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1. Notation and definitions

1.a General characteristic of the processes and events

P1, .. ,,Pn -the individual processes as the constitutive elements of the considered 

environment; each process is (can be) regarded as a phased-mission system; n -the 

number of these processes 

E/ 1, .. ,,Em 1/
1 -different hazardous events that can occur in the process p;; m(i) -the number 

of such events 

t../1, .. ,,"-m i/ 1 -the intensities with which E/1, .. ,,Em 1/
1 occur as primary events, i.e. not caused 

by another event in any process (given data) 

x.0 1-the strength of E,01; a random variable with values in a finite set S={l, ... ,s}

n/1(x) -the prob. that the strength of an primary E/1 is equal to x (given data)

n/1(>x) -the prob. that the strength of an primary E/1 exceeds x; note that

n/1(>x) = Lv>xn/1(x) 

N/1(s,t)-the number of occurrences of an primary E/1 of any strength in the (s, t] time

interval; a random variable 

N/1(s,t,x) -the number of occurrences of an primary E/1 of strength x in the (s, t] time

interval; a random variable 

1.b The cause-effect probabilities

7tb,a O, il(y, x) -the probability that Eb
lil of strength y directly causes E/1 of strength x (given

data) 

7tb,a O,
il(y, >x) -Pr (Eb

lil of strength y directly causes E,01 of strength greater than x)
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7tb,,U.iJ(·, x)-Pr (Eb
UI of any strength directly causes E,liJ of strength x) 

7tb,,0·t, >x)- Pr (Eb
UJ of any strength directly causes E/I of strength greater than x)

llb,a li,il(y, x; h) -the probability that Eb UI of strength y causes E,lil of strength x as a result of h-

step (but not less-than-h-step) cascading effect, h2'.2 

llb,a li,il(y, >x; h), llb,a li,iJ( · , x; h), llb,a li,iJ( ·, >x; h) -the probabilities defined analogously to

(j,i) (j,i) (j,i) llb,a (y, >x), llb,a ( · , >x), llb,a ( · , >x)

The probabilities 7tb,,li,il with various arguments will be called the cause-effect probabilities, 

as they quantify the cause-effect relations between the events occurring within the analyzed 

processes. 

l.c Various types of risks

r/I(s, t, >x) -the risk that at least one event E,lil of strength >x occurs as a primary event in 

the (s, t] interval, 1:, a :,m(i); 

rb,,U,il(s, t, >x)-the risk that Eb
UJ (an event in Pi) directly causes at least one occurrence of E,lil

(an event in p;) of strength> x in the (s, t] interval, where b;ca for j=i; 

R/I(s, t, >x, 1) -the total risk that at least one E/I of strength >x occurs (in p;) in the (s, t] 

interval, as a direct effect of any event Eblil in any process Pi, (b,j);c(a,i). The capital letter 

R indicates that all the processes rather than one contribute to the risk. 

R/I(s, t, >x, h) -the total risk that at least one E/I of strength >x occurs (in p;) in the (s, t] 

interval, as a h-step (but not less-than-h-step) cascading effect of any event Eb 
UI in any 

process Pi, h2'.2. 
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R.1;1(s, t, >x, ;:,:1) -the total risk that at least one E/1 of strength >x occurs (in p;) in the (s, t]

interval, as a cascading effect of any step and any event Eblil in any process Pi·

2. Introduction

The functioning of practically every technical system can be regarded as a set of 

interacting, running in parallel processes which represent the individual operations carried 

out within the considered system. The aim of this work is to construct a model of hazard­

related interdependence of these processes. This model should describe the impact of 

hazardous or harmful events occurring in one process (intrinsic to that process) on the risks 

of such events adversely affecting the other processes. 

The analytical part of the task, apart from defining the interactions between the 

considered processes, will include the analysis of feedback and cascading effects that can 

result from the mutual dependencies between the events occurring in different processes. 

The main analytical result consists in deriving the formulas which on the one hand express 

the risks of events of different types resulting from other events in the same or other 

processes, and, on the other hand, quantify the consequences that a given event can entail, 

in the sense of adverse impact it can have on its own and other processes. Such formulas 

allow to assess the possibility of the occurrence of a harmful event as a direct or indirect 

consequence of other events, as well as to assess the harmful impact that a given event has 

on individual processes. They can be applied to the development and implementation of 

safeguards protecting against, or mitigating the effects of, hazard-related mutual impacts 

among the considered processes. 

