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Abstract 

In this work we consider a flow network with directed links and three types of nodes: 

inflow points, transit-only nodes, and outflow points. Its structure can be reduced to a single 

component by means of the so-called series-parallel aggregation. The network's 

components are binary (i.e. they can be either operable or failed) and repairable, have 

constant failure and repair rates, and their states are mutually independent. Each operable 

component has a non-zero integer throughput, a failed component has zero throughput. 

It is natural to measure the network's performance by the total demand satisfied 

(TDS) at all outflow points vs. the total demand required (TDR) at these points. Clearly, as 

each component undergoes failures and repairs, TDS can change over the [O, TDR] interval. 

Thus, the probability that TDS is no smaller than a given valued, where d$TDR, referred to 

as d-availability can be regarded the basic reliability parameter of the considered network. 

An algorithm developed by the author, computing this parameter, is presented. This 

algorithm is a recursive procedure executed in the course of the series-parallel aggregation, 

operates on integer numbers, and has relatively low numerical complexity. The author has 

also defined a number of other reliability parameters characterizing the network's 

dynamically changing ability to satisfy the demands at the outflow points. These parameters 

are calculated using the network's d-availability and the d-importances (a multi-state 

generalization of the Birnbaum importance) of individual components. The presented results 

can be applied e.g. in the reliability analysis of water supply networks, gas pipeline systems, 

power transmission and/or distribution networks, etc. 
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1. Introduction 

The current paper is a continuation of Malinowski (2013), where the capacity of a 

series-parallel-reducible system, defined as a function of its components' capacities, was 

considered. The subject matter considered is a flow network which delivers a commodity 

(water, oil, gas, electric power, etc.) from inflow to outflow points. The paper can be 

classified as a contribution to the field of reliability of flow networks regarded as multi-state 

repairable systems. Multi-state systems with binary or multi-state components have been 

studied with increasing interest during the recent decades. A broad overview of multi-state 

reliability models and methods used for their analysis, along with the comprehensive survey 

of relevant literature can be found in Lisnianski et al. (2010), and Lisnianski & Levitin (2003) . 

Methods of computing failure/repair frequencies, intensities, and availabilities of multi-state 

systems are investigated in Chang et al. (2004), Druault-Vicard & Tanguy (2006), and Korczak 

(2007). As far as series-parallel flow networks are concerned, the literature on this subject is 

rather scarce, however some interesting results, related to the topic of this paper, can be 

found in Klinz & Woeginger (2004) and Krumke & Zeck (2013). 

The considered network is assumed to have the following features: 

1) It is composed of two-state independent components: inflow points, transit-only nodes, 

outflow points, and directed links. Clearly, links are transit-only components. 

2) It has a series-parallel-reducible structure that can be reduced to a single component by 

means of stepwise series-parallel aggregation. 

3) To the inflow points only outbound links are connected, to the transit nodes - both 

inbound and outbound links, a node to which only inbound links are connected is called 

terminal. An outflow point can be either a transit or a terminal one. 
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4) Each operable component has integer-valued throughput. The amount of flow fed into a 

component cannot exceed its throughput, and is divided into the demand satisfied at the 

component, and its feeding capacity (both integer-valued), as shown in Fig.1. Obviously, 

demand can be satisfied at outflow points alone, and terminal outflow points have no 

feeding capacity. A failed component's throughput is equal to zero. 

Fig. 1. The division of flow fed into a component 

Let v be a component, and let Cv, nv, dv, IJlv, and (jlv respectively denote the throughput of v, 

the amount of flow fed into v (nv !> Cv), the demand required at v, the demand satisfied at v, 

and the feeding capacity of v. Clearly, dv = 0 for inflow points and transit-only components. 

The following equalities, based on the flow conservation law, are assumed to hold: 

(jlv = max(nv- dv, 0) : for inflow points and transit components 

(jlv = 0 : for terminal outflow nodes 

IJlv = min( dv, nv) : for all components 

(1) 

(2) 

(3) 

5) When a component fail s its repair is started immediately. The time-to-failure and time-to­

repa ir of each component are independent, exponentially distributed random variables. 
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6) The basic reliability measure of the considered network, referred to as d-availability, is the 

probability that the total demand satisfied (TDS) at all outflow points is greater or equal to 

an integer valued, where dE[O, DI, D being the total demand. 

