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Abstract 

The paper deals with the Two-Constraint Einary Knapsack Problem, 
the special case of M ulti-Constraint Knapsack Problem. It is assumed that 
some of the problem coeffi.cients are realizations of mutually independent 
random varia.bies. Asymptotical probabilistic properties of selected prob­
lem characteristics a.re investigated for the special cases of the Lagrange 
multipliers. 

1 Introduction 

Let us consider a Two-Constraint Einary Knapsack Problem in the following 
formulation: 

It is assumed that: 

zopr(n) = max I; c, · x, 
i=l 

subject to I; ali • x,,;;; b1(n) 
i~l 

I; a2, · x; ,;;; b2(n) 
i=l 

where Xi = O or 1, i = 11 ••• , n 

n 

Ci > O, aji > O, O < bj(n) ~ L aji, i= 1, ... , n, j = 1, 2. 
i=ł 

(1) 

Without restricting the generality of considerations it may be also assumed that: 



b1 (n) ,;; b2(n). 

The goal of the assumptions that c;, a;, > O, O < bj(n) ,;; I:Za, a;;, 
i = 1, ... , n, j = 1, 2,is to avoid the trivia! and degenerated problems. More 
precisely interpretation of the a;; = O or c; = O is far not obvious. When 
b;(n) > I:~=l a;; then the corresponding constraint is always fulfilled and there-­
fore it may be removed from the problem formulation, otherwise if b; (n) = O 
then (1) has only the trivia! solution i.e. x, = O, i= 1, ... ,n and zopr(n) = O. 

Two-Constraint Einary Knapsack Problem is special case of the binary mul­
ticonstraint knapsack problem, also known as m-constraint knapsack problem, 
see Nemhauser and Wolsey [9] and Martello and Toth [7]. where in generał case 
there is arbitrary number m of constraints, i.e. b;(n), j = 1, ... , m . Another 
important special case of the multiconstraint knapsack problem is classical (sin­
gle constraint) or, in other words, Einary Knapsack Problem, which have only 
one constraint, i.e. j = 1 (see Martello and Toth [7]). In the Szkatula's pa­
pers see [12] and [13] probabilistic analysis results of the different cases of the 
binary multiconstraint knapsack problem were presented. Moreover full case of 
the classical (single constraint) Einary Knapsack Problem was considered in the 
paper [13]. 

The Multi-Constraint Knapsack Problem is well known to be NP hard and 
moreover, when m ;;, 2, it is NP hard in the strong sense (see Garey and 
Johnson [3]). It does mean that Two-Constraint Einary Knapsack Problem (1) 
is also NP hard in the strong sense. Classical ( one-constraint) Einary Knapsack 
Problem is NP hard combinatorial optimization problem, however not in the 
strong sense. 

The papers by Frieze and Clarke [2], Mamer and Schilling [6], Schilling [10] 
and [11] investigate the asymptotic value of zopr (n) for the random model of 
Multi-Constraint Knapsack Problem, where b;(n) = 1, j = 1, ... , m. Papers 
by Szkatuła [12] and [13] were dealing with the random model of the Multi­
Constraint Knapsack Problem, where b;(n) are not restricted to be equal to 1. 
Papers by Meanti, Rinnooy Kan, Stougie and Vercellis [8]. Lee and Oh [4] 
consider more generał random models of Multi-Constraint Knapsack Problem 
but only for j = 1, 2 same partia! analytical results describing the growth of 
zopr(n) were obtained. 

The aim of the present paper is to analyze the growth of the asymptotic value 
of zopr(n) for the class of random Two-Constraint Einary Knapsack Problems 
(1) with possibly full spectrum of the constraints right-hand-sides values. Re­
sults of the probabilistic analysis of this important problem may allow to de­
scribe asymptotic behavior of the zopr(n) for practically all combinations of 
values of b1 (n) and b2 (n) as well as other problem coefficients ( considered as real­
izations of the random variables). Those results may help to better understand 
number of the theoretical issues related to Two-Constraint Einary Knapsack 
Problems as well as enable construction of mare efficient algorithms for solving 
the practical instances of the (1). 