The random variables expressing the strength of events occurring in the processes 

and the risks of these events can have "crisp" numerical values, or "non-crisp" descriptive 
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values, i.e. fuzzy or linguistic ones, e.g. the strength of an event can be extreme, high, 

significant, considerable, medium, low, etc. The used quantification approach depends on 

the degree of accuracy of the intended risk analysis, and the amount and character of the 

available data. The applicable mathematical tools are the probability/possibility theory, 

evidence (Dempster-Schafer) theory, and simple arithmetic. 

The considered harmful events are divided in four categories: primary (occurring by 

themselves), directly caused (by another event), indirectly caused by a cascading effect, and 

indirectly caused by a feedback effect. A cascading effect takes place when the events occur, 

on a cause-effect basis, in a series whose length exceeds 2; the first event is a primary one, 

and each other event in the series is directly caused by the preceding one. We will say that 

an event is a result of a h-step cascading effect if the event's number in the cause-effect 

series is h+l. A directly caused event can be regarded as a result of a 1-step cascading effect. 

A feedback effect is a special case of a cascading effect, where the last event in a series is an 

instance of the first event, i.e. an instance of the primary event E/1 causes, by means of a

cascading effect of step at least 2, another instance of E/1, possibly of different strength. A

feedback effect cannot be a 1-step cascading effect, because the natural assumption is 

adopted that an event cannot be directly caused by itself, i.e. 

n.}·;1(y,x) = O, iE{l, ... ,n}, aE{l, ... ,m(i)} (*) 

However, we admit the possibility of the internal impact, meaning that an event can be 

directly caused by another event in the same process, i.e. 

(**) 
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It is also assumed that the primary events are independent, both within one process, and 

among all the considered processes, i.e. the instances of E/1, ... ,Em 1;1
1i1, i=l, ... ,n, as primary

events, are mutually independent. 

For the sake of computational tractability it is desirable that the sequences of 

cascading events caused by different primary event be mutually independent. If we assume 

that the events in a cascade follow each other in a quick succession, i.e. the time of the last 

event in a cascade triggered by a given primary event always precedes that of the next 

primary event (or, if there are delays between successive events in a cascade, that no two 

events can coincide), then this requirement is fulfilled by virtue of the following lemma. 

Lemma 1 

The sequences of cascading events caused by different triggering events are independent 

(Clearly, the events in one cascade are not independent). 

Proof: the lemma follows directly from the assumption of the mutual independence of 

instances of primary events, and the impossibility of causing one non-primary event by two 

primary ones, i.e. the impossibility of the occurrence of a common event in two cause-effect 

chains (clearly, chains with a common event would be mutually dependent). This 

impossibility is a consequence of the assumed instantaneousness of a cascading effect. 

Practical implementation of the developed model should consist of three phases: 

1. Identifying hazards involved in the individual processes, and 

evaluating/estimating/assessing the internal risks r/1(s, t, >x), 1� i �n, 1� a �m(i).
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2. Identifying hazard-related interactions between the processes, and 

evaluating/estimating/assessing the external risks r.}-i1(s, t, >x), l $ a $m(i), 1 $ b $m(j), jati;

i,jE{l, ... ,n}. 

3. Calculating all the risks defined in Section 1.

4. Developing procedures aimed at mitigation, minimization or elimination of possible

harmful consequences of the identified hazards, using the risks calculated in step 3. 

3. Calculation of the cause-effect probabilities

First, the probabilities nb},;1(-, x) and 7tb,aU'°(., >x), where b at  a if j=i, will be calculated,

It holds that: 

nf2C x) = Pr ( E�j)of any strength directly causes E�i) of strength x) =

= Pr ( U
yEs Efl has strength y and causes E�i) of strength x) =

=" rr (J,
i) (y x)rr (J) (y) �yES b,a , b 

and 

nf�lc-, > x) = Pr( Eflof any strength directly causes E�i) of strength > x) =

= Pr ( U
yEs Efl has strength y and causes E�i) of strength > x) =

6 
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- � � Pr (x CO - zlXCJJ - y) Pr (xCil - y) -

- L.Jz>x L-lyES a - b - b - -

(2) 

Now we pass to the calculation of the probabilities related to the cascading effect of degree 

h�2. To make the analysis more detailed, different formulas will be obtained depending on 

whether the internal impact and/or the feedback effect are taken into consideration or not. 

Lemma 2. 

