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Notation 

CDF - cumulative distribution function 

MGF - moment generating function 

MLE - maximum likelihood estimator 

PDF - probability density function 

TTF - time-to-failure (a continuous, nonnegative random variable) 

r(t) - failure (hazard) rate; i.e. r(t)=f(t)/{1-F{t)], where f(t) and F(t) are the PDF and CDF of 

the TTF under consideration 

i.i.d . - an acronym meaning "independent and identically distributed" 

r.v . - an acronym meaning "random variable" 

1. lntroduction 

The current paper deals with the problem of estimating the parameters of the 

Weibu li distribution. Although the topie has bee n thoroughly investigated by statisticians, a 

new approach, stemming from the reliability theory, is presented herein. lt is a well-known 

fact that the time-to-failure (TTF) of many technical devices (or their components) is a 

Weibull distributed random variable. Therefore, in order to estimate its parameters, the 

usu al procedure is to measure the TTF's of a number of test items, and calcu late the 

required estimates from the va lues of the random sample. This standard procedure has one 

essential disadvantage - if a failed object is no longer usable then a considerable number of 

test items is needed in orderto achieve high accuracy of the estimation, which may lead to 

unacceptable cost. However, ifthe test items are repairable, then another method can be 

used to reduce this cost. According to this proposed method each item undergoes m-1 



minimal repairs, where the i-th repair fellows the i-th failure, 1 s; is; m-1, and is considered 

unusable after the m-th failure . lt is natura I form to be the minimum number of failures that 

one tested object can survive; usually m is not large. The above procedure is repeated n 

times, which amounts to destructive testing of n items. Let t;i be the time elapsed between 

the (i -1)-th rep air and the i-th failure of the j-th item, 1 s; is; m, 1 s; j s; n (the 0-th re pair is 

performed w hen a new item is put into operation). For each item the times t;i, 1 s; is; m, are 

recorded, thus constituting a vector element of the n-sized random sample. Based upon the 

collected data, and the appropriately constructed estimators, the sought parameters can be 

evaluated . Following this scheme the desired estimation accuracy may be reached for n 

significantly smaller than in the case when no repairs are possible, and a test item becomes 

unusable after the first failure. 

The paper is organized as fellows . In Section 2 the maximum likelihood estimators of 

the scale and shape parameters of the Weibu/1 distribution, based on the minimal repairs 

and failures sequence, are constructed . lt is then explained how the expected va lues of 

those estimators can be approximated using n independent test units. In Section 3 the 

sought parameters are expressed in terms of the expected va lues of the respective 

estimators. The derived formul as allow to calcu late, in a simple way, the biases of the 

estimators constructed in Section 2. 

Standard MLE estimators of the shape and scale parameters are constructed using an 

i.i.d . sample obtained from a large number of test units. Based on that sample, an equation 

for the shape parameter, that cannot be solved analytically, is obtained (see [1]). The 

proposed method allows to express the MLE of both parameters in analytical form. Those 

estimators occur to be biased; nevertheless, the biases can also be computed analytically. 



Thus, a new estimation method for the Weibull distribution, based on analytical formulas 

alone, has been developed. 

2. The maximum likelihood estimators based on a minimal repairs seguence 

Lemma 1 

Let f(t) be the PDF of the system's TTF. Let the system be subjected to m-1 minimal repairs, 

where 51,52, ... ,Sm are the moments of consecutive failures, i.e. the new system is putto work 

at 50=0, the i-th minimal re pair is performed at S;, 1 s; is; m-1, and Sm is the time of the last 

failure after which no more repairs are performed. Let also T; = S; - S;-1, 1 s; is; m. Under 

these assumptions the PDF of the m-dimensional random vector [T1, .. ,,Tm]T, denoted by 

rm1(t1, .. ,,tm), is given by the following formula: 

For m~2 it holqs that 

= rr~-1 F(t, +· .. +t;+llt;)-F(t, + .. ·+t;) [FCt + ... + t + M ) - FCt + ... + t )J c2) 
t-1 l-F(t, + .. ·+t;) 1 m m 1 m 



The second (approximate) equality follows from the fact that if T, is the system's residua I TTF 

after a minimal repair completed at the instant s then 

p (7: < ) = F(s+t)-F(s) 
r s - t 1-F(s) 

Ta king into consideration that 

where Flm)(t1, .. . ,tm} is the CDF of [T1, .. . ,T mf, the lemma's thesis follows from (2) and the 

definition of r(t} (see Notation}. 

