





Notation

CDF — cumufative distribution function

MGF — moment generating function

MLE — maximum likelihood estimator

PDF — probability density function

TTF - time-to-failure {a continuous, nonnegative random variable)

r(t) ~ failure (hazard) rate; i.e. r(t)=f(t)/[1-F(t)], where f(t) and F(t) are the PDF and CDF of
the TTF under consideration

i.i.d. —an acronym meaning “independent and identically distributed”

r.v. —an acronym meaning “random variable”

1. Introduction

The current paper deals with the problem of estimating the parameters of the
Weibull distribution. Although the topic has been thoroughly investigated by statisticians, a
new approach, stemming from the reliability theory, is presented herein. it is a well-known
fact that the time-to-failure {TTF) of many technical devices {or their components) is a
Weibull distributed random variable. Therefore, in order to estimate its parameters, the
usual procedure is to measure the TTF’s of a number of test items, and calculate the
required estimates from the values of the random sample. This standard procedure has one
essential disadvantage —if a failed object is no longer usable then a considerable number of
test items is needed in order to achieve high accuracy of the estimation, which may lead to
unacceptable cost. However, if the test items are repairable, then another method can be

used to reduce this cost. According to this proposed method each item undergoes m-1



minimal repairs, where the i-th repair follows the i-th failure, 1 <1 < m-1, and is considered
unusable after the m-th failure. It is natural for m to be the minimum number of failures that
one tested object can survive; usually m is not large. The above procedure is repeated n
times, which amounts to destructive testing of n items. Let t; be the time elapsed between
the (i — 1)-th repair and the i-th failure of the j-th item, 1 <i<m, 1 <j < n (the O-th repair is
performed when a new item is put into operation). For each item the times t;, 1 <i<m, are
recorded, thus constituting a vector element of the n-sized random sample. Based upon the
collected data, and the appropriately constructed estimators, the sought parameters can be
evaluated. Following this scheme the desired estimation accuracy may be reached for n
significantly smaller than in the case when no repairs are possible, and a test item becomes
unusable after the first failure.

The paper is organized as follows. In Section 2 the maximum likelihood estimators of
the scale and shape parameters of the Weibull distribution, based on the minimal repairs
and failures sequence, are constructed. It is then explained how the expected values of
those estimators can be approximated using n independent test units. In Section 3 the
sought parameters are expressed in terms of the expected values of the respective
estimators. The derived formuias allow to calculate, in a simple way, the biases of the
estimators constructed in Section 2.

Standard MLE estimators of the shape and scale parameters are constructed using an
i.i.d. sample obtained from a large number of test units. Based on that sample, an equation
for the shape parameter, that cannot be solved analytically, is obtained (see {1}). The
proposed method allows to express the MLE of both parameters in analytical form. Those

estimators occur to be biased; nevertheless, the biases can also be computed analytically.




Thus, a new estimation method for the Weibull distribution, based on analytical formulas

alone, has been developed.

2. The maximum likelihood estimators based on a minimal repairs sequence

Lemma 1

Let f(t) be the PDF of the system’s TTF. Let the system be subjected to m—1 minimal repairs,
where 54,5,,...,.5m are the moments of consecutive failures, i.e. the new system is put to work
at Sp=0, the i-th minimal repair is performed at S;, 1 <i < m-1, and S, is the time of the last
failure after which no more repairs are performed. Let also T; = §;— Si<1, 1 £i <m. Under
these assumptions the PDF of the m-dimensional random vector [T1,... Tm]", denoted by

f™(ty,....tm), is given by the following formula:
FO(ty, o t) = TIRT r(t + -+ ) f{t + o+ t) = TR (s f(sm) (1)

Proof:

For m>2 it holds that
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The second {(approximate) equality follows from the fact that if T, is the system’s residual TTF

after a minimal repair completed at the instant s then

f&s+t)—F(s) 3)

Pr(Ty <t) = T

Taking into consideration that

AMEU (8, b)) lim Pr(TyE(ty,t1+881],.. Ty € trn + b)) ()
Bty ..t At1-0,..,0tm =0 Aty Aty

where F("’)(tl,...,tm) is the CDF of [Ty,...,Tm]", the lemma’s thesis follows from (2) and the

definition of r(t) (see Notation).