If both the internal impact and feedback effect are taken into consideration, then 

7tb,a U
, i l(y, >x, h), where h�2, is given by the following recursive formula:

= U k=l, ... ,n L zES rr�:/l (y, z)rr��i) (z, > X, h - 1), h 2". 2
c=l, ... ,m(k) zsx for (k,c)=(i,a) 

where 

Using (3) we obtain the following "aggregate" probabilities: 

CJ,,J( > h) - � CJJ
(y) CJ.il

(y > h) h > 2 rrb,a •, X, - LJyESTCb rrb,a ' X, 1 -

and 

rr CJ,il(, h) CJ.il( 0 h) h 2b,a ' = rrb,a ', > , , 2': 
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Remark 1: Under the adopted assumptions, (3) also holds for (j,b)=(i,a), and (k,c)=(i,a) is in 

the range of the "inverted pi" operator (feedback effect). However, it should be 

remembered that nb,,li,kl(y,z) = 0 for (k,c)=(j,b) and 11,,,tk, il(z, >x, 1) = 0 for (k,c)=(i,a) (see(*)). 

Remark 2: If (k,c)=(i,a), then z>x are not in the range of the summation operator, because 

taking such z into consideration would amount to admitting the possibility that Eb UI directly 

causes E/ 1 of strength >x. This would contradict the requirement that E/ 1 of strength >x 

cannot be a less-than-h-step cascading effect of Eblil · 

Proof of (3 ): 

rrf �\y, > x, h) = 

= Pr (
E�O of strength> x occurs in h steps as a cascading effect of E�1l,) = 

but not in 1, ... , or (h - 1) steps 

= Pr LJ k=l, ... ,n LJ zES 
c=l,. .. ,m(k) z<x for (k,c)=(i,a) 

E?1 of strength z
is directly caused

by E�J) of strength y,
and E�i) of strength > x
occurs in (h - 1) steps 
as a cascading ef feet
of E?1of strengthz,

but not in 1, ... , or (h - 2) steps

=U k=l, ... ,n L zES rrf/\y,z)rrt�0 (z, >x, h-l)
c=l, ... ,m(k) zsx for (k,c)=(i,a) 

(7) 

The last equality follows from Lemma 1 which states that the sequences of cascading events 

caused by different triggering events are independent. 
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Lemma 3 

If the internal impact is not taken into consideration, but the feedback effect is, we have: 

rr (J,i)(y > x h) = 
b,a , ' 

U 
_, (J,k)

(y ) (k,i)( = k=l, ... ,n; k-:t:-j � zES rrb,c ,z Trc,a Z, 
c=l, ... ,m(k) zsx for (k,c)=(i,a) 

> X, h - 1), h?. 3, (8) 

Note that k=j is not in the range of the "inverted pi", otherwise an internal impact within Pi 

would be taken into account. For h=2 (8) changes to: 

rr�j;)(y, > x, 2) = ilk=1,.,n;k*j,k;,i Lzesrrf./l(y,z)rr?�i)(z, > x)
c=l, ... ,m(k) 

(9) 

Note that now k=i and k=j are not in the range of the "inverted pi", otherwise an internal 

impact in p; or Pi would be taken into account. Also note that the summation over zES is not 

limited to z:<c:x for (k,c)=(i,a), because k=i is not in the range of the "inverted pi". 

If no feedback is taken into consideration, then the following two lemmas hold: 

Lemma 4 

If the feedback effect is not taken into consideration, but the internal impact is, then we 

have: 

_ u 
_, (j,k) 

(y ) (k,i) ( - k=l, ... ,n �zESTfb,c , Z TCc,a Z, 
c=l, ... ,m(k) 
(k,c),a(i,a) 

> x, h - 1), h?. 2, 
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where (j,b);t(i,a) - otherwise E,lil would be a h-step feedback effect of itself. For a similar 

reason (k,c)=(i,a) is not in the range of the "inverted pi" - otherwise E/1 would be a (h-1)-

step feedback effect of itself. In consequence, the summation over ZES is not limited to z:-,x 

for (k,c)=(i,a) as in (3) or (8). 

Lemma 5 

If both the feedback effect and internal impact are not taken into consideration, then it 

holds that 

= U - . ·"' rr U,k)
(y z)rr (k,i)(z > h l) h > 3 k-1, .... n, k;,J L..zES b,c , c,a , X, - , - , (11) 

c=l, ... ,m(k) 
(k,c);, (i,a) 

where (j,b);t(i,a). Note that (k,c)=(i,a) is not in the range of the "inverted pi" - otherwise E/1

would be a (h-1)-step feedback effect of itself, Also, k=j is not in the range of the "inverted 

pi" - otherwise an internal impact in Pi would be taken into account. For h=2 (11) changes 

to: 

= ilk=l, . .  ,n; hj,k;,i LzES rrf�
k)(y, z)rrt�

i)(z, > x)
c=l, ... ,m(k) 

(12) 

where (j,b);t(i,a). Note that k=j and k=i are not in the range of the "inverted pi" - otherwise 

an internal impact in Pi or p; would be taken into account. 
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The proofs of Lemmas 3 through 5 are similar to that of Lemma 2. As to the formulas for 

"aggregate" probabilities, i.e. (S) and (6), they remain unchanged in all the cases considered 

in these lemmas. 

