# Raport Badawczy Research Report

RB/12/2013

Accuracy of a newly developed maximum likelihood estimators for the parameters of a Weibull process

J. Malinowski

Instytut Badań Systemowych Polska Akademia Nauk

**Systems Research Institute Polish Academy of Sciences** 



### POLSKA AKADEMIA NAUK

## Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel.: (+48) (22) 3810100

fax: (+48) (22) 3810105

Kierownik Zakładu zgłaszający pracę: Prof. dr hab. inż. Olgierd Hryniewicz

#### 1. Introduction

The paper [1] presents a new method of estimating the scale ( $\lambda$ ) and shape ( $\alpha$ ) parameters of the Weibull distribution. It is based on simulating m times-to-failure of each of n independent objects, where an object is subjected to m–1 minimal repairs, and considered unusable after the m-th failure. We thus obtain n i.i.d. samples of the random vector [ $T_1$ ,..., $T_m$ ], where  $T_1$  is the time of the first failure, and  $T_i$  – the time elapsed between the (i–1)-th minimal repair and the i-th failure, i=2,...,m. In other words, this procedure simulates n sequences of events of a non-homogenous Poisson process with Weilull intensity given by  $r(t) = \alpha \lambda^{\alpha} t^{\alpha-1}$ . From these n sequences the considered estimators of  $\alpha$  and  $\lambda$  are obtained in the following way: firstly, the maximum likelihood estimators  $\hat{\alpha}$  and  $\hat{\lambda}$  are constructed from a single sample:

$$\widehat{\alpha} = \frac{m}{m \cdot \ln(T_1 + \dots + T_m) - \sum_{i=1}^m \ln(T_1 + \dots + T_m)},\tag{1}$$

$$\hat{\lambda} = \frac{m^{1/\alpha}}{T_1 + \dots + T_m};\tag{2}$$

secondly,  $\widehat{\Lambda}$  and  $\widehat{A}$  defined as follows

$$\widehat{\Lambda} = \frac{\ln(\widehat{\lambda}_1) + \dots + \ln(\widehat{\lambda}_n)}{n}, \ \widehat{A} = \frac{1/\widehat{\alpha}_1 + \dots + 1/\widehat{\alpha}_n}{n}, \tag{3}$$

are used as respective estimators of  $\ln(\lambda)$  and  $1/\alpha$ , where  $\hat{\lambda}_1, \dots, \hat{\lambda}_n$  and  $\hat{\alpha}_1, \dots, \hat{\alpha}_n$  are i.i.d. instances of  $\hat{\lambda}$  and  $\hat{\alpha}$  respectively. Let us note that the estimators  $\hat{\lambda}$  and  $\hat{\alpha}$  are not obtained from an i.i.d. sample, but  $\hat{\Lambda}$  and  $\hat{A}$  are. For technical reasons, it is easier to estimate  $1/\alpha$  and

 $\ln(\lambda)$  rather than  $\alpha$  and  $\lambda$ , because, as proved in [1], the biases of  $1/\hat{\alpha}$  and  $\ln(\hat{\lambda})$  can be expressed in an analytical form as linear functions of  $E(1/\hat{\alpha})$ , i.e.

$$\frac{1}{a} - E(1/\hat{\alpha}) = \frac{1}{m-1} E(1/\hat{\alpha}) \tag{4}$$

$$\ln(\lambda) - E\left[\ln(\hat{\lambda})\right] = \frac{m}{m-1}E(1/\hat{\alpha})\left[\frac{\ln(m)}{m} - \frac{1}{m} + \Gamma'(1) - \ln(m) + \sum_{j=1}^{m} 1/j\right]$$
 (5)

Let us note that the biases of  $\widehat{\Lambda}$  and  $\widehat{A}$  are equal to those of  $\ln(\widehat{\lambda})$  and  $1/\widehat{\alpha}$ , because, as it follows from (3)

$$E(\widehat{\Lambda}) = E[\ln(\widehat{\lambda})] \text{ and } E(\widehat{\Lambda}) = E(1/\widehat{\alpha}),$$
 (6)