2 Definitions 

The following definitions are necessary for the further presentation: 
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Definition 1 We denote Vn ~ Yn, where n ~ oo, if 

Yn · (1 - o(l)) ,;; Vn ,;; Yn · (1 + o(l)) 

when Vn, Yn are sequences of numbers1 or 

nl.!_.~ P{Yn · (1 - o(l)) ,;; Vn ,;; Yn · (1 + o(l))} = 1 

when Vn is a sequence of random variables and Yn is a sequence of numbers or 
random variables, where limn-oo o(l) = O as it is usually presumed. 

Definition 2 We denote Vn j Yn(Vn <'.: Wn) if 

Vn ,;; (1 + o(l)) · Yn (Vn ;;, (1 - o(l)) · Wn) 

when Vn 1 Yn (vVn) are sequences of numbers1 or 

lim P{Vn ,;; (1 + o(l)) · Yn} = 1 { lim P{Vn ;;, (1 - o(l)) · Wn} = l} 
n-oo n-oo 

when Vn is a sequence of random variables and Yn {Wn) is a sequence of numbers 
or random variables, where limn-oo o(l) = O. 

Definition 3 We denote Vn 3! Yn if there exist constants c" ;;, c' > O such that 

where Yn 1 Vn are sequences of numbers or random variables. 

The following random model of (1) will be considered in the paper: 

• n~oo, i=l, ... ,n,}=1,2. 

• c, , a1, are realizations of mutually independent random variables and 
moreover e;, a,, are uniformly distributed over (O, l]. 

• O<{,,;; b1 (n) ,;; b2(n) ,;; n/2, b,(n) ,;; b,(n + 1), for every n;;, 1 and all 
b1(n), j = 1, 2, are deterministic, where f, is a constant. 

Under the assumptions made about c;, a,, and b,(n) the following always 
hold n 

O ,;; zopy(n) ,;; L c, ,;; n, {,,;; b,(n) ,;; La,, ,;; n, j = 1, 2. (2) 
i=l i=l 

Moreover, from the strong law of large numbers it follows that 

n n 

L c; as E(c1) ·n= n/2, La,, as E(a11) ·n= n/2. 
i=l i=l 

Therefore, it is justified to enhance formula (2) in the following way: 

O,;; zopy(n) j n/2, O< ó,;; b1(n),;; b2(n) j n/2 (3) 

Formula (3) shows that random model of the Two-Constraint Einary Knap­
sack Problem (1) is complete in the sense that nearly all possible instances of 
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the problem are considered. In this respect the model where b1 (n) = b2 (n) = 1 
is just a very special case. Taking into account that :E~=l aji ~ n/2 assumption 
that b,(n),;; b,(n + 1), j = 1, 2, for all n;-, 1, is quite logical. 

The growth of zopr(n) - value of the optima! solution of the problem (1) 
may be influenced by the problem coefficients, namely: 

n, c;, a,;, b1 (n), b,(n), where i= 1, ... ,n. 

It is assumed that c;, a,; are realizations of the random variables and therefore 
their impact on the zopr(n) growth is in this case indirect. Moreover, we have 
assumed that n -, oo. The aim of the probabilistic analysis is to investigate as­
ymptotic behavior of zopr(n) w hen n-, oo. The impact of the right-hand-side 
values - b1 (n), b2(n) - is well illustrated by the Lagrange function and the prob­
lem dual to (1), see Averbakh [1), Meanti, Rinnooy Kan, Stougie and Vercellis 
[8], Szkatuła [12] and [13]. Due to the very complicated formulas, impossible 
to handle efficiently in the generał case, the papers by Szkatuła [12] and [13) 
investigate only two important special cases of values of constraints right hand 
sides in the case of Multi-Constraint Knapsack Problem. 