In Fig. 2 the reliability block diagram (RBD) of a small exemplary network is 

presented; e1 and eG are inflow points, e2, e3, e., e1 -transit-outflow points, e5, es - transit-

only nodes, and e9 is a terminal outflow node. This network could be a fragment of a bigger 

one, if e9 were a transit-outflow rather than a terminal outflow node. For simplicity, pipes 

are not included in the RBD, otherwise, additional boxes should be inserted between the 

existing ones. 

Figure 2. The RBD of a small exemplary network 

The above described systems can be used as reliability models of various types of 

flow networks with series-parallel-reducible structures. Systems of this kind are usually 

assigned multiple degrees of functionality related to the percentage of TDS at the customer 

supply points. Their reliability analysis is thus based on parameters related to the time­

points in which specific values of TDS are reached from above or below during the system 

operatiol'.l. We will consider three such parameters, namely the already mentioned d­

availability and the two d-intensities. They correspond to analogous parameters widely used 
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in the reliability analysis of two-state systems. The first parameter, denoted A(d,t), is the 

probability that at time t the TDS is greater or equal to d. The remaining two, denoted 

A+(d,t) and A-(d,t), are the intensities with which the TDS crosses level d from below or 

above respectively. They will be referred to as transition intensities, where a transition takes 

place between the states "2'.d" and "<d". It will be shown how to compute asymptotic (t•oo) 

values of these parameters, and how other essential reliability parameters of repairable flow 

networks can be derived from the asymptotic intensities. The presented method is 

illustrated by the calculation of A(d,t) for an exemplary network. 

2. Detailed assumptions and notation 

Let the adopted assumptions be divided into the three following groups: 

Regarding the network components 

e;- the i-th component; ieS, where 5 is the set of indices of the network's components. 

c; - the throughput of the operable e;; c; is a fixed integer number 

d; - the demand required ate;; d; is a fixed integer number 

x; : the state of e;; x; = c; or x; = O depending whether e; is operable or failed. 

~- the vector of X;, ieS, i.e.~ = [x;, ieS]. 

X;(t) - the (random) state of e; at time t. 

X(t) -the (random) vector of the components' states at time t, i.e. X(t) = [X;(t), ieS]. 

A;, µ; - the failure or repair intensity of e;, i.e. 

A;= limu-->O Pr[X;(t + u) = OIX;(t) = c;] /u, 

µ; = limu .... o Pr(Xi(t + u) = c;IX;(t) = OJ /u (4) 
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It is assumed that both intensities are constant, i.e. they do not depend on t . Clearly, this 

occurs if the time-to-failure and time-to-repair of e1 are exponentially distributed. 

p;(t), q1(t) - the probability of e1 being operable or failed at time t, i.e. 

p;(t) = Pr[X,(t) = c;], q,(t) = Pr[X,(t) = OJ = 1 - p,(t) (5) 

As shown in Barlow & Proschan (1975), the above probabilities are related to the 

failure/repair intensities of e1 in the following way: 

Regarding a two-state general system 

<I>(~) - a binary function expressing the system state in relation to the states of its 

components; <I>(~)= 1 or <I>(~)= 0 depending whether the system is operable or failed . 

A system is called coherent if <I> is non-decreasing, and each component is relevant. See 

Barlow & Proschan (1975) for details. For a coherent system we can define a number of 

parameters given below. 

Z(t) - the system state at time t, i.e. Z(t) = <I>(~(t)). 

118(t) - the Birnbaum importance of e1 at time t, defined as follows: 

Il (t) = aPr[z~t\=1l = Pr[Z(t) = 1IX,(t) = c,J - Pr[Z(t) = llX,(t) = OJ 
ap ; t 
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1;8(t) can be interpreted as the probability that the failure of e; results in the failure of the 

system. 

