula (11) shows, that if there exits such a set of Lagrange multipliers A(n)
which is fulfilling the formula (9) and if the formula below holds:

A(m)
lim s———F— =1 12
A G (A -
then z;(A(n)), ¢ = 1,...,n, given by (5), is the asymtotically sub-optimal

solution of the set packing problem (1). Moreover the value of z,,(A(n)) is an
asymptotical approximation of the optimal solution value of the set packing
problem ie. zopr(n).

4 Probabilistic analysis

In the present section of the paper some probabilistic properties of the set pack-
ing problem (1} will be investigated. Let us observe that due to the assumptions

made the following holds, fori =1,... ,n,5=1,... ,m:
Pl = 1}=p, Plajg=0}=1-p, Plasi(A) =1} =1 - Plas(A) =0},
0 when z <0
Ple; < z)={ & when0<2<1 . (13)
1 when z > 1




Moreover for the random variable Y o, . «; @ji» due to the binomial distribu-
tion, the following holds for every 7 - integer, 0 < r < m — 1:

z’" -1 .
P A (m ) - (1 _p)m—1—1_ (14)
. T
k=1,kstj

Let us also assume that
A={- AL le Aj=X220,5=1.-,m

Lemma 1 If aj; are realizations of mutually independent random variables
where P{aj; =1} =p, 0 <p <1, then

m—1
Plaji(A) =1} =p—-p Z ( ) p (1= py™ " min{ 1, A\(r + 1)},

=0
If, moreover, A < 1/m then:

PlagA) =1 =p- (1= X-(m-p+1-p)).

Proof. From (5), (13) and (14) and taking into account that random vari-
able 37)L, | ; aji may take any integer value r from the range [0,m — 1] with
the probability given in (14) it follows that:

P a_,-,v=OUaﬁ=1r]c,-<)\- Z aji-l-l =
k=1,k#j

P{a;i(A) =0}

I

m
l-p+p P{c <A~ Z aj; +1 =
k=1,k#7

m-—1
1—P+PZ ( )'p'~(1vp)'"""lmin{l,/\(r+1)}‘

=0

Due to the (13) the first formula of the Lemma. is proven. Because

m—-1\ (m —1)!
r Trlm—1-m)l
then when A < 1/m the following holds
rlom—1-r)f

Plashy=0) =154 3 GEILLED et g

Let us observe that for every integers [, m, {,> 1, m = 2, and 0 < p < 1 the
following hold

i() a-p™ = 19 =1

r+l = m—-(m—1-r).




Using the above mentioned formulas (15) may be rewritten as:

i (m—-1)l'm

Plaj(A)y=0} = 1*P+)\'P<ZF‘(T”—_I:—T),'PT'(1"P)
< 7l

=

m—1l-r__

o1 (-1 . melr
E%gl__m_).p_u_m : ):

m—1
m—1 . m-l—r
= 17p+>\-p<mz< . )~p’~(1—p) o

=0

~P-(m-1)'(1*1>)7%22 <mr_2) 'P"(l—p)'“_z'r> =

=0
= l-ptAip(m~(m-1)-(1-p)=
= l-p+Ai-p-(m-p+l-p)
Finally above formulas can be summarized as:
Plaji{A)=0}=1—-p+A-p-(m-p+1~p). (16)
Due to the formulas (13) and (16) we have
Plaj:(A)y=1} = 1-Pla;i(A)=0}=
p=Ap- (mptl-p)=p (1-A-(m-p+1-p)

i

| ]
As the direct consequence of the above formulas we have
E(aji(A)) =1- Plaji(A) =1} +0- P{a;(A) =0} = Plau(A) =1} (17)

Now instead of A we will consider A(n). It does mean that for every value of
integer n, we may consider different vector A(n) = {A(n), -+, A(n)}, A(n) > 0.
For every j, j = 1,--- ,m, we have:

B(s;(A(n))) Do E(au(An) =n-Plau(A(n)) =1} = (18)

i=1

n-p(l—=Xn) (m-p+1-p)).

i

Lemma 2 For every a, a > 0 there exists m' n', m’, n’ >, 1 such that for every
m > m' andn 2 n', the following choice of A(n) :

1—af(n-p) ) .
An) = m 1s solving the equations E(s;(A(n})) = a.

Corollary 1 If E(s;(A(n))) = «, then P{aj(A(n)) =1} = a/n.
Proof. Proof of Leinma and Corollary follows immediately from formulas
(17) and (18) and following fact that for all m > m/ aud n > n'":

1
An) € —.
(T") = m
n
Solution of the set packing problem (1) given by formula (5) is feasible if

and only if the formula (9) holds.
















Due to the formulas (11) and (25) E(z,(A(n))} is reasonable asymptotic ap-
proximation of the optimal solution of the set packing problem (1) i.e. E (zppr(n)).
The above Lemma and Corollary, especially formulas (28) and (29}, provides in-
teresting insight into asymptotical behavior of the value of E(z,(A(n))). Namely:

When n = o(m) then lim E(z,(A(n))) = %
It does mean that in this case values of 3 and -y are neglectable so is the mutual
asymptotic dependence of both n and m.

z2a+ﬁ-(1~p)

When n &= m then E(z,(A(n))) 2
P

In this case level of proximity of n and m is substantial and is expressed by
value §.

B-(1—p)
2-p

When m = o(n) then E(z,(A(n))) = St
In the latter case dependence on « is neglectable, 8 and p are defining constant
multiplier.

In 2 first cases, where 7 < 1, there is no asymptotical influence of the value
of m (and therefore of n either) on the asymptotical value of E(zn(A(n))).
However in the case when v > 1, there is very strong dependence from both m
and 7.

On the other hand parameters «, and p have substantial influence on the
asymptotical behavior of E(z,(A(n))), when v € 1. Namely the bigger is value
of @, o > 0, and/or smaller is value of p, 0 < p < 1, the bigger is value of
E(2,(A(n))). Consequence of the above statement is following

o The bigger is value of « the less probability of feasibility of the corre-
sponding solution of the set packing problem (1) is, see Theorem 1.

o The smaller the value of p is the sparser the initial subsets M;, i =1,--- | n,
of the original set A/ may be.

6 Concluding remarks

In the present paper some results describing probabilities properties of the set
packing problem (1) are summarized.

In the paper distribution functions of the various random variables repre-
senting important problems characteristics are presented. Moreover some re-
sults concerning the feasibility of the received solutions and estimations of the
set packing problem (1) optimal solution values zppr(n) growth, when n — oo
are provided.

Examples 1 and 2 shows that the higher is accuracy of approximation of the
optimal solution value the lower is probability of the feasibility of corresponding
solution. For example when « = 0.5 the quality of approximation is pretty toler-
able, with relatively high probability of the feasibility of the solution. Moreover
when a = 1 the quality of approximation is very good with reasonable proba-
bility of the feasibility of the solution, approximately equal to 0.736. Lemma 3
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