3 Lagrange and dual estimations 

When the generał knapsack type problem, with one or many constraints, is 
considered then Lagrange function and the corresponding dual problems, see 
Averbakh [1], Meanti, Rinnooy Kan, Stougie and Vercellis [8], Szkatuła [12] and 
[13] are very useful tools to perform various kind of analyses of the original 
problem. In the specific case of the Two-Constraint Einary Knapsack Problem 
Lagrange function of the problem (1) may be formulated as follows: 

n 2 ( n ) 
~C;·x;+ ~>.,• b,(n)-~a,;•x; = 

>., · b,(n) + >.2 · b2(n) + ~ (c; - >.,·a,; - >.2 · a2;) · x; 
i=l 

where x = [x,, ... , xn] and A = [>.1, >.2] - vector of Lagrange multipliers. More­
over, !et for every A, >., 2: O, j = 1, 2 : 

<Pn(A) = max Ln(x,A) = max {t>., · b,(n) + t (c. -t>-, · a,,) x; } . 
xE{O,l}" :tE{O,l}" j=l i=l j=l 
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Using the following notation: 

x,(A) = 

c,(A) 

aj,(A) = 

we have for every A, Aj 2: O, j = 1, 2: 

2 

if c; - I; Aj · aji > O 
j=l 

otherwise. 
2 

if c; - I; Aj · aji > O 
j=l 

otherwise. 
2 

if c; - I; Aj · aji > O 
j=l 

otherwise. 

4>n(A) = ;Aj· bj(n) + t ( c; - ;Aj· aj,) · x,(A) = 

t, Aj· bj(n) + t ( c;(A) - t, Aj. aj;(A)) 

Obviously for i= 1, ... , n, j = 1, 2, 

c,(A) = c; · x,(J\), aji(J\) = aji · x,(J\). 

(4) 

Dual problem to Two-Constraint Einary Knapsack Problem (1) maybe formu­
lated as follows: 

<I>~= rJ~4>n(A). (5) 

For every A 2: O the following holds: 

2 

zoPT(n) S: <I>~ S: 4>n(A) = Zn(A) + I>j(bj(n) - Sj(A)). (6) 
j=l 

Let us denote: 

n n n n 

z,,(A) Lei· x,(A) = Lc;(J\),sj(A) = Laji · x,(A) = Laj;(A), 
i=l i=l 

2 2 

Sn{A) = LAj · Sj(J\), B(A) = LAj · bj(n). 
j=l j=l 

By definition of c,(A) and aj;(A), see (4), we have: 

2 

and therefore 

c,(A) 2: L Aj· aj;(J\), i= 1, ... , n, 
j=l 
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(7) 

For certain A, x,(A) given by (4) may provide feasible solution of (1), i.e.: 

s1(/\.) $ b1 (n) and s2(/\.) $ b2(n). (8) 

If the above holds then: 

Zn(A) $ zoPT(n) $<I>~$ 'Pn(/\.)= Zn(A) + B(A) - Sn(A). (9) 

So, if (8) holds, then the below inequality also ho]ds: 

B(A) - Sn(A) ~ O. 

From (7) we get: 

Therefore if (8) holds, then the following inequality also holds: 

zoPT(n) <I>~ <Pn(/\.) B(A) 
1 < --- < -- < -- < --. 

- Zn(/\.) - Zn(/\.) - Zn(/\.) - Sn(A) 
(10) 

Formulas (8) and (10) may allow to provide the asymptotical approximation 
of the zopr(n) i.e. the optima! solution value of the (1) problem. Namely if 
there exits such a set of Lagrange multipliers A(n) asymptotically fulfilling the 
formulas (8) and (10) then the below conjecture holds: 

. B(A(n)) . zoPT(n) 
If }_:.~ Sn(A(n)) = 1 and (8) holds then }:.~ Zn(A(n)) = 1 (11) 

Therefore if (11) holds then x,(A(n)), i = 1, ... ,n, given by (4), provides 
the asymtotically sub-optima! solution of the Two-Constraint Einary Knapsack 
Problem (1). Moreover the value of zn(A(n)) is an asymptotical approximation 
of the optima! solution value of the Two-Constraint Einary Knapsack Problem 
i.e. zopr(n). 