A(t), U(t) - the system availability or unavailability at time t, i.e. 

A(t) = E[Z(t)] = Pr[Z(t) = 1), U(t) = 1 - E[Z(t)] = Pr[Z(t) = OJ (8) 

Nr(s,t}, N,(s,t) - the (random} number of times the system respectively fails or is repaired in 

the interval (s,t]. 

V(t), W(t} - the instantaneous system failure or repair frequency at time t, i.e . 

V(t) = limu_,0 E[Nr(t, t + u)] /u, 

W(t) = limu_,0 E[Nr(t, t + u)] /u 

A1(t}, A,(t) - the system failure or repair intensity at time t, i.e. 

A1(t) = limu_,0 Pr[Z(t + u) = 0 I Z(t) = 1)/u, 

Ar(t) = limu_,0 Pr[Z(t + u) = 11 Z(t) = O]/u 

Clearly, (9) and (10) hold if the respective limits exist. 

Regarding a multi-state flow network 

C(t) - the network's throughput (i.e. the maximal flow that can run through it} at time t 

'I'(t) - TDS at all outflow points when flow of magnitude C(t) runs through the network 

A(d,t) - the network d-availability at time t, defined as follows: 

(9) 

(10) 
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A(d, t) = Pr[4'(t) ;:;: d] (11) 

118(d,t) -the Birnbaum d-importance of e1 at time t, defined as follows: 

118(d,t) can be interpreted as the probability of the event {a failure of e1 causes the TDS to fall 

from a level 2:d to a level <d}. 

Ed• - the event {TDS rises from a level <d to a level 2:d}. 

Ed- - the event {TDS falls from a level 2:d to a level <d}. 

N/(s,t). Nd-(s,t) -the (random) number of times the event E/ or Ed- occurs in the interval 

(s,t]. 

V(d,t), W(d,t) -the instantaneous frequency with which the event E/ or Ed- respectively 

occurs at time t, i.e. 

A- (d,t), A•(d,t) -the intensity with which the event Ed- or E/ occurs at time t, i.e. 

A-(d, t) = limu__,0 Pr[4'(t + u) < d I 4'(t);:;: d]/u 

A+(d, t) = limu__,0 Pr[4'(t + u);:;: d I 4'(t) < d]/u 
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Clearly, (13} and (14} hold if the respective limits exist. It should also be noted that the above 

defined frequencies and intensities are functions oft, unlike the failure/repair intensities of 

single components. 

3. Formulas for the transition frequencies and intensities 

Let us first consider a two-state repairable system with independent two-state 

components. The instantaneous failure and repair frequencies of such a system are given by 

the following formulas: 

V(t) = L.iEsA;p;(t)If(t), W(t) = L.iEsµ;q;(t)If(t) 

The failure and repair intensities are related to the repair and failure frequencies in the 

following way: 

(15} 

A1(t) = V(t)/A(t), Ar(t) = W(t)/U(t) (16) 

The proofs of (15) and (16) can be found in Schneeweiss (1981) . 

The quantities defined in Section 2 for multi-state flow networks can be expressed in 

terms of binary systems. For this purpose it is sufficient to assume that the system fails or its 

repair is completed when the event Ed- or E/ occurs, and use 'I' instead of Zin (7), (8), and 

(10}. In consequence, (15) and (16) are transformed to the following formulas: 

V(d, t) = L.iEs A;P;(t)If (d, t), W(d, t) = L.iEs µ;q;(t)If (d, t) 

A-(d, t) = V(d, t)/A(d, t), A+(d, t) = W(d, t)/U(d, t) 

(17) 

(18} 
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To apply (17) and (18) for the purpose of computing A-{d,t) and A•(d,t), it is first necessary 

to find A(d,t), and lt8(d,t) : iES (we assume that t..1, µ1, and, in view of (6), p1(t) for iES are 

known) . The knowledge of A-(d,t) and A+(d,t) has a key significance, because, as will be 

shown in Section 6, other essential reliability parameters of flow networks can be calculated 

based on A-(d,t) and A+(d,t) . Let us also note that A(d,t) and lt8(c,t) : iES, are functions of 

pi(t) : iES, thus their asymptotic values for t• oo, denoted by A(d) and 118(d): iES, are functions 

of Pt= lim, __ p1(t) : i ES. As follows from (6), p1(t) quickly converges to Pt, hence these 

asymptotic values characterize, with good accuracy, the network's behavior in the long time 

horizon. In the next section it will be shown how to compute A(d) and lt8(d) for series­

parallel-reducible structures. 