The formulas (4) and (5) are the main results presented in [1]. However, for an estimation technique to be complete it is also necessary to assess the estimation accuracy. This problem was left open in [1], but it will be addressed herein. Such accuracy is usually expressed in terms of confidence levels and confidence intervals. Let us recall some basics on this subject. If  $X_1, ..., X_n$  is an i.i.d. random sample from a random variable X such that  $E(X) = \mu < \infty$  and  $Var(X) = \sigma^2 < \infty$ , and  $\alpha$  is a small positive number, then for sufficiently large n it holds that

$$\Pr\left(\hat{\mu}_n - z_{1-\frac{\beta}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \hat{\mu}_n + z_{1-\frac{\beta}{2}} \frac{\sigma}{\sqrt{n}}\right) \ge 1 - \beta \tag{7}$$

Here,  $\hat{\mu}_n$  is the sample mean – a commonly used estimator of  $\mu$ , i.e.

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i \tag{8}$$

and  $z_{1-\beta/2}$  is the  $1-\beta/2$  quantile of the standardized normal distribution, i.e.

$$\Pr\left(Z \le Z_{1-\frac{\beta}{2}}\right) = 1 - \frac{\beta}{2} \tag{9}$$

where Z is normally distributed with mean 0 and variance 1. The interval defined by (7) is called a confidence interval; it contains  $\mu$  with probability  $1-\beta$  called the confidence level. Hence, if  $\varepsilon$  is an arbitrarily chosen small number, then the minimum sample size for which the interval  $(\hat{\mu}_n - \varepsilon, \ \hat{\mu}_n + \varepsilon)$  contains  $\mu$  with probability greater or equal to  $1-\beta$  is given by the following formula:

$$n = \left[ \left( \frac{\sigma}{\varepsilon} z_{1 - \frac{\beta}{2}} \right)^2 \right] + 1 \tag{10}$$

where [x] denotes the integer part of x. Thus, n is the smallest sample size for which the desired estimation accuracy, expressed by  $\varepsilon$  and  $\beta$ , is attained. As  $\sigma$  is usually unknown, for practical purposes it can be replaced in (10) by the (unbiased) sample variance of X, i.e.

$$\hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2 \tag{11}$$

In our case  $\widehat{\Lambda}$  and  $\widehat{A}$  are the sample means which estimate the expected values  $E[\ln(\widehat{\lambda})]$  and  $E(1/\widehat{\alpha})$ . Therefore, the confidence intervals for  $\ln(\lambda)$  and  $1/\alpha$  are defined using  $Var[\ln(\widehat{\lambda})]$  and  $Var(1/\widehat{\alpha})$  respectively. In consequence, the minimum sample sizes, guaranteeing that  $\ln(\lambda)$  and  $1/\alpha$  are estimated with the desired accuracy specified by  $\varepsilon$  (half-width of the confidence interval) and  $1-\beta$  (the confidence level) are respectively given as follows:

$$n_{\lambda} = \left[ Var[\ln(\hat{\lambda})] \left( z_{1 - \frac{\beta}{2}} / \varepsilon \right)^{2} \right] + 1, \ n_{\alpha} = \left[ Var(1/\hat{\alpha}) \left( z_{1 - \frac{\beta}{2}} / \varepsilon \right)^{2} \right] + 1$$
 (12)

For computational purposes  $Var[\ln(\hat{\lambda})]$  and  $Var(1/\hat{\alpha})$  can be replaced in (12) with the respective sample variances.

Assuming that (11) is a good approximation of  $\sigma^2$ , we may conclude that the ability to find an analytical expression for  $\sigma^2$  has a purely theoretical significance. However, there are two reasons why this is not the case. Firstly, having an analytical expression for at least an upper bound of  $\sigma^2$  allows to assess the numerical complexity of the estimation problem. Secondly, it can be checked whether  $\sigma^2 < \infty$ , i.e. whether the estimation is numerically tractable.