4. Calculation of the risks of harmful events

Theorem 1 

The primary events E,1'1 of strength x or greater than x constitute a Poisson process with the 

intensity 1..,1'1-n,1'1(x) or 1..,1'1 -n,1'1(>x) respectively. 

Proof: It follows from the adopted assumptions that the primary events E,1'1 of any strength 

constitute a Poisson process with the intensity 1..,1'1, hence we have:

Pr[x�il = x for r of the q occurrences of E�i) I N�iJ(s, t) = q] x

= L;;'=r 

[ co lq-r 
00 q! 

[ (i) 
l

q-r-'a • (t-s) 

X Lq=r r!(q-r)! 1 - rra (x) 
q! 

[-<�l ,,r�)(x),(t-s)r 
[ (i) 

l CX) [ 
(i) 

l
q-r [-<�) . (t-s)r-r 

r! 
exp -Aa · (t - s) Lq=r 1 - 1fa (x) (q-r)! 
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[,,�1 -irl,il cxHt-s)j' [ (i) (i) 

] r! exp -Aa · Tra (x) · (t - s) 

The above equality indicates that the first part of the thesis is true. 

(13) 

In the same way it is proved that the occurrences of E/I of strength >x constitute a 

Poisson process with the intensity ;\,/I-n,1'I(>x). 

Corollary 1: 

The "primary" risks r,l'I(s, t, x) and r,l'I(s, t, >x) are given by the following formulas: 

(14) 

r;O(s,t,> x) = 1-exp[-n�)(> x) · J�l. (t -s)] (15) 

Now we pass to the calculation of the total risk that one or more events E,lil of 

strength x or exceeding x occur on the (s, t] interval, provided that all the processes can 

contribute to E/I. 

Theorem 2 (direct impact, no cascading effect) 

The events E/I of strength x or greater than x, directly caused by primary events Eb Ul of any 

strength, constitute a Poisson process with the intensity "-b
Ul · 7t b,a(i,

il( ·, x) or "-b
lil ·7t b,aU,

il( ·, >x)

respectively, where the probabilities n b,a U,
il( ·, x) and 1t b,a U,

il( ·, >x) are given by (1) and (2).

Further, the occurrences of E/l of strength x or greater than x, directly caused by any 
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primary event in any process (including p,), constitute a Poisson process with the intensities 

given by the following formulas: 

and 

·- AU) · rrU.i)(· x) J-1, ... ,n b b,a , 

b;l, .• m(j); b,.afor j;i 

A�)(> X, 1) = L J;l, ...• n A�)· rrf;;lc-, > x)
b;l, ..• m(j); b,.a for J;i 

(16) 

(17) 

Proof: Let Nb_,u.•l(s,t,x) be the number of the events E,lil of strength x, directly caused by 

primary events Eb UJ of any strength. We have: 

(the events Efl directly cause I U)( ) 
) 

Pr C) 
N

b 
s, t = q X 

= I:;";r 
r events Ea' of strength x 

X Pr(Nij)(s,t) = q) 

Proceeding further as in (13) leads to the following formula: 

[ . . 
] [iil ,,rCi.i\ x)•(t-s)j

r [ . . . 
] Pr Ni:�')(s, t, x) = r = • •.

a 

;1 exp -,1�) · rr�:�\, x) · (t - s) (19) 

In the same way we obtain: 
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[;_CJ1 .,r(j.iJc., >X)·(t-sl]
r 

[ c·i u ·i 
] 

= - b b,a 

- exp -,11 · rr ·' (·, > x) · (t -s)
r! a b,a 

(20) 

The first part of the thesis is thus proved. For the proof of the second part let us note that 

the primary events Eb
rn, jE{l, ... ,n}, bE{l, ... ,m(j)}, bata for j=i, occur independently, thus it 

follows from Lemma 1 that the occurrences of E,1'1 directly caused by these Eb 
01-s can be 

regarded as a superposition of independent Poisson processes, hence their intensity is equal 

to the sum of the intensities of the individual processes. 