4. A method to compute A(d) 

Let a module be a group of components or sub-modules connected in series or in 

parallel. We will denote a module by Mx, where Xis the set of indices of the module's 

components. Let us adopt the following notation: 

Cx - throughput of Mx, i.e. the maximal flow that can run through Mx 

'¥x - total demand satisfied (TDS) at the outflow nodes of Mx when flow of magnitude Cx 

runs through Mx 

<l>x - feeding capacity of Mx when flow of magnitude Cx runs through Mx 

Cxmax, 'Pxmax, <I>xmax _ maximal values of Cx, 'Px, and <l>x respectively 

Cx, '¥x , and <l>x are random variables whose values depend on the states of the components 

of Mx, while Cx max, 'Px max and <l>x max are constants. Obviously, the following equality holds : 
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'¥x + <I>x = Cx 

In order to compute the d-availability for a network with series-parallel-reducible 

structure it will be necessary to find the probabilities Pr(<I>s = c, '¥5 = d), c = 0, .. ,,<I>sm•x, 

d = 0, ... ,'¥5max, where S denotes the set of indices of the network's components. In other 

words, our aim is to find all elements of the following matrix: 

Ps= = [ Pr(<I>s = C, '¥s = d)], 0 :S: C :S: <I>smax, 0 $ d $ '¥5max 

Once Pt is found, A(d) will be computed from the following equality: 

A(d) = Pr(\jls ?! d) = Pr(<t>s ?! 0,1.jls ?! d) = 

(19) 

i.e. all elements in the columns from d to '¥s max are added. 

In order to obtain p5= we will use a technique called series-parallel aggregation. This is 

a stepwise process, in each step of which a group of components and/or sub-modules 

arranged in series or in parallel is aggregated into a single module. For example, the network 

in Fig. 2 is aggregated in the following steps: 

Step 2: M(2,3}, e. • M(2,3,•l = par(M(2,3}, e4) 

Step 3: e1, M(2,3,4}, es • M(1, ... ,s} = ser(e,, M(2,3,4}, es) 

Step 4: e6, e7 • M16,7}= ser(e6, e7) 

Step 5: M11, ... ,s1, M{6,7} • M11, ... ,7} = par(M11, ... s1, M{6,7}) 

Step 6: M11, ... ,7}, ea, eg • M11, ... ,9} = ser(M11, ... ,7}, ea, eg) 

In order that p5= can be found, the matrix 
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Pz" = [ Pr{<I>z = C, 'I'z = d)], 0 $ C $ <l>zmax, 0 $ d $ '¥2max 

is found in each step of the aggregation process, where Mz denotes the module obtained in 

one such step. We will also need the matrix P/ defined as follows: 

Pz" = [ Pr{<I>z ~ C, 'I'z = d)], 0 $ C $ <I>2max, 0 $ d $ '¥2max 

P/ can be obtained from p2=, and vice versa, by row-wise summation or subtraction . The 

elements of Pi" or P/ are calculated with the use of the following theorems: 

Theorem 1 {the matrix Ptil= for the component e;) 

If e1 is a non-terminal component, then p{I}= is calculated as follows: 

For C; > d;: 

{

Pi, 

Pr(<pi = a, 1/Ji = b) = qi, 

0, 

{

Pi, 

Pr(<pi = a, 1/Ji = b) = qi, 

0, 

a = ci - di I\ b = di 

a=0l\b=0 

otherwise 

a= 0 I\ b = ci 

a=0l\b=0 

otherwise 

If e; is a terminal outflow node, then Plit is a one-row matrix computed as follows: 

