
Raport Badawczy

Research Report
RB/8/2017

A new efficient method
of enumerating all

min-d-cut-sets
in a flow network

J. Malinowski

Instytut Badan Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badaii Systemowych

ul. Newelska 6

01-44 7 Warszawa

tel.: (+48) (22) 3810100

fax: (+48) (22) 3810105

Kierownik Zakladu zglaszajcicy pracy:
Prof. dr hab. inz. Olgierd Hryniewicz

Warszawa 2017

Abstract

A new solution to the problem of finding all minimal d-cut-sets in a flow network with one

source and one sink node is presented. A d-cut-set is a set of components (nodes and/or

links) whose removal or failure causes the maximal flow in the network (©ma,) to fall below

level d, while (])ma, in the fully operational network is greater or equal to d. A d-cut-set is

minimal if no its subset is a d-cut-set. According to the developed method, min-d-cut-sets

are generated from min-1:-cut sets, where a ,-cut-set is a set of components whose removal

or failure causes the source and sink to be topologically disconnected. A 1:-cut-set is minimal

if no its subset is a ,-cut-set. The method consists of two algorithms; the first one is applied

if cD(C)<2d, the second - if cD(C) ;:;:2d, where C is the min-1:-cut-set from which min-d-cut-sets

are generated, and C])(C) denotes the total flow capacity of C's components. This distinction

results in quick generation of min-d-cut-sets without first having to find many non-d-cut-sets

or non-minimal d-cut-sets. In comparison to the known methods of min-d-cut sets

generation, the one presented herein is highly efficient, due to a number of technical

improvements which include applying different algorithms for the cases C])(C)<2d and

cD(C);:;:2d, and an effective method of checking if the found min-d-cut set is a redundant one.

1. INTRODUCTION

In this paper two efficient algorithms are proposed for the purpose of enumerating all

minimal d-cut-sets in a flow network with one source and one sink node. Although this topic

has been pursued by several authors (see [2], [SJ and [10]), there is still room for some

essential improvements that will be presented herein .

Let D be a set of components (links and/or nodes) in a flow network with one source and

one sink node. D will be called a d-cut-set (the author's own term) if the failure of all

components in D causes the maximum flow in the network to fall below value d. Clearly, in

order that such a definition make sense, the maximum flow, provided that the network is

fully operational (all its components are in operation), is assumed to be greater than d.

Further, D will be called a minimal-d-cut-set (abbreviated to min-d-cut-set) if no subset of D

is a d-cut-set. It should be noted that min-d-cut-sets can be named differently throughout

the literature, e.g. with the term "subset cuts" in [2] and [SJ, but the former term seems to

be more self-explanatory.

For the theoretical considerations conducted in the next section we will need the well­

known Ford-Fulkerson theorem stating that the maximum flow from the source to the sink

node is equal to the smallest of the capacities of the minimal topological cut-sets (see [6]).

A topological cut-set (shortened to ,-cut-set) is a set of links whose failure results in

topological disconnection between the source and the sink node. A minimal ,-cut-set

(shortened to min-1:-cut-set) has the property that no its subset is a ,-cut set. The capacity of

a ,-cut-set is the sum of all its links' capacities. The author's own second term - ,-cut-set - is

used herein to distinguish it from a d-cut set defined above.

As mentioned in the beginning, the presented method consists of two algorithms. Both of

them use min-1:-cut-sets as the initial data, just as the earlier developed algorithms do.

Putting it shortly, a number of min-d-cut sets is generated from each min-1:-cut-set, and all

min-d-cut-sets are found in the process. It is assumed that all min-1:-cut-sets are known; the

problem of finding them is a long studied one and there exist multiple algorithms for that

2

purpose, presented e.g. in [1], [7], and [11]. The first algorithm is applied if <ll(C)<2d, while

the second - if <ll(C):2'.2d, where C denotes a min-,-cut-set from which min-d-cut-sets are

currently generated, and <t>(C) denotes the total flow capacity of C's components. This

distinction has not been made in the relevant works of other authors, and handling the cases

<t>(C)<2d and <t>(C):2'.2d differently accelerates the enumeration procedure significantly.

The list of all (or some) min-d-cut-sets can be used for a number of practical purposes. First

of all, it is necessary for computing the network reliability which in this context is defined as

the probability that the maximum flow is greater or equal to d. However, other uses are also

possible, e.g. for drainage or traffic system control.

The paper is organized as follows. In section 2 a general description of the newly developed

method is given, along with a comparison to recent results published in [2] and [SJ. In

sections 3 and 4 the algorithms for the cases <t>(C)<2d and <t>(C):2'.2d respectively are

presented . They are illustrated by their application to an example network, and each step is

analyzed in detail. Each of the sections 2-4 begins with several lemmas which together

constitute the method's mathematical background . In section 6 a number of conclusive

remarks is given with some hints regarding the possible extensions of the method to

networks modeled by (partly) directed graphs or networks with multiple sources and/or

sinks.

3

2. NOTATION

G=(V,E) - a network defined as a graph G with the set of nodes V and the set of links E

X; - the state of the i-th component in Vu E, i=l, ... , I Vu E I; x;=l if the respective component is

in working condition, x;=O if it is failed

s,t - the source and sink nodes

r ,.,°(x) - the s-t connectivity function of G, i.e. r,.,°(x)=l if there is a path from s tot,

otherwise r,/(x)=O

,-cut-set - a set of links whose failure results in topological disconnection between the

source and the sink node

min-,-cut-set - a ,-cut-set whose no subset is a ,-cut-set

m - the number of all min-,-cut-sets in G

C1, ... ,Cm - all min-,-cut-sets in G

<p(c) - the flow capacity of a component c, CE Eu V

Large capacity component - a component c such that <p(c):?:d

©(C) - the total flow capacity of all components in a set C, C~ Eu V, i.e. ©(C)=Icec<p(c)

©ma,(G) - the maximal flow from s tot through G

G\D - a subgraph of G obtained by removing all the components of D, D c Vu E

d-cut-set - a set D, Dc Vu E, such that ©ma,(G\D)<d, i.e. D is a set of components such that

their removal (or failure) causes the maximal flow through G to be smaller than d, where

d ,,; ©max(G)

minimal-d-cut-set - ad-cut-set D such that no subset of Dis ad-cut set, i.e. ©ma, (G\D'):?:d for

each D'cD

4

m-d-c-s candidate relative to Ck - a subset D of Ck such that <l>(Ck\D)<d and <l>(Ck\D')z d for

each D'c D

A(C,D) - the set of all elements in C\D that precede the last element in D, e.g. if C={l, ... ,10)

and D={2,4,6}, then A(C,D)={l,3,5}

B(C,D) - the set of all elements in C\D that succeed the last element in D, e.g. if D and Care

defined as above then B(C,D)={7, ... ,10}

µ(C,D) - the element of C\D with the smallest flow capacity

Preliminary assumptions :

For convenience, we will equate the components with their indices throughout the whole

paper, i.e. the components c1, c2, etc. of G will be referred to as 1,2, etc.