In view of the above considerations, we need to find  $Var[\ln(\hat{\lambda})]$  and  $Var(1/\hat{\alpha})$ , or at least their upper bounds. Before that, upper bounds for  $E\left[\left(\ln(\hat{\lambda})\right)^2\right]$  and  $E[(1/\hat{\alpha})^2]$  will be found in the next section.

## 2. Upper bounds for $E\left[\left(\ln(\hat{\lambda})\right)^2\right]$ and $E\left[(1/\hat{\alpha})^2\right]$

First, the formulas for the moment generating functions of  $1/\hat{\alpha}$  and  $\ln(\hat{\lambda})$  will be derived. We have

$$G_{1/\widehat{\alpha}}(u) = E\left(e^{u\cdot\left[\ln(t_1+\cdots+t_m)-\frac{1}{m}\sum_{i=1}^m\ln(t_1+\cdots+t_i)\right]}\right) =$$

$$= E\left[\left(e^{\sum_{i=1}^m [\ln(t_1+\cdots+t_m)-\ln(t_1+\cdots+t_i)]}\right)^{u/m}\right] =$$

$$= E\left[\left(\prod_{i=1}^m e^{\ln[(t_1+\cdots+t_m)/(t_1+\cdots+t_l)]}\right)^{u/m}\right] =$$

$$= E\left[ \left( \prod_{i=1}^{m} \frac{t_1 + \dots + t_m}{t_1 + \dots + t_i} \right)^{u/m} \right] = E[X^u]$$
 (13)

where

$$X = \left(\prod_{i=1}^{m} \frac{t_1 + \dots + t_m}{t_1 + \dots + t_i}\right)^{1/m} \tag{14}$$

As  $Var[\ln(\hat{\lambda})] = Var[-\ln(\hat{\lambda})]$ , and it will be more convenient to operate on  $-\ln(\hat{\lambda})$  rather than  $\ln(\hat{\lambda})$ , the formula for the MGF of the former will now be derived.

$$G_{-\ln(\widehat{\lambda})}(u) = E(e^{u \cdot [-\ln(\widehat{\lambda})]}) =$$

$$= E\left[\left(e^{\ln(t_1+\cdots+t_m)-\frac{1}{\tilde{\alpha}}\ln(m)}\right)^u\right] =$$

$$=E\left[(t_1+\cdots+t_m)^u/\left(\prod_{i=1}^{m-1}\frac{t_1+\cdots+t_m}{t_1+\cdots+t_i}\right)^{\frac{u\ln(m)}{m}}\right]=$$

$$= E\left[ \left( (t_1 + \dots + t_m) / \prod_{i=1}^{m-1} \left( \frac{t_1 + \dots + t_m}{t_1 + \dots + t_i} \right)^{\frac{\ln(m)}{m}} \right)^u \right] = E[Y^u]$$
 (15)

where

$$Y = (t_1 + \dots + t_m) / \prod_{i=1}^{m-1} \left( \frac{t_1 + \dots + t_m}{t_1 + \dots + t_i} \right)^{\frac{\ln(m)}{m}}$$
(16)

The MGF of an arbitrary random variable V has the following properties:

$$E(V) = \frac{dG_V(u)}{du}\Big|_{u=0}, \quad E(V^2) = \frac{d^2G_V(u)}{du^2}\Big|_{u=0}$$
(17)

We thus have:

$$E[(1/\hat{\alpha})^2] = \frac{d^2 G_{1/\hat{\alpha}}(u)}{du^2} \Big|_{u=0} = \frac{d^2 E(X^u)}{du^2} \Big|_{u=0}$$
(18)

$$E\left[\left(-\ln(\hat{\lambda})\right)^{2}\right] = \frac{d^{2}G_{-\ln(\hat{\lambda})}(u)}{du^{2}}\Big|_{u=0} = \frac{d^{2}E(Y^{u})}{du^{2}}\Big|_{u=0}$$
(19)

Moreover, as proved in [2], for every non-negative random variable V such that  $V \ge a \ge 0$  and  $E(V^u)$  exists, it holds that

$$E(V^{u}) = a^{u} + u \int_{a}^{\infty} x^{u-1} \Pr(V > x) dx$$
 (20)