In the case of a two-param eter Weibull distribution, i.e. 

r(t) = a,l(,lt)a-l 

where a and 'Aare the shape and scale parameters, we have: 

which is obtained from (1) with the use of the substitutions (4). The above formula also 

defines the likelihood function of the parameters a and 'A, which will be denoted by 

L(a, 'A /t1, .. . ,tml- From (6) it follows that 

(3) 

(4) 

(5) 

(7) 

We have thus derived the expression for the log-likelihood function (the likelihood function's 

logarithm), which will play fundamental role in finding MLE of the a and 'A parameters. 



The standard way to find the maximum likelihood estimates of unknown parameters 

- the arguments of a likelihood function - is to compute the first partia I derivatives of the 

log-likelihood function w.r.t. these parameters, and equate them to zero, while the variables 

(in this case t 1, .. ,,tn), which constitute a random sample, are considered to be fixed . lt should 

also be checked if the likelihood function actually reaches a maximum where the derivatives 

are equal to zero, but this check is often omitted. Applying this standard procedure to our 

case we obtain: 

iJ l n [L(a,-ł lt ,, .... tm)l = ~ + m . ln(-ł) + I;":: ln(ti + ... + t ) 
aa a L-1 l 

(8) 

iJ ln[L(a,-łlt1 , .. ,tm)l a ·m ,ł"-l(t + + t )" 
iJ -ł =-;--a· 1 ... m (9) 

In order to find X and a zeroing the above derivatives we first equate the right-hand side in 

(9) to zero, which yields : 

(10) 

Subsequently, we replace X in (8) according to {10), and equate the right-hand side in (8) to 

zero, obtaining: 

~ + ~ · ln(m) - m · ln(t1 + .. . + tm) + I:17;, 1 ln(t1 + ... + t;) - ; · ln(m) = O (11 ) 
" " " 

which yields : 

a = ______ m ____ _ 

m·ln( t 1 + ··+tm)-I:~1 ln(t1 + -- ·+t;) 
{12) 



Note that in order to eliminate ći. in (10) it remains to substitute it according to (12). 

The form u las (10) and (12) define the MLE's based on the minimal repairs sequence. 

Herein t1, . .. ,tm denote the values of a random sample obtained by recording the respective 

TTF's . Clearly, ći. and X are dependent on m, but for simplicity, this is not reflected in the 

notation . A natural question arises - how "good" are these estimators? Their goodness can 

be judged by two criteria - the estimators' biases and variances. The first criterion needs no 

further clarification -we simply have to calcu late Je - E(A) and a - E(ći.), where the 

estimators are treated as random variables; the second one is explained in greater detail 

be low. To be more precise, ln(?c) and 1/ a will be estimated rath er than A and a, the 

respective biases being ln(?c) - E [In( X)] and 1/ a - E(l/ ći.). The rea son for this will be 

given in Section 3. 

In the case where the estimation is based on a random sample originating from i.i.ci. 

instances of a random varia ble, its accuracy is usually determined by the confidence level 

and the length of the confidence interval, and the sample's size has to be sufficiently large in 

order to obtain the required accuracy. As is well known, this size is related to the considered 

random variable's variance. However, in our case the T1, .. . ,T mare not independent, have 

different CDF's, and in practice it is not possible to perform a large number of minimal 

repairs on one object - often after several such repairs the object becomes unusable. For 

the above reasons our parameters will be estimated by ta king n identical and independent 

objects, performing m-1 minimal repairs on each of them (m not being large) to obtain n 

sample values of both ln(A) and 1/a, and calculating the respective sample means to 

approximate E[ln(X)J and E(l/a) . Thus, A and A defined as fellows 

fi. = ln(l:,)+··+ln(Xn) A = 1/a, +···+1/an 
n , n ' 



where Xi, ... , Xn and ćii, ... , ćinare i.i.ci . instances of X and ći respectively, will be used as 

estimators of ln(il.) and 1/a. The law of large num bers yields that 

A~ E[In(X)J and A~ E(l/ći), 

thus aur estimation task consists in approximating expected values with i.i.ci. sam pies. 