We assume that Ck, kE{l, ... ,m}, are ordered according to the increasing flow capacity, hence

from the Ford-Fulkerson theorem we have: <l>max(G) = <l>(C1) s ... s <l>(Cml - Such an ordering is

required by the proposed method.

3. GENERAL DESCRIPTION OF THE PROPOSED METHOD

Before giving a general description of our method, we will set up its theoretical basis in the

form of 8 following lemmas.

Lemma 3.1 (used in the proofs of Lemmas 3.2, 3.4, and 3.5)

If D c Vu E, then all min-T-cut-sets of G\D are obtained by removing all redundant sets in the

family (C1 \D), ... ,(Cm \D).

5

Remark: A set is redundant in a family of sets if it contains or is equal to another set in this

family.

Proof: Let us first assume that D fulfills the following condition: Ck\ D a< 0 for kE {1, ... ,m}, i.e.

none of the sets C1, ... ,Cm is included in D. It is a well-known fact from the reliability theory

that C1, . .. ,Cm are all the s-t min-cut-sets of G if and only if

(1)

Clearly, we obtain the s-t connectivity function of G\D by setting X; to O in r,_,G for iED. We

thus have:

(2)

where Ko is obtained from {1, ... ,m} by removing each k such that Ck\D is redundant in

(C1\D), ... ,(Cm \D). This ends the first part of the proof.

If CkcD for a certain kE{l, ... ,m}, then there is no path from s tot in G\D, because all

components of Ck are removed, thus G\D has no min--r-cut-sets, or, in other words, the

family of min--r-cut-sets of G\D consists of the empty set alone. In turn, Ck\D = 0 s:;; Ci\D for

each j, ja<k, i.e. each Ci\D is redundant in regard to Ck\D being the only (empty) min--r-cut-set

of G\D. Thus the whole proof is completed.

Lemma 3.2 (used in the proof of Lemma 3.3)

If D is a d-cut-set, then there exists a min--r-cut-set Ck, kE{l, .. . ,m}, such that Ck n Dis also a

d-cut-set.

6

Proof: By assumption, D is a d-cut-set, thus we have:

d > C!:>m ax(G\D) = min [C!:>(Ck\D): kEKo] = min [C!:>(Ck\D) : kE{l, ... ,m}] (3)

The first of the above equalities is obtained from Lemma 1 and the Ford-Fulkerson theorem.

The second one follows from the fact that C!:>(Ci\D) s C!:>(Ck\D) if (Ci\D) ~ (Ck\D), i.e. the sets

redundant in C1\D, ... ,Cm\D are irrelevant for determining the minimum. Let

k*(D) = arg min ke{l m) C!:>(Ck\D) (4)

i.e. k*(D) is one of those k for which C!:>(Ck\D) attains its minimum over kE{l, ... ,m}. From (3),

(4), and the equality A\B =A\ (An B), where A and Bare arbitrary sets, it follows that

C!:>m ax (G\D) = C!:>(Ck'{D) \ D) = C!:>[Ck'(D) \ (Ck' (D) n D)] (5)

Since Ck' IDl n D ~ D, we have:

C!:>(Ck\D) s C!:>[Ck \ (Ck'(D) n D)], kE{l, ... ,m}, (6)

hence

min [C!:>(Ck\D) : kE{l, ... ,m}] s min [C!:>[Ck \ (Ck' {Dl n D)]: kE{l, ... ,m}] (7)

Using (3) and (5) we obtain :

C!:>m ax (G\D) = min [C!:>(Ck\D) : kE{l, ... ,m}] (8)

and

min [C!:>[Ck \ (Ck' {Dl n D)] : k=l, .. . ,m] s C!:>[Ck"ID) \ (Ck' {D) n D)] = C!:>m ax (G\D) (9)

From (8) and (9) we conclude that the inequality (7) can be replaced with equality which, in

view of (3) and Lemma 3.1, implies that d > C!:>max(G\D) = C!:>m ax [G \ (Ck' {D) n D)], hence Ck'ID) is

the sought min--r-cut-set that intersected with D yields the d-cut-set Ck' IDl n D.

7

Lemma 3.3 (states that each m-d-c-s is a subset of certain m-,-c-s)

If Dis a min-d-cut-set, then there exists a min-,-cut-set Ck, kE{l, ... ,m}, such that D<;;;;Ck.

Proof: D is a d-cut-set, hence, by Lemma 3.2, Ck' l• I n D is a d-cut-set too, k*(D) being defined

by (4). Clearly, Ck' l• I n D <;;;; D, but since D is a min-d-cut-set, Ck' l•I n D cannot be a d-cut-set

smaller than D, thus Ck'(• I n D = D. It readily follows that D <;;;; ck' l•I .

Lemma 3.4 (used in the proof of Lemma 3.5)

If D c Ck for a certain kE{l, ... ,m}, then Ck\D is a min+cut-set in G\D.

Proof: Since C1, ... ,Cm are min-,-cut-sets in G, none of them includes another, thus Ci\Ck c;c 0 ,

j1'k. Let us choose arbitrary j1'k and CECj\Ck. Clearly, cECi\D, because Ci\Ck c Ci\D. In turn,

cii"Ck\D, because cii"Ck . As a result, Ci\D er. Ck\D, which means that Ck\D is not redundant in

the family C1\D, ... ,Cm\D, hence, by virtue of Lemma 3.1, Ck\D is a min-,-cut-set in G\D.