Corollary 2: 

The "secondary" risks rb,,O. il(s, t, x) and rb,,0·'1(s, t, >x) are given by the following formulas: 

(21) 

(22) 

Corollary 3: 

The total risks R,i'1(s, t, x) and R,i'1(s, t, >x) are given by the following formulas: 

Ri0(s,t,x) = l-exp[-11�\x, 1)] (23) 

(24) 

where A,i'1(x,1) and A/1(>x,1) are given by (16) and (17). 

Theorem 3 (cascading effect of step h�2) 

The events E/1 of strength x or greater than x, each of which is a h-step (but not less-than-h­

step) cascading effect of a primary event Eb 
ul of any strength, constitute a Poisson process 
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with the intensity A.b
lil ·TT b,a U

,il( ·, x, h) or A.b Ul ·TT b,a U. il( ·, >x, h) respectively, where the 

probabilities TTb,, U
, i )( ·, x, h) and TT b,, U

, i )( ·, >x, h) are given by the formulas in Lemmas 2 - 5. 

We recall that these formulas differ depending on whether the internal impact and/or 

feedback effect are taken into consideration. 

Further, the events E/' of strength x or greater than x, each of which is a h-step (but not 

less-than-h-step) cascading effect of any primary event in any process (including p;), 

constitute a Poisson process with the intensities given by the following formulas: 

(i) U) (J,i) Aa (x, h) = L j=l, ... ,n :lb · nb a (·, X, h) 

and 

b=l, ... ,m(j) 
, 

A�\> X, h) = L j=l, ... ,n .:lfl . rrf;l c., > X, h) 
b=l, ... ,m(j) 

(25) 

(26) 

If the feedback effect is not taken into consideration, then (j,b)=(i,a) is excluded from the 

range of the summation operator in (25) and (26)- see lemmas 3 and 4. 

Proof: the proof is similar to that of Theorem 2. 

Corollary 4: 

The total risks R/'(s, t, x, h) and R/'(s, t, >x, h) can be found from the following formulas: 

(i) [ (i) ] Ra (s, t, > x) = 1 - exp -Aa (> x, h) 

where A/'(x, h) and A/'(>x, h) are given by (25) and (26). 
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Theorem 4 (cascading effect of any step) 

The events E, Iii of strength x or greater than x, each of which is a cascading effect of any step 

of a primary event Eb UI of any strength, constitute a Poisson process with the intensity

Further, the events E,li1 of strength x or greater than x, each of which is a cascading effect of

any step of any primary event in any process (including p;), constitute a Poisson process with 

the intensities given by the following formulas: 

(i) (i) Aa (x, ;::: 1) = Lh>l Aa (x, h)

and 

(i) (i) 
Aa (> X, ;::: 1) = Lh21Aa (> X,h) 

(29) 

(30)

Proof: The secondary events E/1, each of which is a cascading effect of any step of any

primary event, constitute a superposition of Poisson processes Xh, h�l, where the process Xh 

is a sequence of E, lil_s, each of which is a h-step (but not less-than-h-step) cascading effect of 

any primary event. These processes are independent, because, by one of the basic 

assumptions, the triggering events of the events E,(i) in the compound process are 

independent. Thus, (27) and (28) are a consequence of Theorem 3. 

Corollary 5: 

The total risks R,(i)(s, t, x, �1) and R,li1(s, t, >x, �1) can be found from the following formulas:

co [ co l Ra (s, t,x,;::: 1) = 1 - exp -Aa (x,;::: 1) 

co - [ co l Ra (s, t, > x, e:: 1) - 1 - exp -Aa (> x, e:: 1) 
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where A/1(x, ;:>:1) and A/1(>x, ;:>:1) are given by (29) and (30).

5. Conclusion

This paper presents the formulas for calculating the risks of various unwanted or harmful 

events that can occur during the functioning of a technical or industrial system whose 

hazard-related behavior is modeled by a set of mutually related stochastic point processes. 

The dependence between the processes follows from fact that events occurring in one 

process can cause events in the other processes, thus, apart from the primary events 

(assumed to occur independently), there are also secondary events occurring due to a 

cascading or feedback effect. The derived formulas are effect-oriented in the sense that they 

express the total probabilities of the considered events without specifying the degree to 

which individual primary events contribute to these probabilities. However, the obtained 

formulas can be modified to the cause-oriented ones, i.e. quantifying the possible effects of 

individual primary events. This will be the subject of future work. 
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