4 Probabilistic analysis 

In the present section of the paper some probabilistic properties of the Two­
Constraint Einary Knapsack Problem (1) will be investigated. It is assumed that 
e;, a;, i = 1, .. . , n, j = 1, 2 are realizations of mutually independent random 
variables and moreover c,, a;, are uniformly distributed over (O, l] . Moreover it 
is assumed that O< ó,;; b1(n),;; b2 (n),;; n/2, b;(n),;; b;(n + 1). In addition it 
is assumed that Lagrange multipliers .X1 and >-2, .X2 $ .X1 , A= (.X1 , .X2 ) are also 
deterministic. Monotonicity of constraints right hand sides, b1 (n),;; b2 (n), is in 
this case determining monotonicity of the Lagrange multipliers, i.e. .X2 $ .X 1 . 

This is often used in the literature probabilistic model of the generał knapsack 
problems and it suits very well also to the Two-Constraint Einary Knapsack 
Problem (1). 
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Let us first observe that due to the assumptions made the following holds, 
for i = 1, .. . , n, d = 1, 2: 

{ 
O when x ,:;; O { O when x ,:;; O 

P(a,, < x) = x when O< x,:;; 1 , P(c; < x) = x when O< x,:;; 1 
1 when x ;;, 1 1 when x ;;, 1 

(12) 
In order to proceed with probabilistic analysis of the Two-Constraint Einary 

Knapsack Problem (1) it is necessary to consider probabilistic distribution of 
the following random variables 

k 

L >.i · a;,, k = 1 or 2 
j=l 

lxl + x { x if x?: O .• { 2 if j = 1 
Let (x)+ = -2- = O otherwise ' J = 1 if j = 2 'Then for or 

i = 1, ... , n, j = 1, 2, the following holds: 

P{>., ·a;,< x} = }((x)+ - (x->.;)+), j = 1,2, 
1 

1 

P{>.1 ·ai;+>.2 •a2; < x} = }j F1(x->.;-t,>.,)dt= (13) 
1 o 

~ ((x)! - (x - >.1)! - (x - >.2)! + (x - >.1 - >.2)!) 
Al• -"2 

The distribution functions of the random variables a;;(A), c;(A), i= 1, ... , n, 
j = 1, 2 are: 

H;(x,A) 

P{a;,(A) < x} = 

p {aji < X u a;; ?; X n t Ak · a;k 2: C;} = (14) 
k=l 

1 1 

1-J J F1 (r->.;-t,>.;-)drdt 
X Q 

P{c;(A) < x} = 

P{c;<xLJc,?;xnt).k.a,k?:Ci}= (15) 
k=l 

1 

1 - / F2(t, A)dt, 

Using above formulas (14) and (15) expectations of the a;,(A), c,(A) could 
be expressed as follows: 
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1 1 1 

E(aj;(A)) J xdGj;(x, A)= J x J F,(r - Aj · x, Aj• )drdx = (16) 
o o o 

>-~- (!X/cer - X. Aj)+ - (r - X. Aj - Aj• )+)drdx) 

1 1 

E(c,(A)) J xdH,(x, A) = J x · F2(x, A)dx = (17) 
o o 

1 

1 J ( 2 2 2) 
2 . >.1 . >.2 x · (x)+ - (x - >-il+ - (x - >-2)+ + (x - >.1 - >.2J+ dx = 

o 

2 . >.~. >.2 ( i -I x · ((x - >-1)! + (x - >-2)! - (x - >.1 - >.2)!) dx) . 

It is easy to observe that above formulas (16) and (17) may take different 
formulations, depending on the mutual relations between >.1, >-2 and x, r since 
severa! items of the above formulas may remain strongly positive or become O, 
due to the function (.)+properties. In generał 4 specilic cases could be distin­
guished for i= 1, ... , n, j = 1, 2: 

1. Case of "large" values of the Lagrange multipliers 1 ::; >-2 ::; >.1. In this 
case: 

E(aj;(A)) 

E(c,(A)) 

1 11/>.; 11 1 
,:- x (r - x · Aj)drdx = 2 (18) 
,..,. o ,,>.j 24 · \ · Aj• 

I 

__ l __ jx3dx = __ l __ _ 
2. >-1. >-2 8. >-1. >-2 

o 
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2. Case of "mixed" values of the Lagrange multipliers >-2 :S 1 :S >-1. In this 
case: 