Lemma 3.5 (the key lemma for the presented method)

Let Dc Ck, where k2'.1. If the following assumptions hold:

1. <l>(Ck\D)<d

2. <l>(Ck\D') 2'.d for each D'c D

3. <!>(Ci\D)2'.d for each j<k, k2'.2,

then Dis a min-d-cut-set, non-redundant in regard to any min-d-cut-set found earlier. Let us

note that if D fulfils assumptions 1 and 2, then Dis a m-d-c-s candidate relative to Ck.

8

Proof: By Lemma 3.4, Ck\D is a min-,-cut-set in G\D (obtained from G by removing all

components of D), hence, by virtue of Ford-Fulkerson theorem, the flow capacity of Ck\D is

greater or equal to the maximum flow through G\D. Thus, by assumption 1, we have:

©max(G\D) $ ©(Ck\D) < d, (10)

i.e. D is a d-cut-set in G. It thus remains to prove that ©max(G\D')~d for each D'c D. If D'c D,

then Lemma 3.1, the Ford-Fulkerson theorem, and the argument used to explain (3), yield:

©max(G\D') = min [<l>(Cj\D'): j=l, ... ,m] (11)

Since D'c D, by assumption 3 we have:

(12)

From assumption 2 it follows that

(13)

Finally, as the flow capacities of Ci increase in j, for j>k we have:

(14)

The above 4 inequalities imply that ©max(G\D')~d, hence, in view of (10), D fulfills both

criteria to be a min-d-cut set in G.

Lemma 3.6 (facilitates the verification of assumption 2 in Lemma 3.5)

Let De ck and let dm;n101 be the element of D with the lowest flow capacity, i.e.

<p[dm;n101] = min[<p(d) : d ED]. Then <l>[Ck \ (D \ { dm;n 101 })] $ ©(Ck\D') for each D'c D, D';t0.

Proof: the lemma follows from the fact that (J)(D') $ (J)(D \ { dm;n101 }) for each D'c D, D';t0.

9

Corollary: <l>(Ck\D')2d for each D'c D if and only if <l>[Ck \ (D\ {dm;n101})) 2 d. Thus, the second

assumption 2 in lemma 3.5 can be replaced with "<!>(Ck\ (D\ {dm;n101 })] 2 d".

Lemma 3.7 (accelerates the verification of assumption 3 in Lemma 3.5)

If <l>(Cj\Ck) 2 d, where j<k,,;m, then <l>(Ci\D) 2 d for each D~ Ck .

Proof: If D~ Ck , then <l>(Cj\D) 2 <l>(Cj\Ck), and the lemma follows from the assumption that

<l>(Cj\Ck) 2 d.

Corollary: If the lemma's assumption holds and D is a m-d-c-s candidate relative to Ck, then

the check if CD(Cj\D) 2 d can be skipped, because it would give a positive result. Thus,

assumption 3 in Lemma 3.5 needs to be verified only for j such that <l>(Ci\Ck) < d.

Lemma 3.8

Let Ck* be a set composed of all "large capacity" components in Ck, If C'~ Ck * is a m-d-c-s

obtained from a certain Ci, j<k, then each m-d-c-s candidate obtained from Ck is redundant in

reg a rd to C'.

Proof: If D is a m-d-c-s candidate obtained from Ck, then C*~ D. Otherwise, there would exist

at least one cEC*\D, and, since C*c Ck, we would have:

<l>(Ck\D) 2 <l>(C*\D) 2 cp(c) 2 d (15)

Clearly, in view of (15), D would not be a m-d-c-s candidate. Since C'~ c•, it holds that C'~ D,

hence D is redundant in regard to C'. This ends the proof.

10

Remark: Lemma 3.8 allows to easily ascertain whether each m-d-c-s candidate relative to Ck

is redundant in regard to one relative to some Ci, j<k. Clearly, no m-d-c-s is to be generated

from such a Ck.

Now we will present in outline the two algorithms whose detailed pseudo-codes can be

found in the two following sections. We will also briefly explain why there are two

algorithms instead of one.

From Lemmas 3.3 and 3.5 we conclude that, in order to find all the min-d-cut-sets of G, we

have to find all the subsets of each Ck, k=l, ... ,m, satisfying the three assumptions of Lemma

3.5. Actually, min-d-cut-sets are generated from each successive Ck, k=l, ... ,m, by means of

one of two algorithms: Alg. 1 if (J)(Ck)<2d, or Alg. 2 if (J)(Ck)~2d . Alg. 1 arranges the

components of Ck according to the decreasing flow capacity, then it generates successive

subsets of Ck and checks them for being min-d-cut-sets. Alg. 2 arranges the components of Ck

according to the increasing flow capacity, then it generates successive subsets of Ck and

checks their complements for being min-d-cut-sets. The following subset generation policy is

used: first, the successive one-element subsets of Ck are generated (empty set is augmented

with the successive elements of B(Ck, 0)); second, each (eligible for augmentation) j-element

subset C of Ck is augmented with the successive elements of B(Ck, C), j=l, ... ,k-1. For better

understanding, let us apply the above policy to the set C1={2,3,4,5} (see Fig. 1) with the

assumption that each less-than-4-element subset C of C1, such that B(C1,C);tc0, is eligible for

augmentation. The following subsets are generated in the successive steps:

step 1- (2), {3}, (4), {5}

step 2 - (2,3), (2,4), (2,5); note that B(C1,{2})={3,4,5}

11

step 3 - {3,4}, {3,5}; note that B(C1,{3})={4,5}

step 4 - {4,5}; note that B(C1,{4})={5}

step 5 - {2,3,4}, {2,3,5}; note that B(C1,{2,3})={4,5}

step 6 - {2,4,5}

step 7 - {3,4,5}

step 8 - {2,3,4,5}.

This well-known procedure generates all subsets of a finite set, and each subset is generated

only once. However, in the proposed algorithm, many obtained subsets are not eligible for

further augmentation, thus the total number of generated subsets of Ck is substantially

smaller than 2 ICkl_ 1 which is the number of all non-empty subsets of Ck.