Using the above equalities, second derivatives of  $E(X^u)$  and  $E(Y^u)$  will now be computed. As it holds that

$$\frac{da^{u}}{dy} = \ln(a) a^{u}, \frac{dx^{u-1}}{dy} = \ln(x) x^{u-1}, \tag{21}$$

the product rule yields:

$$\frac{dE(V^{u})}{du} = \ln(a) a^{u} + \int_{a}^{\infty} x^{u-1} \Pr(V > x) dx + u \int_{a}^{\infty} \ln(x) x^{u-1} \Pr(V > x) dx$$
 (22)

$$\frac{d^2E(V^u)}{du^2} = [\ln(a)]^2 a^u +$$

$$+2\int_{a}^{\infty}\ln(x)\,x^{u-1}\Pr(V>x)\,dx + u\int_{a}^{\infty}\ln^{2}(x)\,x^{u-1}\Pr(V>x)\,dx \tag{23}$$

Theorem 1

$$E\left[\left(\ln(\hat{\lambda})\right)^2\right] \le E\left[\left(\ln(S_m)\right)^2\right] \tag{24}$$

Proof: As Y≥0, applying (23) to Y yields:

$$\frac{d^2 E(Y^u)}{du^2}\Big|_{u=0} = 2 \int_0^\infty \ln(x) \, x^{-1} \Pr(Y > x) \, dx \le$$

$$\leq 2 \int_{1}^{\infty} \ln(x) x^{-1} \Pr(Y > x) dx$$
 (25)

As  $S_m > S_i$  for i=1,...,m-1, it follows from (16) that  $Y < S_m$  and

$$\Pr[Y > x] \le \Pr[s_m > x] = \Pr[\ln(s_m) > \ln(x)] \tag{26}$$

for x≥0. It thus holds that

$$\int_{1}^{\infty} \ln(x) \, x^{-1} \, \Pr(Y > x) \, dx \le \int_{1}^{\infty} \ln(x) \, x^{-1} \, \Pr[\ln(s_m) > \ln(x)] \, dx =$$

$$= \int_{1}^{\infty} \ln(x) \frac{d \ln(x)}{dx} \Pr[\ln(s_m) > \ln(x)] dx \tag{27}$$

Substituting In(x) by the variable s we obtain

$$\int_{1}^{\infty} \ln(x) \frac{d \ln(x)}{dx} \Pr[\ln(s_m) > \ln(x)] dx = \int_{0}^{\infty} s \Pr[\ln(s_m) > s] ds \le$$

$$\leq \int_0^\infty s \Pr[|\ln(s_m)| > s] \, ds = \frac{1}{2} E[(\ln(s_m))^2] \tag{28}$$

where the last equality is a consequence of the fact, proved in [2], that for any random variable V such that  $E(|V|^u) < \infty$ , where u>0, it holds that

$$E(|V|^{u}) = u \int_{a}^{\infty} x^{u-1} \Pr(|V| > x) dx$$
 (29)

Finally, from (19) and (25)-(28), we conclude that

$$E\left[\left(\ln(\hat{\lambda})\right)^{2}\right] = E\left[\left(-\ln(\hat{\lambda})\right)^{2}\right] \le E\left[\left(\ln(S_{m})\right)^{2}\right]$$
(30)

which completes the proof.

#### Theorem 2

$$E[(1/\hat{\alpha})^2] \le \left[1 + \sqrt{E[(\ln(S_m))^2]} + \sqrt{E[(\ln(T_1))^2]}\right]^2$$
(31)

Proof: As X≥1, using (23) and integration by substitution we obtain

$$\frac{d^2 E(X^u)}{du^2}\Big|_{u=0} = 2 \int_1^\infty \ln(x) \, x^{-1} \Pr(X > x) \, dx =$$

$$= 2 \int_{1}^{\infty} \ln(x) \Pr(\ln(X) > \ln(x)) \frac{d \ln(x)}{dx} dx = 2 \int_{0}^{\infty} s \Pr(\ln(X) > s) ds$$
 (32)