For C; > d;: 

{

P· b=di 

Pr(<pi = 0, 1/Ji = b) = q:: b = 0 

0, otherwise 

12 
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For C; ~ d;: 

{

p· b = c; 

Pr(<p; = a, 1/J; = b) = q:: b = 0 

0, otherwise 

(23) 

Proof: 

Let us assume that e; is a non-terminal component. The feeding capacity of operable e; is 

equal to max(c; - d;, 0). and is equal to zero for failed e;. The demand satisfied by operable e; 

is equal to min(c;, d;), and is equal to 0 for failed e;. As a consequence, the first two equalities 

in both (20) and (21) are obtained. The last equalities in (20) and (21) are obvious. (22) and 

(23) are proved analogously. 

Theorem 2 (The matrix Pxuv= or Pxu/ for the module aggregated from Mx and Mv) 

If the modules Mx and Mv are connected in parallel, then we have: 

Pr(<l>xuy = c, '+'xuY = d) = 

= La=D, ... ,c Pr(<l>x = c - a, '+'x = d - b) Pr(<l>y = a, 4'y = b) (24) 
b=O, .. .,a 

If the modules Mx and Mv are connected in series, then it holds that 

Pr(<l>xuY ;:: c, '+'xuy = d) = 

= If=o Pr(<l>x;:: c + b, '+'x = d - b) Pr(<l>y;:: c, 4'y = b), c;:; 1, d;:; 0 (25) 

and 
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Pr(<l>xuY;:,: 0, '-11xuY = d) = 

= Pr(<l>xuY = 0, '-11xuY = d) + Pr(<l>xuY;:,: 1, '-11xuY = d), d;:,: 0 (26) 

where the second component on the right-hand side of {26) is found from (25), and the first 

one - from the following equality: 

Pr(<l>xuY = 0, '-11xuY = d) = 

= Pr(<l>x = 0, '-11x = d) + Pr(<l>x;:,: 1, '-11x = d) Pr(<l>y = 0, 1.Jly = 0) + 

+ If=i Pr(<l>x = b, '-11x = d - b) Pr(1.Jly;:,: b) + 

+If=1 Pr(<l>x > b, '-11x = d-b)Pr(<l>y = 0, 1.Jly = b), d .;:,: 0 

Note that the sum from b=l to d is equal to zero for d=O. 

Proof: 

For the modules Mx and Mv connected in parallel the following equalities hold : 

If, in turn, Mx and Mv are connected in series, then we have 

<l>xuY = min[max(<l>x - 1.Jly, 0), <l>y] 

'-11xuY = '-11x + min(<l>x, 1.Jly) 

14 
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The equalities {28} - {30} are simple consequences of the flow conservation law. Clearly, {24} 

follows directly from {28} and the independence of Mx and Mv. For the proof of {25} let us 

note that for c~l we have: 

Pr(<Pxuv cc, 'f'xuv = d) = 

= Lt=oPr(<PxuY cc, 'f'x = d-b, 4'y = b), cc 1, d c 0 {31} 

From {29} and {30} it follows that if 'Px = d - band 'Pv = b, then <l>x ~ c +band <l>v ~ c must 

hold so that <l>xvv ~ c. Otherwise (i.e. <l>x < c + b or <l>v < c} <l>xvY < c according to {29). We thus 

have: 

It=o Pr(<PxuY cc, 4'x = d - b, 4'y = b) = 

= It=o Pr(<l>x cc+ b, <l>y cc, 'f'x = d - b, 4'y = b) 

In view of the independence of Mx and Mv, {32} is equivalent to {25) . 