Fig. 1. An example network system

Below, all min-1-cut-sets of the network in Fig. 1 are listed, ordered according to the

increasing flow capacity.

C,={5,2,3,4}, c!),=17, C2={1,2,3}, c!)2=19, C3={5,9,8}, c!)3=20; C4={3,6,5,9}, c!)4=21, C5={4,5,7,8},

c!)s=23, c.={4,3,6,5, 7}, c!)•=24, C1={7,8,1}, c!)7=25, C8={3,6, 7,1}, c!)8=26, C9={4,2,6,5,8}, c!)9=26,

C10={2,3,5,7,9}, c!)10=26, C11={4,9,8,l}, c!),1=28, C12={2,6,8,1}, c!)12=28, C13={4,3,6,9,1}, c!)13=29.

12

Let C be a currently generated subset of Ck, and let D=C (Alg. 1) or D=Ck\C (Alg. 2). The check

whether D is a min-d-cut-set is done as follows. First it is checked if <l>(Ck\D)<d (assumption 1

in Lemma 3.5). Let us note that if this check is positive then Dis ad-cut-set in G (see 1-st part

of Lemma's 3.5 proof). In case <l>(Ck\D)<d, it is checked whether <l>[Ck \ (D \ {dm;n101 })] ::>: d

(see corollary to Lemma 3.6). If the last inequality holds, D is marked as a so-called min-d­

cut-set candidate, i.e. in order to state whether D is a min-d-cut-set it has yet to be verified

whether assumption 3 in Lemma 3.5 holds. It is important that once D turns out to be a min­

d-cut-set candidate, then C is not eligible for further augmentations, because d-cut-sets

larger than D=C are not min-d-cut-sets (Alg. 1), while subsets of D=Ck\C are not even d-cut­

sets (Alg. 2).

The different handling of the two cases (<l>(Ck)<2d and <l>(Ck)::>:2d) allows for generating min­

d-cut-set candidates, without generating any non-minimal d-cut-sets (Alg. 1), or for quicker

generation of min-d-cut-set candidates, without first having to generate many non-d-cut­

sets (Alg. 2). Other advantages of this distinction will be given in sections 4 and 5.

The above outlined method is an improvement of the procedures presented in [2] and [5],

also in the context of internal and external redundancy - the concepts used extensively by

the authors of the aforementioned papers. A d-cut-set D' is internally redundant w.r.t. to a

d-cut-set D, if DcD' and both D and D' are generated from the same Ck, kE{l, ... ,m}. Clearly,

D' cannot be a min-d-cut set. In turn, a d-cut-set D' generated from Ck, k::>:2, is externally

redundant w.r.t. a d-cut-set D, if DcD', and D is generated from certain Ci, j<k. Obviously, D'

cannot be a min-d-cut set. Let us note that assumption 3 in Lemma 3.5 is a criterion used for

checking the absence of external redundancy. Indeed, let us suppose that assumption 3 does

13

not hold, i.e. D is a d-cut-set obtained from Ck and <t>(Ci\D)<d for certain j<k. Then, since

Ci\D = Cj\(C{,D) and C{,Dc;;;D, it holds that <t>[Ci\(CinD)]<d and D is externally redundant

w.r.t. CinD obtained from Ci, hence D is not a min-d-cut set or D is a min . Let us also note

that, in view of assumption 3 in Lemma 3.5, it is only required to compare a d-cut-set

obtained from Ck with Ci, j<k, but not with Ci, j>k, in order to state whether it is a min-d-cut­

set. By applying Lemma 3. 7 the enumeration technique used in this paper reduces (as

compared to [2]) the time needed for external redundancy check. Also, this technique

avoids generating internally redundant d-cut-sets (Alg. 1), or allows for instantaneous

internal redundancy check (Alg. 2) .

4. MIN-D-CUT-SETS ENUMERATION FOR <I>(Ck}<2d

If <t>(Ck)<2d, then the logic of the algorithm requires that the components of Ck be ordered

according to the decreasing flow capacity. The algorithm for this case is based on the

following four lemmas.

Lemma 4.1

Let C be a subset of Ck such that

1. <!>(Ck \ C) ~ d

2. <!>[Ck\ (Cu {b})]<d for a certain bEB(Ck, C)

Cu {b} is then a min-d-cut-set candidate relative to Ck- The second assumption says that the

failure of all components in Cu {b} causes the capacity of Ck to fall below valued . The lemma

is also valid for C=0 , in which case {b} is a one-element min-d-cut-set candidate.

14

Proof: From the definition we conclude that D is a m-d-c-s candidate relative to Ck if

ct>(Ck\D)<d and ct>(Ck\D')2d for each D'=D\{c}, CED. Let D=Cu {b}. By assumption 2,

ct>(Ck\D)<d . Further, since bEB(Ck, C), the ordering of components in Ck yields that q>(c) 2 q>(b)

for each CED, hence ct>[Ck \ (D \ {c})] 2 ct>[Ck\ (D \ {b})] = ct>(Ck\C) 2 d, where the last

inequality is assumption 1. Thus D fulfills both conditions to be a min-d-cut-set candidate.

Remark: Lemma 4.1 provides a criterion for stating whether Cu {b}, where C is a subset of Ck,

is a m-d-c-s candidate relative to Ck. Let us note that the lemma's assumptions are

equivalent to the first two assumptions of lemma 3.5, where D=Cu {b}.

Lemma 4.2

Let D be a subset of Ck such that ct>[A(Ck, D)]2d. It then holds that ct>[Ck \ (Du C)]2d for each

C~ B(Ck, D), i.e. no augmentation of D is a min-d-cut-set candidate relative to Ck.

Proof: If C ~ B(Ck, D) then A(Ck, D) ~ ck\ (Du C), because A(Ck, D) ~ ck, A(Ck, D) n D = 0, and

A(Ck, D) n C ~ A(Ck, D) n B(Ck, D) = 0 . In consequence, ct>[Ck \ (Du C)] 2 ct>[A(Ck, D)] 2 d,

which was to be proved.