Thus, in view of (18), we have the following formula:

$$E[(1/\hat{\alpha})^2] = 2\int_0^\infty s \Pr(\ln(X) > s) ds$$
(33)

Let us note that

$$X = \left(\prod_{i=1}^{m} \frac{s_m}{s_i}\right)^{1/m} < \left(\prod_{i=1}^{m} \frac{s_m}{\tau_i}\right)^{1/m} = \frac{s_m}{\tau_i}$$
 (34)

hence

$$\Pr[\ln(X) > s] \le \Pr\left[\ln\left(\frac{s_m}{\tau_1}\right) > s\right], \ s \ge 0$$
(35)

It thus holds that

$$\int_0^\infty s \Pr[\ln(X) > s] ds \le \int_0^\infty s \Pr\left[\ln\left(\frac{s_m}{\tau_1}\right) > s\right] ds \tag{36}$$

Substituting the variable s by In(x) we obtain

$$\int_0^\infty s \Pr\left[\ln\left(\frac{s_m}{\tau_1}\right) > s\right] ds = \int_1^\infty \ln(x) \Pr\left[\ln\left(\frac{s_m}{\tau_1}\right) > \ln(x)\right] \frac{d \ln(x)}{dx} dx =$$

$$= \int_{1}^{\infty} \ln(x) x^{-1} \Pr\left(\frac{s_m}{\tau_1} > x\right) dx \tag{37}$$

Clearly,  $T_1$  has Weibull distribution with density function  $w_{\alpha,\,\lambda}$ . Conditioning on  $T_1$  yields:

$$\Pr\left(\frac{s_m}{T_1} > x\right) = \int_0^\infty \Pr\left(\frac{s_m}{T_1} > x \middle| T_1 = t\right) w_{\alpha,\lambda}(t) dt = \int_0^\infty \Pr\left(1 + \frac{s_{2,\dots,m}}{t} > x\right) w_{\alpha,\lambda}(t) dt \qquad (38)$$

where  $S_{2,\dots,m}=T_2+\dots+T_m$ . Hence, by changing the order of integration, the last expression in (37) is transformed as follows:

$$\int_{1}^{\infty} \ln(x) x^{-1} \Pr\left(\frac{s_{m}}{r_{1}} > x\right) dx = \int_{0}^{\infty} \int_{1}^{\infty} \ln(x) x^{-1} \Pr\left(1 + \frac{s_{2,\dots,m}}{t} > x\right) dx \, w_{\alpha,\lambda}(t) dt \tag{39}$$

We have:

$$\int_{1}^{\infty} \ln(x) x^{-1} \operatorname{Pr}\left(1 + \frac{s_{2,\dots,m}}{t} > x\right) dx =$$

$$= \int_{1}^{\infty} \ln(x) x^{-1} \operatorname{Pr}\left[\ln\left(1 + \frac{s_{2,\dots,m}}{t}\right) > \ln(x)\right] dx =$$

$$= \int_{0}^{\infty} s \operatorname{Pr}\left[\ln\left(1 + \frac{s_{2,\dots,m}}{t}\right) > s\right] ds =$$

$$= \int_{0}^{1} s \operatorname{Pr}\left[\ln\left(1 + \frac{s_{2,\dots,m}}{t}\right) > s\right] ds + \int_{1}^{\infty} s \operatorname{Pr}\left[\ln\left(1 + \frac{s_{2,\dots,m}}{t}\right) > s\right] ds \tag{40}$$

It is easy to check that the following implications hold for any positive random variable V:

$$\ln(1+V) > s \geq 1 \ \Rightarrow \ V > 1 \ \Rightarrow \ \ln(1+V) < \ln(V) + 1 \ \Rightarrow$$

$$\Rightarrow \Pr[\ln(1+V) > s] \le \Pr[\ln(V) + 1 > s] \tag{41}$$

From (40) and (41) it follows that

$$\int_{1}^{\infty} \ln(x) \, x^{-1} \Pr\left(1 + \frac{s_{2,\dots,m}}{t} > x\right) dx \le \int_{0}^{1} s ds + \int_{1}^{\infty} s \Pr\left[\ln\left(\frac{s_{2,\dots,m}}{t}\right) > s - 1\right] ds \tag{42}$$