In the case of a two-parameter Weibull distribution, i.e.
f(©) = ad(A)* texp[-(A)),  r(t) = ad(A)*? {5)
where o and X are the shape and scale parameters, we have:
(L, .., ty) = a™A%™ M2 (4 o+ ) Lexp [~ (D%t + - + t)¢] (6)

which is obtained from (1) with the use of the substitutions (4). The above formula also
defines the likelihood function of the parameters a and A, which will be denoted by

L(a, A | te,...,tm). From (6) it follows that
In[L(a, Alty, ..., ty)]l =m-In(a) +a-m-InQ) + (@ — D X2, In(ty + -+ t;)
=A%ty + o ) (7)

We have thus derived the expression for the log-likelihood function (the likelihood function’s

logarithm), which will play fundamental role in finding MLE of the o and A parameters.




The standard way to find the maximum likelihood estimates of unknown parameters
—the arguments of a likelihood function - is to compute the first partial derivatives of the
log-likelihood function w.r.t. these parameters, and equate them to zero, while the variables
(in this case t3,...,tn), which constitute a random sample, are considered to be fixed. It should
also be checked if the likelihood function actually reaches a maximum where the derivatives
are equal to zero, but this check is often omitted. Applying this standard procedure to our

case we obtain:

9l (e Al tm)] mu(a';i“""’c’")] = g +m-in(A) + X2, In(ty + -+ t;)

—A%(ty + o F ) *In[Alty + o+ )] (8)

SInlbE At _ ST g 43y e ) €)

In order to find A and & zeroing the above derivatives we first equate the right-hand side in

(9) to zero, which yields:

 ma
i= (10)

Ey ot

Subsequently, we replace Ain (8) according to {10}, and equate the right-hand side in (8 to

zero, obtaining:

242 In(m) —m - In(ty 4+ t) + TR, (e + -+ 6) =% In(m) = 0 (11)
which yields:
4= m (12)

men(ey 4t tm) - LIS In{eg o+ ty)



Note that in order to eliminate @ in (10) it remains to substitute it according to {12).

The formulas (10) and (12) define the MLE’s based on the minimal repairs sequence.
Herein ty,...,t, denote the values of a random sample obtained by recording the respective
TTF's. Clearly, & and 1are dependent on m, but for simplicity, this is not reflected in the
notation. A natural question arises — how “good” are these estimators? Their goodness can
be judged by two criteria — the estimators’ biases and variances. The first criterion needs no
further clarification — we simply have to calculate 2 — E(1) and @ — E(&), where the
estimators are treated as random variables; the second one is explained in greater detail
below. To be more precise, In(A) and 1/« will be estimated rather than A and a, the
respective biases being In(2) — E[In(1)] and 1/a — E(1/&). The reason for this will be
given in Section 3.

In the case where the estimation is based on a random sample originating from 1.i.d.
instances of a random variable, its accuracy is usually determined by the confidence level
and the length of the confidence interval, and the sample’s size has to be sufficiently large in
order to obtain the required accuracy. As is well known, this size is related to the considered
random variable’s variance. However, in our case the T;,..., T, are not independent, have
different CDF’s, and in practice it is not possible to perform a large number of minimal
repairs on one object — often after several such repairs the object becomes unusable. For
the above reasons our parameters will be estimated by taking n identical and independent
objects, performing m—1 minimal repairs on each of them {m not being large) to obtain n
sample values of both In(4) and 1/&, and calculating the respective sample means to

approximate E[ln(i)] and E(1/&). Thus, A and A defined as follows

In(A,)+-+In(ls) R = Youto+l/on

n n

K:




where A, ..., A, and &y, ..., @,are i.i.d. instances of A and & respectively, will be used as

estimators of In(4) and 1/a. The law of large numbers yields that
A~ E(In(1)] and & =~ E(1/&),

thus our estimation task consists in approximating expected values with i.i.d. samples.
Clearly, the number n for which the required accuracy is achieved is proportional to
Var(ln(j)) or Var(1/&). it should also be remembered that & and A are biased estimators

of In(1) and 1/a. Let us note that
E(R) = E[In(1)] and E(A) = E(1/4),

thus computing the biases of A and A is equivalent to computing those of ln(i) and 1/4.
The formulas for the respective biases will be derived in the next section, while finding the

variances and confidence intervals will be the subject of further research.