E(e;(A)) 

3. Case of "moderate" values of the Lagrange multipliers >-2 :;:; >-1 :;:; 1, 
>-2 + >-1 2: l. In this case: 

E(a;,(A)) = ~ ( [1 x [1 (r-x•.X,)drdx- (20) >-,. Jo lr:,>.J 

r(I->.,.)!>-, X r1 (r - X·>-; - >-;-)drdx) = 
Jo f c•->-1+>-1· > 

1 3>-J - B>-J + 6>-j - 6>-J. + 4>-;• - >-J. + 4>-J. - 1 

24 >-;>-;· 

E(e;(A)) - 1 -(~ -J1 
X· (x->-1)2dx-j

1 
X· (x->-2)2dx) = 

2 · >-1 · >-2 4 
>.1 ,\:,i 

24.x1,.x2 (>-1 - 6.Xi + 8.X, + >-~ - 6>-~ + 8.X2 - 3). 
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4. Case of "small" values of the Lagrange multipliers >.2 ś >.1 ś 1, 
>.2 + >., ś 1. In this case: 

E(a,,(A)) = 

E(e;(J\.)) 

+ 

~ ( {' X {' (r - x · >.;)drdx- (21) 
)..i. Jo Jz,>.J 

{' x i' (r - x · >., - >.,. )drdx) = 
Jo <•·>,+>r) 

! - !>, - !>,. 
2 3 1 4 1 ' 

__ l __ (! -1' x · (x - >.,)2dx -11 
x · (x - >.2)2dx + 

2 · >., · >.2 4 
>-1 >.2 

Probabilistic, or in other words average case, analysis consists in deter­
mining such Lagrange multipliers >.1 (n), >.2(n) that when n -> oo, x,(A(n)), 
i= 1, ... , n, delined by (4) will provide solutions of the Two-Constraint Einary 
Knapsack Problem (1) which are, in the sense of convergence in probability, see 
Loeve [5], providing solutions which are asymptotically feasible , i.e. s;(A(n)) 
is satisfying (8) and moreover if Sn(A(n)) is fulfilling (11) then, due to (10), 
limn-oo :~ricL'll = 1 and Zn(A(n)) is suboptimal solution of the (1) and more-
over 

zoPT(n) ""Zn(A(n)) ""E(zn(A(n))). 

The above goal may be achieved by determining J\.(n) as the solution of the 
fo!lowing system of equations: 

E(s 1(1\.(n))) = b\(n), E(s2(1\.(n))) = b;(n), (22) 

where b'(n) = b,(n) - <,(n), <,(n)= o(b,(n)) and s,(A(n)) ""b.i(n) ""b,(n), 
s,(A(n)) ~ b,(n), j = 1, 2 (in the sense of convergence in probability) and 
therefore J\.(n) is fulfilling both (8) and (11). 

It may also happen that the system of equations (22) has no solutions, 
e.g. when difference between b1(n) and b2(n) is too large. In this case only 
>.1 (n) > O and >.2(n) = O which means that second constraint in the Two­
Constraint Einary Knapsack Problem (1) formulation is excessive and could be 
removed. lt does mean that in this situation problem (1) reduces to the classical 
single constraint knapsack problem. In the Szkatuła paper [13] the following 
formula summarizing behavior of the optima! solution value was presented 

{ ✓~ zoPT(n) ""Zn(A(n)) ""E(zn(A(n)))"" 1 (n3 , ( ~)) 
4 - 2 +6·b1 (n) • 1- n 
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ifiśbi(n)ś~­

(23) 



Each of the 4 cases where >.1 (n), >.2 (n) > O mentioned above should be 
considered independently. Let us observe that E(s;(A(n))) =n· E(a; 1(A(n))), 
E(zn(A(n))) =n· E(c,(A(n))). 