Substituting s-1 by r, using the fact that  $S_m > S_{2,...,m}$ , and applying (29) we obtain:

$$\int_{0}^{1} s ds + \int_{1}^{\infty} s \Pr\left[\ln\left(\frac{S_{2,\dots,m}}{t}\right) > s - 1\right] ds \leq \frac{1}{2} + \int_{0}^{\infty} (r+1) \Pr\left[\ln\left(\frac{S_{m}}{t}\right) > r\right] dr \leq$$

$$\leq \frac{1}{2} + \int_{0}^{\infty} (r+1) \Pr\left[\left|\ln\left(\frac{S_{m}}{t}\right)\right| > r\right] dr = \frac{1}{2} + \frac{1}{2} E\left[\left(\ln\left(\frac{S_{m}}{t}\right)\right)^{2}\right] + E\left[\left|\ln\left(\frac{S_{m}}{t}\right)\right|\right] =$$

$$= \frac{1}{2} + \frac{1}{2} E\left[\left(\ln(S_{m}) - \ln(t)\right)^{2}\right] + E\left(\left|\ln(S_{m}) - \ln(t)\right|\right) \leq$$

$$\leq \frac{1}{2} + \frac{1}{2} E\left[\left(\ln(S_{m})\right)^{2}\right] + \left|\ln(t)\right| E\left(\left|\ln(S_{m})\right|\right) + \frac{1}{2} \left[\ln(t)\right]^{2} +$$

$$+ E\left(\left|\ln(S_{m})\right|\right) + \left|\ln(t)\right| \tag{43}$$

As T<sub>1</sub> has Weibull distribution, from (36)-(43) we obtain

$$\int_0^\infty s \Pr[\ln(X) > s] \, ds \le$$

$$\leq \int_0^\infty \left[ \frac{1}{2} + \frac{1}{2} E[(\ln(S_m))^2] + E(|\ln(S_m)|) \right] w_{\alpha,\lambda}(t) dt +$$

$$+ \int_0^\infty \left[ |\ln(t)| E(|\ln(S_m)|) + \frac{1}{2} [\ln(t)]^2 + |\ln(t)| \right] w_{\alpha,\lambda}(t) dt =$$

$$= \frac{1}{2} + \frac{1}{2}E[(\ln(S_m))^2] + E(|\ln(S_m)|) +$$

$$+E(|\ln(S_m)|)E(|\ln(T_1)|) + \frac{1}{2}E[(\ln(T_1))^2] + E(|\ln(T_1)|)$$
(44)

It can be easily shown that

$$E(|V|) \le \sqrt{E(V^2)} \tag{45}$$

for every random variable V such that  $E(V^2) < \infty$ . Now (31) holds in view of (33), (44), and (45), thus the proof is completed.

To compute the bounds defined by (24) and (31), we need a formula for  $E[(\ln(S_m))^2]$ , that will be derived in the next section.

3. A formula for  $E[(\ln(S_m))^2]$ 

It was proved in [1] that

$$G_{\ln(S_m)}(u) = \frac{1}{\lambda^u} \Gamma\left(\frac{u}{\alpha} + 1\right) + \frac{u}{\alpha\lambda^u} \sum_{k=1}^{m-1} \frac{\Gamma\left(\frac{u}{\alpha} + k\right)}{k!}$$
(46)