As {26} is obvious, it remains to prove {27}. We have: 

Pr(C!>xuv = 0, 'f'xuv = d) = 

= Pr(C!>xuv = 0, 'f'xuY = d, <Px = 0, 'f'x = d) + 

+ Pr(C!>xuv = 0, 'f'xuY = d, <Px c 1, 4'x = d) + 

+ rg=l Pr(C!>xuY = 0, 'f'xuY = d, 'f'x = d - b), d c 0 

{32} 

{33} 
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Based on (29) and (30) the following argument is carried out: If <l>x = 0 and 'l'x = d, then 

<l>xuv = 0 and 'l'xuv = d regardless of the values of <l>v and 'l'v, If <l>x <:: 1 and 'l'x = d, then <l>v = 0 

and 'l'v = 0 must hold so that <l>xuv = 0 and 'l'xuv = d (see the figure below). 

Fig. 3. Illustration of the case "'l'x = d" 

If 'l'x = d - b, be{l, ... ,d), then <l>x;:: b must hold so that <l>xuv = 0 and 'l'xuv = d. Otherwise (i.e. 

<l>x < b) 'l'xuv < d according to {30}. If <l>x = b, then 'l'v <:: b (<l>v can have arbitrary value) must 

hold, and if <l>x > b, then <l>v = 0 and 'l'v = b must hold so that <l>xuv = 0 and 'l'xuv = d (see the 

figure below). 

'I' -d-b 6'l'v=b 

<I> = 0 y y 

Fig. 4. Illustration of the case "'l'x = d - b, be{l, ... ,d)" 
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Finally, we obtain: 

Pr(<l>xuY = 0, '¥xuY = d) = 

= Pr(<l>x = 0, '¥x = d) + Pr(<l>x :?:: 1, '¥x = d, <P y = 0, 'Py= d, ) + 

+ Lg=l Pr(<t>x = b, '¥x = d - b, 'Py ?:: b) + 

+ Lg=l Pr(<t>x > b, '¥x = d - b, <l>y = 0, 'Py= b) , d?:: 0 (34) 

In view of the independence of Mx and Mv, (34) is equivalent to (27). The whole proof is thus 

completed. 

Remark: let us note that for serially connected Mx and Mv, the cases "c2::1" (formula 25) and 

"c=0" (formula 26) have to be considered separately, as the second case involves more 

underlying events expressed according to a different pattern. 

Clearly, before computing the elements of the matrix Pxu/ or Pxu/, we need to 

specify its dimensions expressed by <l>xuvmax and 'l'xuvm•x. The bounds on these dimensions 

are given in the following theorem: 

Theorem 3 

If Mx and Mv are connected in series, then 

{35) 

If, in turn, they are connected in parallel, then 

(36) 

Regardless of how Mx and Mv are connected it holds that 

(37) 
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Proof: 

(35) - (37) follow directly from {28) - (30). 

5. An illustrative example 

To illustrate the method presented in Section 4 let us consider a small five-

component network presented in Fig. 5. We assume that c1 = 5, c2 = 4, c3 = 4, c4 = 5, c5 = 3, 

and d1 = 2, d2 = 1, d3 = 2, d4 = 2, d5 = 1. Our aim is to compute A(d) - the probability that TDS 

ate;: iE{l, ... ,S} is greater than d, provided that the network accommodates the maximum 

possible flow. 

Fig. 5. A small exemplary network 

Remark: the network has no inflow points or terminal outflow nodes, so it can be regarded 

as a module of a bigger network. 

Using the formulas {24) - {27) we will compute the elements of P/ in the following steps: 

Step 1: 

For parallel aggregation of e1 and e2 we use: 

obtained from (20), and the accordingly modified formula (24): 
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Pr( c!>c1,2J = c, \j/(i,2J = d) = La=o, .. .,c Pr(cp1 = c - a, tj,1 = d - b) Pr(cp2 = a, tj,2 = b) 
b=O, ... ,d 

which yield: 

qlqz 0 0 0 qlq2 q1P2 P1q2 P1P2 
0 0 0 0 0 q1P2 P1qz P1P2 
0 0 0 0 0 q1P2 P1qz P1P2 

Pc;,2J = 0 q1P2 P1qz 0 , Pc~.2J = 0 q1P2 Piqz P1P2 
0 0 0 0 0 0 0 P1P2 
0 0 0 0 0 0 0 P1P2 
0 0 0 P1P2 0 0 0 P1P2 