Clearly, the number n for which the required accuracy is achieved is proportional to 

Var(ln(X)) or Var(l/ći). lt should also be remembered that A and Aare biased estimators 

of ln(il.) and 1/ a. Let us note that 

E(A) = E[In(X)J and E(A) = E(l/ći), 

thus computing the biases of A and A is equivalent to computing those of ln(X) and 1/ ći . 

The formulas for the respective biases will be derived in the n ext section, while finding the 

varia n ces and confidence intervals will be the subject of further research. 

3. Expressing ln(A) and 1/a. in terms of E(ln(X)j and E(l/ćil. and finding the respective 

In the sequel the following two auxiliary lemmas will be necessary. 

Lemma 2 

For m:0::1 it holds that 

(13) 



Clearly, (x+l) holds for m=l. For m;:>:2 we have: 

J, t J,t-t1 - .. ·-tm-2 
= 0 r(t1) ... 0 r (t1 + ··· + tm-1)[F(t) - F(t1 + ··· + tm_ 1)]dtm-1 ... dt1 = 

J, t J,t-t, -.. ·-tm-2 
-[1 - F(t)] 0 r(t1) ... 0 r(t1 + ··· + tm_1) dtm-l ... dt1 = 

= Pr(T1 +···+Tm-is; t) + 

(14) 

We will prove that the integral in the last line satisfies the following equality: 

For this purpose let 

We thus have 



By the "reverse" induction it can be shown that 

(16) 

for k = m-1, ... ,1. Clearly, (16) holds for k = m-1. The induction step is based on the following 

derivation: 

= __ 1_t(t) [(ilt)a _ u]m-k-ldu = 
(m-k-1)! u(sk-1) 

l
u(t) 

- 1 ilt a m-k - 1 ilt a il a m-k 
- - (m-k-l)!(m-k) [( ) - u] - (m-k)! [( ) - ( 5k-1) ] 

u(sk-1) 

where 

u(s) = (ils)a 

Now (15) is a direct consequence of (16). The formulas (14) and (15) yield the following 

recursive equation holding true form ;:: 2: 

Pr(T1 + ··· +Tm:,; t) = Pr(T1 + ··· + Tm-l:,; t) - exp[-(ilt)a] (m:l)! (ilt)Cm-l)a (17) 

from which (13) follows immediately. 



Lemma 3 

lf X is a continuous random varia ble then 

E(lxn = r fo00 xr-l Pr(IXI > x) dx (18) 

The proof can be found in []. 

The above lemm as are needed in order to prove the following fact : 

Theorem 1 

E[ln(T1 + ··· + T;)] = ~ [r'(l) + Lt:A i] - ln(A), i~ 1 (19) 

where fis the Euler's gamma function, and['' - its first derivative. The sum in brackets is 

assumed to be equal to zero for i=l. 

Proof: 

We will first derive an expression for the MGF ofln(S;)= ln(T1+ ... +T;) . Let X be a 

continuous non-negative random variable. Let G101x1 (t) denote the MGF of ln(X). We have 

where the last equality follows from (18). Combining (20) and (13) yields 

G ( ) J, 00 u-1 [ (, ··)a] _,i-1 (.<t)ka d 
ln(S;) u = u o X exp - /U L,k=O--;;- X (21) 

lf we put y=(11,x)a, then 



1 d 1 
x = .!:. ya, ..ł'. = aA(Ax)a-i = aJy 1-a 

A dx 
(22) 

and, applying integration by substitution, we obtain 

A ka !cu-1) k .!._1 
u J, 00 xu- 1exp[-(Ax)a] i..!)_dx = u J, 00 ~ exp(-y) L'E..._ dy = 

O k! O Au-, k! al 

u 00 :!:+k-1 u u 
= k!aJU fo ya exp(-y)dy = k!aJU re;;+ k) (23) 

On the basis of (21) and {23) it ho/ds that 

(24) 

where the third equality is a consequence of the fact that vr(v) = r(v + 1), and the last 

sum is equal to zero for i=l. Differentiating G1 (u) and G2 (u) with respect to u yields 

G' (u) = d(fu-) r (~ + 1) + ...!:...r' (~ + 1)2:. = - 1-r' (~ + 1)- JUln(A) r (~ + 1) (25) 
1 du a ilu a a a.ilu a A_Zu a 

and 

d(2....) r(.!!+k) . r,(.!!+k) G' (u) = ~ ._,;-::_1 _a_+~ ._,;-::_1 _a_= 
2 du L..k-1 k! aiu L..k-1 k! 