Differentiation of the first component yields:

$$d\frac{1}{\lambda^{u}}\Gamma\left(\frac{u}{\alpha}+1\right)/du=-\ln(\lambda)\,\lambda^{-u}\Gamma\left(\frac{u}{\alpha}+1\right)+\lambda^{-u}\frac{1}{\alpha}\Gamma'\left(\frac{u}{\alpha}+1\right)=$$

$$= \left[\frac{1}{\alpha}\Gamma'\left(\frac{u}{\alpha} + 1\right) - \ln(\lambda)\Gamma\left(\frac{u}{\alpha} + 1\right)\right]\lambda^{-u} \tag{47}$$

hence

$$d^{2} \frac{1}{\lambda^{u}} \Gamma\left(\frac{u}{\alpha} + 1\right) / du^{2} = \left[\frac{1}{\alpha^{2}} \Gamma''\left(\frac{u}{\alpha} + 1\right) - \ln(\lambda) \frac{1}{\alpha} \Gamma'\left(\frac{u}{\alpha} + 1\right)\right] \lambda^{-u} +$$

$$- \left[\frac{1}{\alpha} \Gamma'\left(\frac{u}{\alpha} + 1\right) - \ln(\lambda) \Gamma\left(\frac{u}{\alpha} + 1\right)\right] \ln(\lambda) \lambda^{-u} =$$

$$= \left[\frac{1}{\alpha^{2}} \Gamma''\left(\frac{u}{\alpha} + 1\right) - 2\ln(\lambda) \frac{1}{\alpha} \Gamma'\left(\frac{u}{\alpha} + 1\right) + [\ln(\lambda)]^{2} \Gamma\left(\frac{u}{\alpha} + 1\right)\right] \lambda^{-u}$$

$$(48)$$

It thus holds that

$$d^{2} \frac{1}{\lambda^{u}} \Gamma\left(\frac{u}{\alpha} + 1\right) / du^{2} \Big|_{u=0} = \frac{1}{\alpha^{2}} \Gamma''(1) - 2\ln(\lambda) \frac{1}{\alpha} \Gamma'(1) + [\ln(\lambda)]^{2} \Gamma(1)$$
(49)

Differentiation of the second component yields:

$$d\frac{u}{\alpha\lambda^{u}}\sum_{k=1}^{m-1}\frac{\Gamma\left(\frac{u}{\alpha}+k\right)}{k!}/du=d\frac{u}{\alpha\lambda^{u}}/du\sum_{k=1}^{m-1}\frac{\Gamma\left(\frac{u}{\alpha}+k\right)}{k!}+\frac{u}{\alpha\lambda^{u}}\sum_{k=1}^{m-1}\frac{1}{\alpha}\frac{\Gamma'\left(\frac{u}{\alpha}+k\right)}{k!}$$
 (50)

hence

$$d^2 \frac{u}{\alpha \lambda^u} \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} / du^2 = d^2 \frac{u}{\alpha \lambda^u} / du^2 \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{U(\frac{u}{\alpha} + k)}{k!} + d \frac{u}{\alpha \lambda^u} / du \sum_{k=1}^{m-1} \frac{$$

$$+ d \frac{u}{\alpha \lambda^{u}} / du \sum_{k=1}^{m-1} \frac{1}{\alpha} \frac{\Gamma'(\frac{u}{\alpha} + k)}{k!} + \frac{u}{\alpha \lambda^{u}} \sum_{k=1}^{m-1} \frac{1}{\alpha^{2}} \frac{\Gamma''(\frac{u}{\alpha} + k)}{k!}$$

$$(51)$$

We have:

$$d\left(\frac{u}{\alpha\lambda^{u}}\right)/du = \frac{\alpha\lambda^{u} - u\alpha\lambda^{u}\ln(\lambda)}{\alpha^{2}\lambda^{2u}} = \frac{1 - u\ln(\lambda)}{\alpha\lambda^{u}}$$
(52)

$$d^{2}\left(\frac{u}{\alpha\lambda^{u}}\right)/du^{2} = \frac{-\ln(\lambda)\alpha\lambda^{u} - [1 - u\ln(\lambda)]\alpha\lambda^{u}\ln(\lambda)}{\alpha^{2}\lambda^{2u}} = \frac{-\ln(\lambda) - [1 - u\ln(\lambda)]\ln(\lambda)}{\alpha\lambda^{u}}$$
(53)

hence

$$d\left(\frac{u}{\alpha\lambda^{u}}\right)/du\Big|_{u=0} = \frac{1}{\alpha}, \quad d^{2}\left(\frac{u}{\alpha\lambda^{u}}\right)/du^{2}\Big|_{u=0} = \frac{-2\ln(\lambda)}{\alpha}$$
(54)

