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1. lntroduction 

The paper [1] presents a new method of estimating the scale (A) and shape (a ) 

parameters of the Weibull distribution. lt is based on simulating m times-to-failure of each of 

n independent objects, where an object is subjected to m-1 minimal repairs, and 

considered unusable after the m-th failure. We thus obtain n i.i.d. sam pies of the random 

vector [T1, ... ,T mL where T1 is the time of the first failure, and T; - the time elapsed between 

the (i-1)-th minimal repair and the i-th failure, i=2, ... ,m. In other words, this procedure 

simulates n sequences of events of a non-homogenous Poisson process with Weilull 

intensity given by r(t) == aA"t"- 1 . From these n sequences the considered estimators of a 

and Aare obtained in the following way: firstly, the maximum likelihood estimators a and X 

are constructed from a single sample : 

fi= ______ m _____ _ 

m·ln (T1 + .. +Tm)-E~1 ln(T1 +··+Tm)' 
(1) 

(2) 

secondly, A and A defined as fellows 

j\ == ln(A,)+· ··+ln(An) A == 1/ a, +···+1/ an 
n , n , (3) 

are u sed as respective estimators of ln(A) and 1/ a, where X1 , ... , Xn and a1 , . .. , an are i.i.d . 

instances of X and a respectively. Let us note that the estimators X and a are not obtained 

from an i.i.d. sample, but A and Aare. For technical reasons, it is easier to estimate 1/a and 
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ln(A) rather than a and A, because, as proved in [1], the biases of 1/{i and ln(X) can be 

expressed in an analytical form as linear functions of E(l/a), i.e. 

~ - E(l/a) = - 1-E(l/a) 
a m-1 

(4) 

In(,1) - E[In(X)] = m':1 E(l/a) [10~m) - ~ + r'(l) - ]n(m) + L~1111] (5) 

Let us note that the biases of Ji: and A are equal to those of ln(A) and 1/ a, because, as it 

follows from (3) 

E(Ji:) = E[In(X)J and E(A) = E(l/a), (6) 

The formulas (4) and (S) are the main results presented in [1]. However, for an 

estimation technique to be complete it is also necessary to assess the estimation accuracy. 

This problem was left open in [1], but it will be addressed herein. Such accuracy is usually 

expressed in terms of confidence levels and confidence intervals. Let us recall some basics 

on this subject. lf X1 , ... , Xn is an i.i.ci . random sample from a random variable X such that 

E(X) = µ < oo and Var(X) = a 2 < oo, and a is a small positive number, then for 

sufficiently large n it holds that 

(7) 

Here, tln is the sample mean - a commonly used estimator ofµ, i.e. 
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{8} 

and Zi-fl/ 2 is the 1- P/2 quantile of the standardized norma I distribution, i.e. 

Pr (z :5 z p) = 1 - !!. 
1-, 2 

(9) 

where Z is normally distributed with mean O and variance 1. The interval defined by {7} is 

called a confidence interval; it contains µ with probability 1 - {] called the confidence level. 

Hence, if E is an arbitrarily chosen small number, then the minimum sample size for which 

the interval (fln - E, fln + E) contains µ with probability greater or equal to 1 - {] is given 

by the following formula : 

(10} 

where lxJ denotes the integer part of x. Thus, n is the smallest sample size for which the 

desired estimation accuracy, expressed by E and{], is attained. As O' is usually unknown, for 

practical purposes it can be replaced in {10} by the (unbiased} sample variance of X, i.e. 

{11} 
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In aur case A and A are the sample means which estimate the expected values 

E[ln(A)J and E(l/ći.). Therefore, the confidence intervals for ln(il) and 1/a are defined 

using Var[In(A)J and Var(l/ći.) respectively. In consequence, the minimum sample sizes, 

guaranteeing that ln(il) and 1/ a are estimated with the des i red accuracy specified by E 

(half-width of the confidence interval) and 1-P (the confidence level) are respectively given 

as follows: 

(12) 

For computational purposes Var[In(A)J and Var(l/ći.) can be replaced in (12) with the 

respective sample variances. 

Assuming that (11) is a good approximation of r, 2, we may con cl u de that the ability 

to find an analytical expression for r, 2 has a purely theoretical significance. However, there 

are two reasons why this is not the case . Firstly, having an analytical expression for at least 

an upper bo und of r, 2 allows to assess the numerical complexity of the estimation problem. 

Secondly, it can be checked whether r, 2 < oo, i.e. whether the estimation is numerically 

tractable . 