{26) 

From the properties of the MGF combined with (25) and (26) we have 



= .!: [r'(l) + }>:.1 .!:) - ln(A) a k-1 k (27) 

The proof is thus completed. 

Using Theorem 1 we will express a in terms of fi, and 1 in terms of X, thus solving the 

problem of finding the unknown parameters of the Weibull distribution. More precisely, for 

technical reasons, 1/a will be expressed as a function of E(l/ fi), and ln(A) - as a function of 

E[ln(X)]. This is not a disadvantage, as E(l/fi) and E[In(X)J are easily approximated using 

a k-sized random sample of the vector variable [T1, ... ,T mL where k is sufficiently large. From 

(12) we obtain: 

= 2.. i:m-1 [1:m-1,!: _ LH .!:.] = _l_I;".'._-1 [i:m-:1.!:.] 
m·a t=l J=l j ;=1 j m·a 1-l ;=1 j (28) 

where the last but one equality follows directly from Theorem 1. lt holds that 

~'.7'-l [~m-;1.!:_] = _ 1 
L,1=1 L,;=1 j m (29) 

which is easily proved by induction. As a consequence of (28) and {29) we have: 

(30) 

hence the bias of 1/ fi is given by 



1/a - E(l/a) = - 1-E(l/ii) 
m-1 

(31) 

which yields that 1/ a is an asymptotically unbiased estimator of 1/a with respect tom. The 

approximate value of E(l/a) can be found based on the following formula: 

E(l/a)"" (~+-··+_1 )/n 
a1 an 

where, according to (12), 

In the above formula t 1i,---,tmi are the TTF's constituting the j-th element of the n-sized 

random sample of the vector random variable [T1, . . -,Tml-

(32) 

{33) 

Note that 1/a and E(l/a) are used in (31), rather than a and E(a), as finding the 

relationship between a and E(ii) would require the analytical computation of 

E(m/ [m · ln(sm) - I;'.; 1 ln(si)]), which is impossible if only the form u las for E[ln(si)l are 

known. The reason is that knowing the formula for E(X) is not sufficient to compute E(l/X). 

Let us now express ln(A) as a function of E[ln(X)J . From (10) and (19) we obtain: 

ln(X) = ~ln(m) - ln(t1 + ··· + tm) = 
a 

= ¼ ln(m) - ;; [ r' (1) + I1=--;_1 1/j] + ln(il) (34) 

Using (30) the above formula is converted to : 

ln(il) = E[ln(X)] - ln(m) E (¼) +;; [r'(l) + Il;'=-/i] = 

= E[ln(X)] - ln(m) E (¼) + m":_ 1 E (¼) [r'(l) + Il;'=-n] = 



= E[In( X)] + m~l E (¼) [- In(m) + ln~m) + r' (1) - ;;; + I;:'=1 ~] (35) 

hen ce the bias of In( X) is given by 

[ ( ')] m (1) [ln(m) 1 , ·] In(-ł) - E In A = m-i E a -;;- - ;;; + f (1) - In(m) + LJ:i 1/J (36) 

From the special functions theory it is known that r'(l)= --y, where y is the so-called Euler­

Mascheroni constant defined as 

Y = limm • oo[LJ;i 1/j - In(m)] = 0.577 

We also have: 

thus ln(X) is an asymptotically unbiased estimator of ln(A) with respect tom. The 

approximate value of E[In(X)J can be found based on the following formula: 

where, according to (10), 

and fij is given by (33), 1 :-, j :-, n. 

(37) 

(38) 

(39) 

(40) 

Note that ln(A) and E[In(X)J are used in (36), rather than A and E(A), as it is easier to 

operate on logarithms than directly on parameters and their estimators. 



The fact that the estimators In( i) and 1/ a are asymptotically unbiased with respect 

to m has rath er theoretical significance, as in practice m is not large enough for these 

estimators to be close enough to ln(t.) and 1/a. 
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