Remark: Lemma 4.2 provides a simple way to check whether a subset of Ck is non­

augmentable, thus allowing to reduce the number of generated subsets.

15

Lemma 4.3

Let b1, b2, ... be the consecutive elements of B(Ck, C). Then ¢[Ck \ (Cu {b;})] is a non-

decreasing sequence with respect to i2 l.

Proof: the lemma is obvious, since q> (b;), i2 l, is a non-increasing sequence.

Corollary: if¢[Ck\ (Cu {b;})] 2 d then¢[Ck\ (Cu {bj})] ;,: d for j>i. This property allows not to

compute the latter capacities. This lemma is not referenced in Alg. 1, and its role is further

explained in the example following Alg. 1.

Lemma 4.4

If ¢(Ck}<2d and q>(c*kd for certain c* ECk then {c*} is the only min-d-cut-set candidate

relative to Ck.

Proof: From the lemma's assumptions we have:

¢(Ck\ {c*}) = ¢(Ck) - w({c*}) < 2d - d = d (16)

and, since 0 is the only subset of {c*}, it holds that

(17)

It thus follows that {c*} is a min-d-cut-set candidate relative to Ck. Let us suppose that D is a

m-d-c-s candidate relative to Ck, and D,eC. Since q>(c*);,: d, D must include {c*}, otherwise

¢(Ck\ D) 2 q>(c*);,: d would hold. In turn, (16) implies that for D'= {c*} c D we have:

¢(Ck\ D') < d (18)

thus D does not fulfill the second criterion to be a m-d-c-s candidate. This ends the proof.

16

,.

Based on the Lemmas 4.1, 4.2, 4.4, and the general rules formulated in section 3, the

following algorithm is constructed.

Algorithm 1

For k=l to max[k: <!J(Ck)<2d]

Check if <ll({c1,kl) ~ d, where c,,k is the first element of Ck. If so, mark {c1} as m-d-c-s

candidate (lemma 4.4), check it for ER*, and pass to the next k

For j=O to I Ck I - 1 do

If all j-element sets generated so far from Ck are marked, pass to the next k;

Else

For each unmarked j-element set C generated so far from Ck do

For the successive bEB(Ck, C) do

D (c-- Cu {b} (augment C with {b});

In case "<ll(Ck \ D) < d" do

mark D as m-d-c-s candidate (lemma 4.1), check it for ER, and pass to the next b

or to next j-element C (if b is the last element of Ck);

In case "<ll(Ck \ D) ~ d" do

If b is the last element of Ck, mark Das non-augmentable (B(Ck, D)=0 , thus D

cannot be augmented) and pass to next j-element C;

If <ll[A(Ck, D)] ~ d, mark Das non-augmentable (lemma 4.2) and pass to next

j-element C;

17

• ER denotes external redundancy; if ER does not occur, i.e. <!>(Ci\D)~d for each j such that

j<k and <!>(Ci\Ck)<d (see Lemma 3.7), then D is a m-d-c-s non-redundant in regard to any

earlier found m-d-c-s (see Lemma 3.5)

It should be noted that no internally redundant d-cut-sets are generated by Alg. 1, because

its logic and Lemma 4.1 yield that if the obtained set D is a d-cut-set, then D is a m-d-c-s

candidate. Although Alg. 1 can generate non-d-cut-sets (the case <!>(Ck\ D) ~ d), their

number is small due to the condition <!>(Ck}<2d.

Let us now trace the flow of Algorithm 1 for the example network in Fig. 1. Let d=lO. There

are two min-,-cut-sets with capacities lower than 2d, i.e. C1={5,2,3,4} and C2={1,2,3} with

<!>(C1)=17 and <!>{C2)=19. The results of the successive operations are presented in the tables

below - one table for each k. The markings used in the 4-th column have the following

meanings:

• - Dis a m-d-c-s candidate

#- D is non-augmentable because <!>[A(Ck, D)] ~ d (see Lemma 4.2)

I - D is non-augmentable, because b is the last component in Ck. This marking is only used if

• or# does not apply

Cells with non-computed values are filled with crosses. Starting from k=2, at the top of each

table the values of <!>(Ci\Ck), j<k, are listed to indicate those j for which assumption 3 of

Lemma 3.5 needs to be verified in order to check if D is externally redundant.

18

k=l:

j C b D=Cu {b} <t>(Ck\D) ct>[A(C., D)]

0 0 5 {5} 11 0

0 0 2 {2} x (Lemma 4.3) 6

0 0 3 {3}# (Lemma 4.2) x (Lemma 4.3) 10

1 {5} 2 {5,2}* 7 X

1 {5} 3 {5,3}* 7 X

1 {5} 4 {5,4}* 8 X

1 {2} 3 {2,3}* 9 X

1 {2} 4 {2,4}1 10 X

Remarks:

1. As follows from Lemma 4.3, if <!>[Ck\(Cu {b})] 2 d for a certain b E B(Ck,C), then

<t>[Ck\ (Cu {b. })] 2 d for each b+ that succeeds bin B(Ck,C), thus there is no need to compute

<!>[Ck\ (Cu {b. })], because we only need to know if it's greater or equal to d.

2. As follows from Algorithm 1, ct>[A(C,, D)] is only computed if <!>(Ck\ D)2 d

k=2: <t>(C1 \ C2) = 9 (ER to be verified for j=l)

j C b D=Cu {b} <t>(Ck\D) cD[A(C,,D)]

0 0 1 {1}* 8 X

Remark: according to Lemma 4.4, (1) is the only m-d-c-s candidate obtained from C2

19

5. MIN-O-CUT-SETS ENUMERATION FOR II>(Ck)~2d

If <!>(Ck) 2'. 2d, then it is required that the components of Ck be ordered according to the

increasing flow capacity. The algorithm for this case is based on the following four lemmas.

Lemma 5.1

Let C be a subset of Ck such that

1. <l>(C}<d,

2. <l>[Cu µ(Ck, C)]2'.d,

then (Ck\ C) is a m-d-c-s candidate relative to Ck.

Proof: Let D =(Ck\ C) and CED. It follows from the definition ofµ that

rp(c) 2'. rp[µ(Ck, C)].