Clearly, 

Pc;,Z)lc, d] = P[1,2)[c, d] = 0, C > ct>c'I~i = 6, d > \j/0.~) = 3 

Step 2: 

For serial aggregation of M{l,2} and e3 we use: 

obtained from (20}, and the accordingly modified formulas (25} and (27): 

Pr( c!>c1,2,3i ~ c, \j/(1,2,3} = d) = 

= :Ef=o Pr( c!>c1,2i ~ c + b, \j/{l,Z} = d - b) Pr(cp3 ~ c, tj,3 = b), c ~ 1, d ~ 0 

Pr( c!>(1,2,3J = 0, \j/{1,2,3J = d) = 

= Pr( c!>c1,2J = 0, 4'11,2i = d) + Pr( ct>11,2i ~ 1, 4'11,2i = d) Pr(cp3 = 0, tj,3 = 0) + 

which yield: 

[
qi q2 q1p2q3 Pi q2q3 P1P2q3 + q1pzp3 Pi qzp3 P1P2P3] 

Pc;,2,3J = 00 0 0 q1P2P3 P1 qzp3 P1P2P3 , 
0 0 0 0 P1P2P3 

and 
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q1pzq3 P1qzq3 P1Pzq3 
0 0 q1pzp3 
0 0 0 

Step 3: 

For serial aggregation of e4 and e5 we use: 

obtained from {20), and the accordingly modified formulas (25) and (27): 

Pr( ¢c4,sJ 2: c, '-l'c4,sJ = d) = 

= Lt=0Pr(cp4 2: c + b, lj/4 = d-b) Pr(cp5 2: c, Ws = b), c 2: 1, d 2: 0 

Pr( ¢c4,sJ = 0, '-1'c4,5J = d) = 

= Pr(cp4 = 0, lj/4 = d) + Pr(cp4 2: 1, lj/4 = d) Pr(cps = 0, lj/5 = 0) + 

= Lt=i Pr(cp4 2: b, lj/4 = d - b) Pr(cp5 = 0, lj/5 = b), d 2: 0 

As a result we have: 

Step 4: 

For parallel aggregation of M11,2,JJ and M14,sJ we use the accordingly modified formula (24): 

Pr( ¢c1,2,J,4,SJ = c, '-l'{l,2,J,4,5} = d) = 

= La=O, ... ,c Pr( ¢(1,2,JJ = a, '-1'{1,2,JJ = b) Pr( ¢(4,5} = c - a, '-1'[4,5) = d - b) 
b=O, ... ,d 

It thus holds that 
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(q1p4q5 +p1q3q4)qz (q1p4q5 +p1q4)pzq3 

0 q1P2P3q4 

0 q1q2P4Ps 
0 0 
0 0 

P1qzq3p4q5 P1Pzq3p4q5 0 0 0 

j 
P1qzp3q4 q1pzp3p4q5 P1qzp3p4q5 0 0 

q1pzq3p4p5 P1 (qzq3p4p5 + pzp3q4) P1Pzq3p4p5 P1Pzp3p4qs 0 

0 0 q1pzp3p4p5 P1qzp3p4p5 0 

0 0 0 0 P1P2P3P4Ps 

Due to lack of space the first four columns of p=11 ..... s1 are placed above the remaining five. 

Now A(d) can be computed from {19). 

6. Computing d-intensities and other reliability parameters 

From Section 4 we recall that once all the elements of P\ are computed, A(d) is 

found from {19). Subsequently, 1;8(d) can be calculated from the following equality: 

{38) 

which is a direct consequence of (12). Thus, to obtain the d-importance of e;, one has to find 

A(d) for p;=l and pI=0 (p1 being fixed for j;ti), and apply (38). When A(d) and l1 8(d): ieS are 

known, A+(d), and A-(d) can be calculated from (17) and (18). 

It has to be emphasized that in case of a larger network it is possible to compute only 

the numerical values of the elements of P\ wherefrom the numerical values of A(d) and 

1I8(d): ieS can be obtained. Clearly, deriving a closed formula as in the example given in 

Section 5, would be too complex a task in such a case. 