In view of the above considerations, we need to find Var[In(A)] and Var(l/ći.), or at 

least their upper bounds. Before that, upper bounds for E [ (In(A)) 2] and E[(l/a.)2] will be 

found in the next section . 
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2. Upper bounds for E [ (In(X)/] and E[(l/ a)2] 

First, the form u las for the moment generating functions of 1/ a and In( X) will be 

derived. We have 

= E ( eLi=1[ln( t1 + .. ·+tmJ-In(t1 + .. ·+t1ll) m = [ 
m u; ] 

= E [ (Ill'!i e ln[(t 1+· .. +tm) /( t1 + .. ·+t1ll) u;m] = 

= E [(nl'!1 t1 + .. ·+tm)U/ m] = E [XU] 
t1+ .. ·+t1 

where 

- (nm t1 + .. +tm)l/m X - ,-1 - t1+ · .. +t1 

(13) 

(14) 

As Var[In(X)] = Var[- In(X)], and it will be mare convenient to operate on -In(X) rather 

than In(X), the formula for the MGF of the farmer will now be derived. 
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= E [(eln(t1+···+tml-½In(m)f] = 

[ 
uln(m)] 

= E (t + ... + t )Ul (n".:_-1 t1+···+tm)-----;;,- = 
1 m l-1 t1 +···+tt 

(15) 

where 

ln(m) 

y = (t + ... + t )/TI".:_-1 (t1 +···Hm)-;;, 
1 m t-1 t1 +· .. +tł 

(16) 

The MGF of an arbitrary random variable V has the following properties: 

E(V) = dGv(u)I , E(V 2) = d 2Gv;u)I 
du u=O du u=O 

(17) 

We thus have: 

E[(l/ a)2] = d2G1;~(u)1 = d2ec;u)I 
du u=O du u=O 

(18) 

[( ("))2] d2G_ln(l)(u)I d2E(Yu)I E -ln.:t =-~~ =--
du2 u=O du2 u=O 

(19) 
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Moreover, as proved in [2], for every non-negative random variable V such that V 2: a 2: O 

and E(Vu) exists, it holds that 

(20) 

Using the above equalities, second derivatives of E(Xu) and E(Yu) will now be computed . 

As it holds that 

dau dxu-i - = In(a) au -- = In(x) xu-l 
du ' du ' 

(21) 

the product rule yields: 

dE(Vu) fco f co --= In(a) au + xu-i Pr(V > x) dx + u In(x) xu-l Pr(V > x) dx 
du a a 

(22) 

+z f 00 ln(x) xu-l Pr(V > x) dx + u f 00 ln2 (x) xu-i Pr(V > x) dx 
a a (23) 

Theorem 1 

E [ (In(X))2] :'.5 E[(In(Sm))2] (24) 

Proof: As Y2':0, applying (23) to Y yields : 
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d 2 E(YU) I CO 
--2 - = 2 J,0 ln(x) x-1 Pr(Y > x) dx ~ 

du u=O 

~ 2 J1co ln(x) x- 1 Pr(Y > x) dx (25) 

As Sm> S; for i=l, ... ,m -1, it fellows from (16) that Y < Sm and 

Pr[Y > x] ~ Pr[sm > x] = Pr[ln(sm) > ln(x)] (26) 

for x~O. lt thus hol ds that 

f ln(x) x-1 Pr(Y > x) dx ~ f1co ln(x) x-1 Pr[ln(sm) > ln(x)] dx = 

= J1co ln(x) d ln(x) Pr[ln(sm) > ln(x)] dx 
dx 

(27) 

Substituting ln(x) by the varia ble swe obtain 

Jco d ln(x) J,co 
1 ln(x) ~ Pr[ln(sm) > ln(x)] dx = 0 s Pr[ln(sm) > s] ds ~ 

(28) 

where the last equality is a consequence of the fact, proved in [2], that for any random 

variable V such that E(IVlu) < oo, where u>O, it holds that 
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(29) 

Finally, from (19) and (25)-(28), we conclude that 

E [ (ln(X)/] = E [ (-ln(X)/] ::; E[(ln(Sm))2] (30) 

which completes the proof. 

Theorem 2 

(31) 

Proof: As X2::1, using (23) and integration by substitution we obtain 

d2E(XU)I 00 
--2 - = 2 J1 ln(x) x-1 Pr(X > x) dx = 

du u=O 

f oo d ln(x) J,oo = 2 1 ln(x) Pr(ln(X) > ln(x))--;;;-dx = 2 0 s Pr(ln(X) > s) ds (32) 

Thus, in view of (18), we have the following formula: 

E[(l/ a)2] = 2 J0
00 s Pr(ln(X) > s) ds (33) 
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Let us note that 

{34) 

hence 

Pr[ln(X) > s] $ Pr [1n (~7) > s], s ~ O (35) 

lt thus holds that 

J0
00 s Pr[ln(X) > s] ds$ J0

00 s Pr [rn (~7) > s] ds {36} 

Substituting the variable s by ln{x) we obtain 

= J1
00 ln(x) x-1 Pr (~7 > x) dx (37) 

Clearly, T1 has Weibull distribution with density function Wa, i.- Conditioning on T1 yields: 
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.. 

where 52, ... ,m = T2 +, .. +Tm. Hence, by changing the order of integration, the last 

expression in (37} is transformed as fellows: 

J"" In(x) x-1 Pr (Sm> x) dx = J,000 r In(x) x-1Pr (1 + Si, .. ,m > x) dx Wa).(t)dt (39) 
1 T1 1 t • 

We have: 