We have:

<!>[Ck\ (D \ {c}}] =<!>[(Ck\ D)u {c}] = <l>[Cu {c}] 2'. <l>[Cu µ(Ck,D)] 2'. d,

(19}

(20)

where the first inequality in (20) is a consequence of (19), and the second one is the

rewritten assumption 2. In view of {20) and assumption 1 which can be written as

<l>(Ck\D} < d, Dis a m-d-c-s candidate relative to Ck.

Remark: Lem ma 5.1 provides a criterion for stating whether Ck\C, where C is a subset of Ck, is

a m-d-c-s candidate relative to Ck. Let us note that the lemma's assumptions are equivalent

to the first two assumptions of Lemma 3.5, where D = Ck\C.

20

Lemma 5.2

If C is a j-element subset of Ck, j>l, C!>(C)~d, and C is composed of consecutive elements of Ck,

then C!>(C')2d for each j-element C' generated subsequently to C.

Proof: Let C={c1, ... ,ci} where c1, ... ,ci are consecutive components of Ck, and C'={c1', ... ,c{} be a

j-element set generated subsequently to D. First, it will be proved by induction that c1'2c1.

This fact is obvious for j=l, in which case c1'>c1, and let us assume that it holds for a certain

j;>:1. Let c•={c/, ... ,ci+i'l be a (j+l)-element subset of Ck composed of its consecutive

components. Clearly, c• is the first (j+l)-element set obtained by augmenting {c/, ... ,c/}, and,

according to the subset generating policy, each subsequent (j+ 1)-element set c•' is obtained

by augmenting either {c/, ... ,c/} or {c/', ... ,ct'} - another j-element set generated

subsequently to {c/, ... ,c/}. Thus, the first element of c•' is equal either to c/ or to c/'. The

induction assumption yields that c1 +,;,: c1 +, hence the first element of c•' is greater or equal to

c/, which means that the fact to be proved holds for j+l, and, in consequence, for any j21.

Now we can pass to the proper proof. Since the components of C and C' are ordered

according to increasing flow throughputs, we have:

cp(c1) ~ ... ~ cp(ci)

and, in view of the above proved fact:

cp(c1) ~ cp(c,') ~ ... ~ cp(c/)

As C1, ... ,ci are consecutive components of Ck, from (21) and (22) it follows that

cp(ci') ~ cp(c1), ... , cp(c/) 2 cp (ci), hence C!>(C')2C!>(C)2d, q.e.d.

(21)

(22)

Remark: It follows immediately that each j-element C' generated subsequently to C is not a

m-d-c-s candidate, thus C is non-augmentable.

21

Lemma 5.3

If B(Ck,C)={b1, b2, ... }, where (jl {b1),,;cp(b2),,; ... , and (!)(Cu {b;})2d, then (!)(Cu {bj})2d for j>i.

Proof: The lemma is obvious, because (jl {bj)2Cjl (b;) for j>j.

Remark: It follows immediately that Cu {bj}, j>i, are not m-d-c-s candidates, thus Cu {b;} is

non-augmentable.

Lemma 5.4

Let B(Ck,C)={b1, b2, ... }, where b;, i2 l, are ordered as in Ck. Then (!)[Cu {b;} u µ(Ck, Cu {b;})] is

non-decreasing with respect to i 2 1.

Proof: If A(Ck,C) = 0 then we have:

µ(Ck, Cu {b1}) = b2 and µ(Ck, Cu {b;}) = b1, i 2 2.

It thus follows that

(!)[Cu b1 u µ(Ck, Cu {b1})] = (!)(C) + Cjl (b1) + Cjl (b2),

(!)[Cu b2 u µ(Ck, Cu {b2))] = (!)(C) + cp(b2) + cp(b1),

(!)[Cu b;uµ(Ck, Cu {b;})] = (!)(C) + Cjl (b;) + Cjl (b1), i 23.

Since Cjl (b;) is non-decreasing in i, i2 l, the lemma's thesis follows from (24).

If, in turn, A(Ck, C) * 0 then

µ(Ck, Cu {b;}) = a1, i 2 1,

where a1 is the first element of A(Ck, C) . In consequence

Thus the thesis also holds for A(Ck, C) * 0.

22

(23)

(24)

(25)

(26)

Remark: Lemma 5.4 allows not to compute <ll[c• u µ(Ck, c•)] (in order to check, as per

Lemma 5.1, whether Ck\c• is a m-d-c-s candidate), if c• = Cu {b+}, where b+ succeeds the first

bEB(Ck,C) for which <ll[Cu {b} u µ(Ck, Cu {b})] 2 d. This lemma is not referenced in Alg. 2,

and its role is further explained in the example following Alg. 2.

Based on the Lemmas 5.1, 5.2, 5.3, and the general rules formulated in section 3 the

following algorithm is constructed.

Algorithm 2

For k=min [k: <ll(Ck) 2 2d] to m do

For j=O to I Ck I - 1 do

If each j-element subset C of Ck is marked, pass to the next k;

For each j-element unmarked subset C of Ck do •

For each bEB(Ck, C), where {b} is unmarked and cp(b)<d, do*

c• +-- Cu {b} (augment C with {b});

In case "<ll(C.)<d" do

If <l>[c•u µ(Ck, c•))2d, mark c• as non-augmentable, mark Ck\ c• as m-d-c-s

candidate, and check it for ER; ••

In case "<t>(c•)2d" do

If c• is composed of consecutive elements of Cb mark c• as non-augmentable

and pass to the next j; •••

Mark c• as non-augmentable and pass to the next j-element C; ****

23

Remarks to commands marked with asterisks:

* adding any b to a marked set C, or adding b such that (Jl(b) :c,:d to any C, yields c+ such that

(J)(C.kd, i.e. Ck\ c+ is not a m-d-c-s candidate

** see Lemma 5.1

*** the capacities of all (j+l)-elements subsets of Ck generated subsequently to c• would be

greater or equal to d (see Lemma 5.2)

**** the capacities of subsequent augmentations of C would be greater or equal to d (see

Lemma 5.3)

It should be noted that Alg. 2 generates as few as possible non-d-cut-sets (the case (J)(C+):c,:d),

and although it can generate internally redundant d-cut-sets (it happens if (J)(C.)<d and

(J)[c'u ~t(Ck, C+)]<d), their number is small due to the condition cJ:>(Ck) :c,:2d. Furthermore, the

JR check is done instantaneously (it is positive if (J)[c•uµ(Ck, c•)]<d) and requires no

comparison with the previously found d-cut-sets.

