





1. Introduction

The paper [1] presents a new method of estimating the scale () and shape {a)
parameters of the Weibull distribution. It is based on simulating m times-to-failure of each of
n independent objects, where an object is subjected to m-1 minimal repairs, and
considered unusable after the m-th failure. We thus obtain n i.i.d. samples of the random
vector [Ty,...,Tm], where Ty is the time of the first failure, and T; — the time elapsed between
the (i-1)-th minimal repair and the i-th failure, i=2,..,m. In other words, this procedure
simulates n sequences of events of a non-homogenous Poisson process with Weilull
intensity given by r(t) = aA*t%"L. From these n sequences the considered estimators of o

and A are obtained in the following way: firstly, the maximum likelihood estimators @ and A

are constructed from a single sample:
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secondly, A and A defined as follows

In(Ay)++In(Ap) A= 1/By++1/8p (3)

A= .
n n
are used as respective estimators of In(1) and 1/a, where }:1, ...,Zn and &, ..., @y, are i.i.d.

instances of 1 and @ respectively. Let us note that the estimators A and & are not obtained

from an i.i.d. sample, but A and A are. For technical reasons, it is easier to estimate 1/0. and




In{A) rather than o and A, because, as proved in {1], the biases of 1/& and ln(i) can be

expressed in an analytical form as linear functions of E(1/&), i.e.

Z-E(1/@) = = E(1/&) “

m

In() - E[in(2)] = 2= E(1/@) [ - 1 4 1'(1) - In(m) + £, 1/] (5)

Let us note that the biases of A and A are equal to those of In(4) and 1/&, because, as it

follows from (3)
E(R) = E(In(1)] and E(A) = E(1/&), (6)

The formulas (4} and (5) are the main results presented in [1]. However, for an
estimation technique to be complete it is also necessary to assess the estimation accuracy.
This problem was left open in [1], but it will be addressed herein. Such accuracy is usually
expressed in terms of confidence levels and confidence intervals. Let us recall some basics
on this subject. If X4, ..., X, is an i.i.d. random sample from a random variable X such that
EX)=pu<oo and Var(X) =02 < oo, and a is a small positive number, then for

sufficiently large n it holds that
Pr{fn—z pZ<u<py,+ i)>1—ﬁ (7)
I'iHn Zl_g\/;l‘ H<Un Zl—gxﬁl‘ =

Here, fi,, is the sample mean —a commonly used estimator of , i.e.



~ 1
Hn =~ s XL' (8)

n i=1

and z;_g, is the 1 - 3/2 quantile of the standardized normal distribution, i.e.
_ B
PriZ<z z}|= -3 (9)
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where Z is normally distributed with mean 0 and variance 1. The interval defined by (7) is
called a confidence interval; it contains p with probability 1 — £ called the confidence level.
Hence, if £ is an arbitrarily chosen small number, then the minimum sample size for which
the interval (4, — &, i, + €) contains p with probability greater or equal to 1 — J is given

by the following formula:

n= K%zl_gﬂ +1 (10)

where |x] denotes the integer part of x. Thus, n is the smallest sample size for which the
desired estimation accuracy, expressed by € and 8, is attained. As o is usually unknown, for

practical purposes it can be replaced in (10) by the {unbiased) sample variance of X, i.e.

~ 1 "
6 = — XX - fAn)? (11)




In our case A and A are the sample means which estimate the expected values
E[ln(i)] and E(1/&). Therefore, the confidence intervals for In(4) and 1/a are defined
using Var[ln(i)] and Var(1/&) respectively. in consequence, the minimum sample sizes,
guaranteeing that In(1) and 1/« are estimated with the desired accuracy specified by €
(half-width of the confidence interval) and 1-f (the confidence level} are respectively given

as follows:
. 2 2
n = {Var[ln(/l)] (Zi_£/8> J+ 1, ng = lVar(l/&) (21—£/£> J +1 (12}

For computational purposes Var[In(i)] and Var(1/&) can be replaced in (12} with the
respective sample variances.

Assuming that (11) is a good approximation of o2, we may conclude that the ability
to find an analytical expression for o2 has a purely theoretical significance. However, there
are two reasons why this is not the case. Firstly, having an analytical expression for at least
an upper bound of o2 allows to assess the numerical complexity of the estimation problem.
Secondly, it can be checked whether g2 < oo, i.e. whether the estimation is numerically
tractable.

In view of the above considerations, we need to find Var[ln(i)] and Var(1/&), or at
least their upper bounds. Before that, upper bounds for E [(In(i))z] and E[(1/&)?] will be

found in the next section.