= J0
00 s Pr [1n ( 1 + 52 ·~-,m) > s] ds = 

= f0
1 s Pr [In ( 1 + 5\·m) > s] ds+ J1

00 s Pr [In ( 1 + Si,~,m) > s] ds (40} 

lt is easy to check that the following implications hold for any positive random variable V: 

In(l + V) > s 2:: 1 => V > l => ln(l + V) < ln(V) + 1 => 

=> Pr[In(l + V) > s] $; Pr[In(V) + 1 > s] (41) 

From (40) and (41) it fellows that 
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Substituting s-1 by r, using the fact that Sm> 52, ... ,m, and applying (29) we obtain : 

f0
1 sds + J;"' s Pr [1n (52·~·m) > s - 1] ds :5 ¼ + J0'"(r + 1) Pr [In (5~) > r] dr :5 

= ~ + ~ E[(ln(Sm) - ln(t))2] + E(/ln(Sm) - ln(t)I) :5 z z 

+E(/ln(Sm)I) + /ln(t)/ (43) 

As T1 has Weibull distribution, from (36)-(43) we obtain 

J0"" s Pr[ln(X) > s] ds :5 

+ J0"" [iln(t)/E(/ln(Sm)I) + ¼ [In(t)]2 + /ln(t)i] Wa,;,(t)dt = 
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(44) 

lt can be easily shown that 

E(IVI) :5 ✓ E(V2) (45) 

for every random variable V such that E(V2) < oo. Now (31) holds in view of (33), (44), and 

(45), thus the proof is completed . 

To compute the bounds defined by (24) and (31), we need a formula for 

E[(In(Sm))2], that will be derived in the next section. 

3. A formula for E[(In(Sm))2] 

lt was proved in [1] that 

(46) 

Differentiation of the first component yields: 
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{47) 

hence 

dz f,; r (; + 1 )! duz = [~ r" (; + 1) - ln(,ł) ~ r' (; + 1)] ,ł-u + 

-[;;r' (; + 1 )- ln(,ł) r (; + 1)] In(,ł) ,ł-u = 

= [;2 r" (; + 1) - 2 In(,ł) ~ r' (; + 1) + [In(,ł)]2 r (; + 1)] A-u {48) 

lt thus holds that 

dz~ r (~ + 1); duzi = !,- r"(l) - 2 ln(,ł) .!. r'(l) + [In(,ł)]2 r(l) 
A a u:::0 a a 

(49) 

Differentiation of the second component yields: 

r(~+k) r(~+k) r'(~+k) d~ '°m_:-l_a_/du = d~/du '°m_-l_a_ + ~ '°m_-1.!__a_ 
a.1.u L,k-1 kl a.1.u L,k-1 k! a.1.u L,k-1 a k! (SO) 

hence 

r(~+k) r(~+k) r'(~+k) dz~ '°m_-1 _a_/duz = dz~/ duz '°":_-1 _a_+ d ~/du '°m_:-1.!__a_ + 
a).U L,k-1 kl a).U L,k-1 ki a.1.u L,k-1 a k! 
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r'(u +k) r"(u +1<) + d ...::'.._/du _,m_-1 ~___i_+....:::._ _.m_:-12___i___ 
ailu L.,k-l a k! aAu L,k-l a 2 k! 

We have: 

d2 (....:::._)/ du2 = - ln(-<)a;.u-[1-u ln(-<)Ja;.u Jn(-<) = - ln(,l)-[1-u In(-<)] In(-<) 
ailu a2il2u aAu 

hence 

d (~)/ du/ = ~, dz (~)/ du2 I = -2 ln(A) 
aA u;Q a ctA u;Q a 

lt thus holds that 

r(u k) I , dz....:::._ _.m_-1 ~/du2 = _ 2 In().) _.m_-1 f(k) + 2_ _.m_:-l.!:...Q:?. 
aAU Lk-1 k! a Lk-1 k! a2 L,k-1 k! 

u;Q 

Finally, from (49) and (SS) we obtain 

+ 2- _.m-1 r'(k) 
a2 Llk=l k! 
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(52) 

(53) 

(54) 

(SS) 

(56) 



where the sums over k=l, ... ,m-1 are assumed to be equal to O for m=1. Thus, the above 

formula also holds for 51=T1. 

4. Upper bounds for Var[ln(J)] and Var(1/a) 

Combining the results of the two previous sections we obtain: 

Var[ln(X)] == E [ (In(X))2] - [E(In(X))J2::; 

::; E[(ln(Sm))2] - [1n(,l) -¾ ('"~l - ~ + r'(1) - ln(m) + 2::7!,1 7) r (57) 

Var(1/ći) == E[(1/ći) 2 ] - [E(1/ći)]2 $ 

:,; [ 1 + ✓E[(ln(Sm))2] + ✓ E[(ln(T1 )) 2] r -c:J2 
(58) 

where E(ln(X)) and E(1/ći) have been found from (4) and (5), while E[(ln(Sm))2] and 

E[(ln(T1))2] are given by (56). 
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