It thus holds that

$$d^{2} \frac{u}{\alpha \lambda^{u}} \sum_{k=1}^{m-1} \frac{\Gamma(\frac{u}{\alpha} + k)}{k!} / du^{2} \bigg|_{u=0} = -\frac{2 \ln(\lambda)}{\alpha} \sum_{k=1}^{m-1} \frac{\Gamma(k)}{k!} + \frac{2}{\alpha^{2}} \sum_{k=1}^{m-1} \frac{\Gamma'(k)}{k!}$$
 (55)

Finally, from (49) and (55) we obtain

$$E[(\ln(S_m))^2] = d^2 G_{\ln(S_m)}(u) / du^2 = \frac{1}{\alpha^2} \Gamma''(1) + \frac{2 \ln(\lambda)}{\alpha} \left( \gamma - \sum_{k=1}^{m-1} \frac{1}{k} \right) + [\ln(\lambda)]^2 + \frac{1}{\alpha^2} \left( \gamma - \sum_{k=1}^{m-1} \frac{1}{k} \right) + [\ln(\lambda)]^2 + \frac{1}{\alpha^2} \left( \gamma - \sum_{k=1}^{m-1} \frac{1}{k} \right) + \frac{1}{\alpha^2} \left( \gamma - \sum_{k$$

$$+\frac{2}{\alpha^2} \sum_{k=1}^{m-1} \frac{\Gamma'(k)}{k!} \tag{56}$$

where the sums over k=1,...,m-1 are assumed to be equal to 0 for m=1. Thus, the above formula also holds for  $S_1=T_1$ .

4. Upper bounds for  $Var[\ln(\hat{\lambda})]$  and  $Var(1/\hat{\alpha})$ 

Combining the results of the two previous sections we obtain:

$$Var[\ln(\hat{\lambda})] = E\left[\left(\ln(\hat{\lambda})\right)^{2}\right] - \left[E\left(\ln(\hat{\lambda})\right)\right]^{2} \le$$

$$\le E\left[\left(\ln(S_{m})\right)^{2}\right] - \left[\ln(\lambda) - \frac{1}{\alpha}\left(\frac{\ln(m)}{m} - \frac{1}{m} + \Gamma'(1) - \ln(m) + \sum_{j=1}^{m} \frac{1}{j}\right)\right]^{2}$$
(57)

$$Var(1/\hat{\alpha}) = E[(1/\hat{\alpha})^{2}] - [E(1/\hat{\alpha})]^{2} \le$$

$$\le \left[1 + \sqrt{E[(\ln(S_{m}))^{2}]} + \sqrt{E[(\ln(T_{1}))^{2}]}\right]^{2} - \left(\frac{m-1}{m\alpha}\right)^{2}$$
(58)

where  $E(\ln(\hat{\lambda}))$  and  $E(1/\hat{\alpha})$  have been found from (4) and (5), while  $E[(\ln(S_m))^2]$  and  $E[(\ln(T_1))^2]$  are given by (56).

#### References

- [1] J. Malinowski: Maximum Likelihood Estimators of the Weibull Distribution's Parameters, Based on Short Sequences of Dependent Lifetimes. Opracowanie wewnętrzne IBS PAN 2012.
- [2] Sheldon M. Ross: Introduction to probability models. Elsevier 2010.
- [3] Antonio Fernandez, Manuel Vazquez: Improved Estimation of Weibull Parameters Considering Unreliability Uncertainties. IEEE Transactions on Reliability, Vol. 61, No. 1, March 2012.

- [4] I.B. Frenkel, I.B. Gertsbakh, L.V. Kvatskin: Parameter Estimation and Hypotheses Testing for Non-Homogenous Poisson Process. Transport and Telecommunication, Vol. 4, No. 2, 2003.
- [5] Alicja Jokiel-Rokita, Ryszard Magiera: Selected stochastic models in reliability.
  Politechnika Wrocławska, Wrocław 2011.