2. Upper bounds for E [(ln(i))z} and E[(1/&)?]
First, the formulas for the moment generating functions of 1/& and In{) will be

derived. We have

Gl/a(u) =F (Eu'[ln(t1+"'+t’“)‘$zgl1n(t1+.,'+f[)]) -
=F [(eE{’;I[ln(tl+m+tm)_ln(t1+.“+ti)])u/m:l _

=F [(Hgf;l eln[(c1+~~+fm>/(n+‘-‘+cl-)])“/m] -

Y/m
_ o _ u
=E [( =1 t1+»--+t;) ] = E[X¥) (13)
where
Y,
_ m tittin) M
x= ( i=1 t1+~~+t,~) (14)

As Var[]n(i)] = Var[—— ln(/i)], and it will be more convenient to operate on — In(i) rather

than In(4), the formula for the MGF of the former will now be derived.

Gin(ny () = E(e*TnA]) =




=F [(el"(tx+~-+tm)—%1n(m))u] _

uln{m)
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= K(t1 +o o ) /TR (M)ln'("m)> } = E[r¥]

where

In{m)

VY=_(ti++ tm)/nggl(w) ™

| IR

The MGF of an arbitrary random variable V has the following properties:

d*Gy (W)
du? |,=g

_ dGy(u) o
Ey="2Y | EvY =

We thus have:

61200 _dPE(XY)
du? u=0 du?

E[(1/&)%] =

u=0

__drE(YY)
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Moreover, as proved in [2], for every non-negative random variable V such thatV 2 a > 0

and E(VY) exists, it holds that

E(V¥) = a* + uf:o x¥IPr(V > x) dx

{20)

Using the above equalities, second derivatives of E(X*) and E(Y*) will now be computed.

As it holds that

da* dxu-1
22 =1In(a) a,

— u—1
™ =In(x)x*?,

the product rule yields:

EE_;Z_% = In(a) a* + f:o ¥ TPr(V > x)dx+u f: In(x) x* 2 Pr(V > x) dx

B2EGY) 2 u
= [In(a)]?a™ +

+2 f: In(x) x* 2 Pr(V > x)dx +u fam ?(x) x* ' Pr(V > x) dx
Theorem 1

£ (n(2)°] < ELnSa)?]

Proof: As Y>0, applying (23} to Y yields:

{21)

(22)

{23)

(24)




LEVY .= 2 fowln(x) xIPr(Y > x)dx <
u=

du?

<2[ () x 1 Pr(Y > x) dx (25)
As S, > S fori=1,..,m — 1, it follows from (16) that Y < S, and
Pr[Y > x] < Pr{s,, > x] = Pr(In(s,,) > In(x)] (26)
for x=0. It thus holds that
[T @ 27 Pr(Y > x) dx < [ In(x) x 71 Pr{ln(s,) > In(x)] dx =

= [ In(x) 222 pr{in(s,,) > In(x)] dx (27)
Substituting In{x) by the variable s we obtain
flm In(x)d—tlfx—)Pr[ln(sm) > In(x)]dx = foms Priin(s,,) > slds <

< fy s Pr(lin(sp)l > s1ds = 3 E[(In(s,))?] (28)

where the last equality is a consequence of the fact, proved in {2], that for any random

variable V such that E(|V[*) < o, where u>0, it holds that
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EQVI®) =u [, x* 2 Pr([V| > x) dx

Finally, from (19) and {25)-(28), we conclude that
£ [(n()*] = £[(-n())*] = ELOn(S,)?)
which completes the proof.

Theorem 2

2
E[(1/@)7] < [1+YEInG,))2 + VE[Un(T)Y])
Proof: As X1, using {23) and integration by substitution we obtain

dZE(XW)
du?

=2 flmln(x) x7Pr(X > x)dx =
u=0

= 2 [ In(x) Pr(n(¥) > () “22 dx = 2 [* s Pr(in(X) > s) ds
Thus, in view of (18), we have the following formula:

E[(1/&)?*] = 2f0m5 Pr(In(X) > s) ds

(29)

(30)

(31)

(32)

(33)




Let us note that

x= () < (e 22) " = 2 4
hence
Pr{ln(X) > s] < Pr [In (i_r’lﬂ) > s], 520 (35)

It thus holds that
fom sPriIn(X) > slds < fom sPr [In (i_—’l") > s] ds (36)
Substituting the variable s by In(x} we obtain
foms Pr []n (%) > s] ds = flm]n(x) Pr [ln (“;—’:) > ]n(x)] &:ﬁﬁdx =

= flm In(x) x~* Pr (5;_—': > x) dx (37)
Clearly, T1 has Weibull distribution with density function wq, 1. Conditioning on T, yields:

Pr (i—’l‘ > x) = fom Pr (_5# > x|T1 = t) wy 2 ()dt = fom Pr (1 + S—Z-t—ﬂ > x) wga()dt  (38)