3. Expressing In(A) and 1/c in terms of E[In{A}] and E(1/&), and finding the respective

biases

In the sequel the following two auxiliary lemmas will be necessary.

Lemma 2

For m>1 it holds that

k
Pr(Ty + -+ Ty, > t) = exp[—(A)%] T (“k)! - (13)




Proof

Clearly, (x+1) holds for m=1. For m>2 we have:
Pr(Ty+ + Ty St)= fmmﬂmstr(tl) (g + ot e ) f (B + o+ b)) =
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= [r(t) e fy TR (e by )P () = Fty + o+ o)y dty =
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0

We will prave that the integral in the last line satisfies the following equality:

[Fr(t) o [T bt ) diE dt, = —— (Ar)m-Da (15)
o T\t1) - Jy 1 m-1) Alm=g ... Aby =05

For this purpose let

So=0,5 =tq,., S =ty + o by

We thus have









Aya 2 = aA(Ax)*"! = Ay’ (22)

and, applying integration by substitution, we obtain

u—1)

ka ( l
u [ expl= () S0 i = [PX () L gy =

Jy vy exp(=y)dy = 2 TC+ k) (23)

T klaav

On the basis of (21) and (23) it holds that

iy T(E+k (ke
sy 0 = 25 = 2 ()4 gy T
o T(2+k
N e i) J N SN (24]

where the third equality is a consequence of the fact that vI'(v) = ['(v + 1), and the last

sum is equal to zero for i=1. Differentiating G, (1) and G, (w) with respect to u yields

610 =L (e 1)+ S0 (e )l = r (B4 1) - 20D (24a)  s)

and

a(23) . r(R+k
= (:ilf)z;‘_:ll (il )+&%E“=1 Kt

G2 (W)

(E”‘) (26)

At euadngd) wiog F(E‘rk)
- Lk Kt

a/l“ Ek

Fram the properties of the MGF combined with (25) and (26} we have






1/a - E(1/8) = m—i—;E(l/&) (31)

which yields that 1/ is an asymptotically unbiased estimator of 1/a with respect to m. The

approximate value of E(1/&) can be found based on the following formula:

E(1/&) = =+ +=)/n (32)
1 n

where, according to {12),

& = 1<j<n (33)

a, =
D men(eyjh b b )~ In(ey 44 ey)

In the above formula tyj,...,tm are the TTF's constituting the j-th element of the n-sized
random sample of the vector random variable [T,..., Ti]-

Note that 1/oc and E(1/&) are used in (31), rather than o and £ (&), as finding the
refationship between « and E (@) would require the analytical computation of
E(m/[m - In(sy) ~ 212, In(s;)]), which is impossible if only the formulas for £{In(s;)] are
known. The reason is that knowing the formula for E(X) is not sufficient to compute E{1/X].

Let us now express In(A) as a function ofE[]n(i)]. From (10} and (19) we obtain:
In(1) = ;-m(m) —In(t; + -+ ty) =
= =In(m) - 2 [["(1) + X751 1/j] + In(2) (34)
Using (30) the above formula is converted to:
In(2) = E[n(A)] —n(m) E (3) + 2 [ + 5p3td] =

- el - e (3)+ 5 () [ + 2] -

-1






The fact that the estimators In(1) and 1/& are asymptotically unbiased with respect
to m has rather theoretical significance, as in practice m is not large enough for these

estimators to be close enough to In(A) and 1/c.
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