Lemma 1 J/ c;, a;t i = 1, ... , n, j = 1, 2, are realizations of mu.tually inde­
pendent random variables uniformly distributed over (O, 1), and if ó S b\(n) S 

b2(n) S ' n••J1n) ,where ó is a constant, then 

>. (n)= _l_, n· b\(n) · b2(n) 1 , n· b\(n) • b2(n) 
1 b\ (n) 24 ' >.2 (n) = b2(n) 24 

is the solution of (22) and 

E(zn(A(n))) = 3 . , n· b\ (n)· b2(n) 
24 

(24) 

(25) 

Proof. Above formulas follow immediately from the (18) and (22). From 
the Lemma 1 assumptions and from (24) it follows that 1 S >-2(n) S >-,(n). 

Moreover condition o S b\(n) S b2(n) S ' n•bJ1n) holds only when b\(n) S 

b2(n) S N (not vice versa). 

Lemma 2 If c;, a;; i= 1, ... , n, j = 1, 2, are realizations of mutually indepen­
dent random variables uniformly distributed over (O, 1), and if ó Sb\ (n) S jand 

b2(n) > max {' n•~t) ,b\(n)} ,where ó is a constant, then 

is the optima/ set of Lagrange multipliers and 

E(zn(A(n))) = ✓2. n ~b,(n) (26) 

Proof. In this case the system of equations (22) has no solution and there­
fore Two-Constraint Einary Knapsack Problem {1) is equivalent to the single 
constraint knapsack problem, refer to Szkatuła {13}; (26) follows immediately 
from {23). 

Lemma 3 If Ci 1 a;i i = 1, ... , n, j = 1, 2, are realizations of mutually in­
dependent random variables uniformly distributed over (O, 1), and if b\(n) ;;, 
max {ir, i· b2(n) - if} then 

>.,(n) ! . (6-48· b\(n) +36· b2(n))' 
7 n n 

(27) 

! . (6 + 36 · b\(n) -48 · b2(n)) 
7 n n 

is the solution of {22) and 

E(zn(A(n))) ¾ · G + 6 · b\ (n)+ 6 · b2(n)+ (28) 

+ 36 _ b\(n)·b2(n) _ 24 _ (b\(n))2 _ 24 _ (b2(n))2 ) 

n n n 
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• 

• 
Proof. From the (21) it could be obtained that A1(n) and >-2(n) given by 

formula (27) are solving the equation (22) and fulfilling the condition >-2(n) + 
>-1(n) $ 1. • 

Lemma 4 If c;, a;, i = 1, ... , n, j = 1, 2, are realizations of mutually inde­
pendent random variables uniformly distributed over (O, 1), and if if $ b1 (n) < 
min {b2(n), ł · b2(n) - if} then 

( 1 b1(n)) >-1(n)=3· 2 --n- , >-2(n) = O 

is the optima/ set of Lagrange multipliers and 

E(zn(A(n))) =¾·(i +6 • b1(n) • (1 - bi~n))) 
Proof. In this case the system of equations (22) has no solution and there­

fore Two-Constraint Binary Knapsack Problem (1) is equivalent to the single 
constraint knapsack problem, refer to Szkatuła [13]; (26) follows immediately 
from (23). Condition >-2(n) + >-1(n) $ 1 holds also in this case. • 

In the cases considered in Lemma 3 and Lemma 4 the condition >-2 (n) + 
>-1(n) $ 1 and formula (3) are providing that following right-hand-sides of the 
constraints: 

are fulfilling assumptions of the Lemma 3. 

5 Concluding remarks 

In the present paper results describing probabilistic properties of the Two­
Constraint Binary Knapsack Problem (1) in the case of sma!ler values of con­
straints right-hand-sides (when 1 $ >-2(n) $ >-1(n), i.e. large) as well as large 
values of constraints right-hand-sides (when >-2(n) + >-1(n) $ 1, corresponding 
to small values of >-1(n) and >-2(n)) are considered. 

In the paper distribution functions of the various random variables repre­
senting important problems characteristics are presented. 

The future research will be aimed at investigation of 2 remaining cases 
(mixed and moderate values) of the mutual relations between >-1(n) and >-2(n), 
feasibi!ity of the received solutions and estimations of the Two-Constraint Bi­
nary Knapsack Problem (1) optima! solution values zopr(n) growth, when 
n_.oo. 
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