To illustrate how Algorithm 2 operates, we will apply it to the network in Fig.1. The results of

the successive operations are presented in tables, one table for each k=3, ... ,m. The algorithm

starts with k=3, because this is the first k for which (J)(Ck) :c,: 2d. The markings used in the 4-th

and 5-th column have the following meanings:

* - Ck\C+ is a m-d-c-s candidate

** - Ck\C+ is a redundant m-d-c-s candidate

- c+ fulfills the assumptions of Lemma 5.2 or 5.3

I - b is the last component of Ck (this marking is only used if* or# does not apply)

24

Cells with non-computed values are filled with crosses. Starting from k=3, at the top of each

table the values of <l>(C;\Ck), j<k, are listed to indicate those j for which assumption 3 of

Lemma 3.5 needs to be verified in order to check if Ck\ c+ is externally redundant.

k=3: <l>(C1 \ C3) = 11, <l>(C2 \ C3) = 19 (ER verification not needed)

j C b c+ ck\ c+ <l>(C+) <l>[C+uµ(Ck, c+)l

0 0 5 {S}* (9,8}* 6 12

0 0 9 {9}* (5,8}* 6 12

0 0 8 {8}* {5,9}* 8 14

k=4; <l>(C1\C.) = 7, <l>(C2\C4) = 15, <l>{C3\ C4) = 8 (verify ER for j=l,3)

j C b c+ ck\ c+ <l>(C+) ctJ[C+u ~t(Ck, c•) l

0 0 3 {3} 4 9

0 0 6 {6} 5 9

0 0 5 {5}* {3,6,9}* 6 10

0 0 9 {9}* {3,6,5}* 6 x (Lemma 5.4)

1 {3} 6 {3,6}* {5,9}** 9 15

Remark: As follows from Lemma 5.4, if C!J[c• u µ(Ck, c•)] 2'. d, where c• = Cu{b}, then

C!J[Cu {b+} u ~t(Ck, Cu{b.})] 2'. d, where b+ succeeds b in B(Ck, Cl- Thus, there is no need to

compute C!J[Ck\ (Cu {b. })], because we only need to know if it's greater or equal to d.

25

k=5; (l)(C1\C5) = 8, (l)(C2\C5) = 19, (l)(C3\C5) = 6, (l)(C4\C5) = 15 (verify ER for j=l,3)

j C b c · ck\ c· ©(C+) ©[C\.Jµ(Ck, C+)]

0 0 4 {4} 3 9

0 0 5 {5} 6 9

0 0 7 {7} 6 9

0 0 8 {8}* {4,5,7}** 8 11

1 {4} 5 {4,5}* {7,8}* 9 15

1 {4} 7 {4,7}* {5,8}** 9 x (Lemma 5.4)

1 {5} 7 {5,7}# (Lemma 5.2) 12; pass to j=2 X

26

k=6; C!>(C1\C6)=4, C!>(C2\C6)=15, C!>(C3\C6)=14, C!>(C4\C6)=6, C!>(C5\C6)=8 (verify ER for j=l,4,5)

j C b c+ ck\ c+ C!J(C+) C!J[C+uµ(Ck, c+)]

0 0 4 {4} 3 7

0 0 3 {3} 4 7

0 0 6 {6} 5 8

0 0 5 {5} 6 9

0 0 7 {7} 6 9

1 {4} 3 {4,3}* {6,5,7}* 7 12

1 {4} 6 {4,6}* {3,5,7}** 8 x (Lemma 5.4)

1 {4} 5 {4,5}* {3,6, 7}* 9 x (Lemma 5.4)

1 {4} 7 {4,7}* {3,6,5}** 9 x (Lemma 5.4)

1 {3} 6 {3,6}* {4,5,7}** 9 12

1 {3} 5 {3,5}# (Lemma 5.3) 10; pass to next C X

1 {6} 5 {6,5}# (Lemma 5.2) 11; pass to j=2 X

27

k=9; ct>(C1\C9}=4, ct>(C2\C9}=15, ct>(Cs\C9}=6, ct>(C. \Cg)=lO, ct>(Cs\C9}=6, ct>(C5\C9}=10,

ct>(C7\C9)=17, ct>(C8\C9}=21 (verify ER for j=l,3,5)

j C b c · c k\ c · ct>(C+) ct>[c•uµ(C k, C)J

0 0 4 {4} 3 7

0 0 2 {2} 4 7

0 0 6 {6} 5 8

0 0 5 {5} 6 9

0 0 8 {8} 8 9

1 {4} 2 {4,2}* {6,5,8}** 7 12

1 {4} 6 {4,6}* {2,5,8}** 8 x (Lemma 5.4)

1 {4} 5 {4,5}* {2,6,8}* 9 x (Lemma 5.4)

1 {4} 8 {4,8)# (Lemma 5.3} 11 X

1 {2} 6 {2,6}* {4,5,8}** 9 12

1 {2} 5 {2,5}# (Lemma 5.3) 10; pass to next C X

1 {6} 5 {6,5)# (Lemma 5.2) 11; pass to j=2 X

28

k=lO; {J)(C,\C10)=3, {J)(C2\C1o)=ll, {J)(C3\C10)=8, {J)(C4\C10)=5, {J)(Cs\C10)=1l, {J)(C6\C10)=8,

{J)(C7\ C10)=19, {J)(C8\C10)=16, {J)(C9\ C10)=16 (ER to be verified for j=l,3,4,6)

j C b c• ck\ c• {J)(C+) {J)[c•uµ(Ck, c•i1

0 0 2 {2} 4 8

0 0 3 {3} 4 8

0 0 5 {5}* (2,3, 7,9)** 6 10

0 0 7 {7}* {2,3,5,9}** 6 x (Lemma 5.4)

0 0 9 {9}* (2,3,5,7}** 6 x (Lemma 5.4)

1 (2) 3 (2,3}* {5,7,9}** 8 14

In the previous section we found that {1}, composed of one large capacity link, is a m-d-c-s.