10




where S, 5, =T,+ -+ T,. Hence, by changing the order of integration, the last

expression in (37) is transformed as follows:

flm In(x) x~* Pr (% > x) dx = fom flm In(x) x*Pr (1 + —Szt—m > x) dx wg ()dt (39)
We have:

@ -— S,,,,,m —_—
f1 In(x) x 1Pr(l +—3-t—>x)dx—

=f0°°spr[ln(1+5z """ ’">>s]ds=

r
= fols Pr[ln (1 +Sz—t—ﬂ) > s] ds + flms Pr [ln (1 +Sz—t"‘-) > s] ds (40)
It is easy to check that the following implications hold for any positive random variable V:
In(1+")>s=21 =2 V>1 = @+ <h@@+1 =
= Priin(1+V)>s] <Pr[In(V) + 1> 5] (41)
From (40) and {(41) it follows that
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flwln(x) x~1Pr (1 + Sz';"’" > x) dx < fol sds + flm sPr [ln (Sz';"'") > - 1] ds

Substituting s—1 by r, using the fact that Sm > S, m, and applying (29} we obtain:

S

folsds+f1°°sPr[ln( """ "‘) >s-—1]d5 S%+fom(r+1)Pr[ln(S—t"l) > r] dr <

:
<t oo p ()] > rar =3+ [0 () T+ £ ()] -
==+ 2E[(In(S,x) — In(0)?] + E(IIn(S,n) — In(®)]) <
< 3+ E[An(Sm)?] + In(OIEUIn(Sm)N) +3 [n(0)]? +

+E(In(Sm)D + [In(2)]
As T, has Weibull distribution, from (36)-(43) we obtain
Jy sPrlin(X) > s}ds <
< [ [+ 2ELOn(S,)%] + E(In(S D waa(t)dt +

+ 17 [In@IEQInES)D + 200012 + I waat)de =

12

(42)

{43)




=2+ 2E[(n(Su))?] + E(In(S,)1) +

+E(IIn(S) DE((T)D + 2 E[(n(T3))?] + E(In(Ty)]) (44)

It can be easily shown that

E(V]) s VEWV?) (45)

for every random variable V such that E(V2) < o0. Now (31} holds in view of (33}, (44), and
(45), thus the proof is completed.
To compute the bounds defined by (24) and (31), we need a formula for

E[(In(S,,))?], that will be derived in the next section.

3. Aformula for E[(In(S,.))?]

It was proved in [1] that

u

I=+k
Gingsyy () = T (24 1) + ot ("k! ) (46)

Differentiation of the first component yields:

dr(2+ 1)/du =~ (3 +1)+ i (24 1) =
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=FwG+1}qm@rG+1ﬂr% (47)

a

hence
?2r(E+1)/aut =[S (E+1) - @3 (1)) +

“ErE+1) -m@rE+ 1)@ =

=[Zr(E+1) - 2@ ir 2+ 1) + In@Pr (2 +1)] 27 (48)
It thus holds that
f%re+1ymﬂwo=ﬁwxn—nmm%wuyumun%u) (49)

Differentiation of the second component yields:

ZLn 1 ( )/d — d /du k 1 r(u+k) Zm 111’"( k) (50)

a/l“ Kl tt A

hence

dz_u_z ( )/d 2 dz u /duz ;{n;llr(%”() Au/d Uy 1;_(~__)+

alv k!



/d om 11 ( +k) U em-1 1 r <_+")

d},u alu - az -
We have:
()= e
‘ (_u—)/du2 = ‘1“('1)“/1“-[;:21:(/1)]11/1"1n(/1) - —ln(/l)—[l;:uln(l)] In(2)
hence

d(G)a =3 @ Gr)raw] =0
It thus holds that

u r(Zek _ 2l (/1) r(k) r '
dz,-;l—u kmll (k, )/duz — n Zm 1 Zm 1 .

Finally, from (49) and (55) we obtain

E[0n($,m)?] = d2Gin(s,yy (w)/du? = ST7(1) + 252 (y — 53 2) 4 [In(2)]?

1T
Z’” o
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(51)

(52)

{53)

{54)

(56)



where the sums over k=1,..,m-1 are assumed to be equal to 0 for m=1. Thus, the above

formula also holds for 5;=T;.

4, Upper bounds for Var[ln(ﬁ)] and Var(1/@)

Combining the results of the two previous sections we obtain:

var[in(1)] = £[(n(1))*] - [E(m(2)]" <

< E[(n(5))?] = [n() = 2 (B2~ 24 1'(1) ~ In(m) + Z}-'Ll%)r (57)
Var(1/&) = E[(1/&)*] - [E(1/@)]* <
2 me~1 2
< [1+ VETnG0)3 + VET@)] - () (58)

where E(ln(i)) and E(1/&) have been found from (4) and (5), while E[(In(S,,))?] and

E[(In(Ty))?] are given by (56).
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