It turns out that, using the intensities A+(d) and A- (d), it is possible to compute other 

important reliability parameters characterizing the fluctuations of TDS over time. Recalling 
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that 'I'(t) is the TDS at time t, and Ed- and Ed• are events related to crossing level d by the 

TDS, let us adopt the following definitions: 

Tk,d - length of the k-th period during which 'I'(t)<'.d, 

Rk,d - length of the k-th period in which 'I'(t)<d, 

'k,d, Pk,d - expected lengths of Tk,d or Rk,d respectively, 

nd-(t), n/(t) - the expected number of occurrences of the event Ed- or E/ respectively in a 

time interval of length t (e.g. in a month), provided that the system has long been in 

operation at the beginning of this interval. 

Following the argument from Malinowski (2013) it can be easily proved that Tk,d and Rk,d 

have asymptotically (k• oo) exponential distributions with the parameters A-(d) and A+(d) 

respectively, hence it holds that 

(39) 

In the same way as in the above cited reference, it can be shown that 

n;;:(t) = n~(t) = ' t ' = _t_ 
~+ A-(d) Pd+Td 

(40) 

Remark: It is important to consistently use the same units of time for the parameters in (39) 

and (40). For example, if A-(d) and A+(d) are given in h-1 (hour to the power-1), then nd-(t) 
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is the expected number of occurrences of Ed- int hours. In such a case the expected number 

of occurrences of Ed- in a year is equal to nd-(8760). 

Conclusion 

The paper deals with the reliability analysis of a flow network with directed links, 

multiple inflow and outflow points, and a structure that can be reduced to a single 

component by series-parallel aggregation . For such a network three basic reliability 

parameters were defined: cl-availability A(d) - the probability with which the total demand 

satisfied at all outflow points (TDS) is greater or equal to d, and two cl-intensities A+(d) 

and A-(d) with which TDS is respectively reached from below or above in the course of the 

failure-repair process. Based on the assumption that the individual components' 

throughputs are integer valued, a method of computing these parameters was developed. 

This method has rather low numerical complexity (polynomial with degree 3) compared to 

most known methods for network reliability calculation. It was also demonstrated how other 

parameters, frequently used in the reliability analysis of flow networks, can be found using 

the three basic parameters -A(d), A+(d} and A-(d}. The obtained results can be applied to 

water supply networks, hydraulic systems, oil or gas pipeline systems, electric power 

networks, etc. 

It should be noted that the matrix P/, where MZ is a network module _obtained by 

series-parallel aggregation, can be used to calculate the probabilities Pr(<l>z = c), c=l, ... ,<1>2m•x, 

i.e. 

(41) 
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These probabilities can also be useful in the reliability analysis of the considered networks, 

as it may be essential to know the probabilities of the feeding capacities of modules which 

provide input at the specific network junctions. E.g., in the network depicted in Fig. 2, the 

modules M1, .... ,s) and M16,7J provide input to the module M1s,9J, Clearly, the demand satisfied 

at e9 depends on the total feeding capacities of M1,, ... ,s) and M16.1l· This example shows that 

the probabilities Pr(<1>2 = c) are essential for the analysis of individual outflow points. 

The considered network model can be extended by adding one more type of node, i.e. 

transit-inflow node presented in Fig. 6. Let bv be the capability of the source connected to v, 

and \Vv - the amount of flow fed into v from this source. The remaining parameters are 

defined in Section 1. We have: 

<()v = ITv + 1/Jv 

Fig. 6. A diagram of a transit-inflow node 

(42) 

(43) 

By adopting this extension one is not restricted to networks where inflows can only take 

place at the initial nodes (i.e. nodes to which only outbound links are connected - see 

Assumption 4 in Section 1). 
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The presented method can also be applied to networks with arbitrary structures 

(modeled by directed graphs), but it has to be combined with the factorization method 

transforming a graph into a number of series-parallel derivative graphs. Combining these 

two methods along with taking transit-inflow nodes into consideration will be a topic of 

further research. 
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