Thus, on the basis of Lemma 3.8, all m-d-c-s candidates generated from C7, C8, C11, C12, C13,

each of which includes (1), would be redundant.

Summing up, the following min-d-cut-sets (d=lO) in the network from Fig.1 have been found :

{5,2), {5,3}, {5,4}, (2,3}, {1}, {9,8}, {5,8}, {5,9}, {3,6,9}, {3,6,5}, (7,8}, (6,5,7}, {3,6,7}, (2,6,8}.

They are listed in the order in which they have been generated.

6. CONCLUSION

A new efficient algorithm for enumerating all the min-d-cut-sets in a flow network was

presented. It has several features that make it competitive in comparison with the analogous

algorithms to be found in the relevant literature. First, when generating min-d-cut-sets from

the min-1:-cut-set Ck, it makes a distinction between the cases {J)(Ck)<2d and $(Ckk2d, which

significantly accelerates the search procedure. This is achieved by generating a small number

29

of non-d-cut-sets (Alg. 1 and Alg. 2), and by either avoiding the generation of internally

redundant d-cut-sets (Alg. 1) or by generating only a small number of them (Alg. 2). To be

more precise, if Alg. 2 instead of Alg. 1 were used for Ck such that C])(Ck)<2d, then many

internally redundant d-cut-sets would be generated before a min-d-cut-set wou ld be found.

In turn, if Alg. 1 instead of Alg. 2 were used for Ck such that C])(Ck} :C::2d, then many non-d-cut­

sets would be generated before a min-d-cut-set would be found.

Second important feature is a fast way of checking the external redundancy, based on

Lemma 3.7. If D a m-d-c-s candidate obtained from Ck, then Dis not compared with all min­

d-cut-sets obtained from Ci, j<k, but only with the min-1:-cut-sets Ci, j<k. This is particularly

effective when the number of already found min-d-cut-sets exceeds k. The third advantage

of the presented method is that it does not unnecessarily compute the flow capacities of

some generated sets, as follows from lemmas 4.3 and 5.4. The fourth feature is the

possibility of quickly determining the only m-d-c-s candidate in Ck (lemma 4.4) or

ascertaining that all candidates in Ck are externally redundant (lemma 3.8).

For comparison with the earlier results of other authors, the newly developed method was

applied to the network structure used as an example in [2] and [SJ, and it needed

significantly less basic operations in order to find the min-d-cut-sets of that network.

As mentioned in the introduction, the first and foremost application of a min-d-cut-set

enumeration method is to compute the reliability of a flow network, which is defined as the

probability that the maximal flow in the network is greater or equal to d. If all min-d-cut-sets

are known, then the SDP (sum of disjoint products) method of constructing an expression for

30

the network reliability is considered to be highly efficient (see [4], [12]). The starting point of

this method is the Boolean sum of products each of which corresponds to one min-d-cut-set.

Quite recently, the author of this paper devised a method competitive to SDP, which he

named "Tree of Boolean Expressions" and whose details can be found in [8].

Although the provided example suggests that the proposed method can only be used for

networks with undirected links and failure-free nodes, this is not the case. Let us note that

the initial data used by the method are all the min-,-cut-sets of the considered network, and

there exists algorithms that find min-,-cut-sets also in networks with failing nodes and

directed links (see [7], [9]). Moreover, the method can be generalized to the multi-source

and/or multi-sink case, but this would require appropriate redefining of min-,-cut-sets,

which will be a topic of further research. It should be noted that a similar issue has been

addressed in [3].

Bibliography

[1] U. Abel and R. Bicker, "Determination of All Minimal Cut-Sets between a Vertex Pair in an

Undirected Graph", IEEE Transactions on Reliability, vol. R-31, pp. 167-171, 1982.

[2] S. Chakraborty and N.K. Goyal, "lrredundant Subset Cut Enumeration for Reliability

Evaluation of Flow Networks," IEEE Trans. Rel., vol. 64, no. 4, pp. 1194-1202, 2015.

[3] S. Chakraborty and N.K. Goyal, "An Efficient Reliability Evaluation Approach for

Networks with Simultaneous Multiple-Node-Pair Flow Requirements," Quality and Reliability

Engineering International, 2016.

[4) E. Chatelet et al., "An optimal procedure to generate sums of disjoint products,"

Reliability Engineering and System Safety, vol. 65, no. 3, pp. 289-294, 1999.

31

[5] S.K. Chaturvedi, "lrredundant Subset Cut Generation to Compute Capacity Related

Reliability," International Journal of Performability Engineering, vol. 3, no. 2, pp. 243-256,

2007.

[6] T.H. Cormen et al., "Introduction to algorithms," MIT Press, London 2009.

[7] J. Malinowski, "A new efficient algorithm generating all minimal s-t cut sets in a graph­

modeled network," in Proc. Int. Conf. of Numerical Analysis and Applied Mathematics 2015,

AIP Conference Proceedings, pp. 480030-1 - 480030-4, 2016.

[8] J. Malinowski, "A fast tree-scanning algorithm finding a compact expression for the

structure function of a system with known minimal path(cut) sets," in Risk, Reliability and

Safety: Innovating Theory and Practice, Proc. of the 26-th European Safety and Reliability

Conference, ESREL 2016, pp. 1375-1379.

[9] B. Singh, "Enumeration of node cut sets for an s-t network", Microelectronics Reliability,

vol. 34, pp. 559-561, 1994.

[10] 5. Soh and 5. Rai, "An efficient cutset approach for evaluating communication-network

reliability with heterogeneous link-capacities," IEEE Trons. Rel., vol. 54, no. 1, pp. 133-144,

2005.

[11] W.C. Yeh, "A simple algorithm to search for all MCs in networks", European Journal of

Operational Research, vol. 174, pp. 1694-1705, 2006.

[12] W.C. Yeh, "An improved sum-of-disjoint-products technique for the symbolic network

reliability analysis with known minimal paths," Reliability Engineering and System Safety,

vol. 92, no. 2, pp. 260-268, 2007.

32

