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Abstract 

This paper presents an attempt to model the variability of certain environmental factors, such 

as wind force or water flow rate, by a semi-Markov process with finite state space. The model 

is based on the following premises . First, the range of possible values of a given factor is 

divided inio a finite number of subintervals. Second, it is assumed thai the length of time 

during which the factor's value remains within one such interval, and the probabilities of 

transitions to neighboring intervals, depend on the factor's earlier behavior. The model's 

accuracy is determined by the number of subintervals and the assumed degree of the factor' s 

dependence on its bistory (the number of previously entered subintervals relevant to 

predicting the factor's future behavior). According to the presupposed accuracy level the 

adequately complex state-space and the inter-state transitions diagram of the modeling 

process are constructed. Subsequently, it is demonstrated how certain parameters of thai 

process, thai can be used in power generation forecasting, can be calculated by means of the 

Laplace transform calculus. 

I. lntroduction 

There exist a considerable number ofmodels for predicting natura! phenomena. Due to 

their nature, such phenomena can only be predicted with greater or smaller degree of 

uncertainty, hence their modeling is based on various mathematical ways of expressing non­

deterministic, uncertain information. Admittedly, there are deterministic models used e.g. in 

weather forecasting, based mainly on systems of partia! differentia! equations, but their 

implementation requires a substantial amount of computing power and memory space. In 



addition, they are only suitable for short term prediction - covering a period of up to one 

week. Therefore non-deterministic prediction offers a plausible alternative to the deterministic 

one, as being not much less accurate - as long as certain average values are calculated over 

medium or long time periods, and significantly less resource consuming. Traditionally, 

prediction of the former type is carried out with the use ofprobabilistic or statistical tools (cf. 

[2] , (3], [5], (8], [9]) however methods employing fuzzy logic, theory of possibility, neural 

networks or wavelet theory are becoming increasingly popular in recent years (cf. [4], [6]). 

An overview of forecasting methodology is presented in Fig. I. 

This paper is concerned with the issue of medium or long term forecasting of the 

behavior of renewable energy sources, such as wind or flowing water, based on probabilistic 

modeling. The short-term forecasting is not addressed herein, as a plethora of well-established 

methods have been developed for this purpose (e.g. deterministic modeling, time series 

analysis). A novel stochastic model is presented to describe the variability of a given factor 

over time. Fluctuations of the factor's value are described by a stochastic process with a finite 

state space. In order to construct this space, the range of possible values is divided into a finite 

number of subintervals (e.g. corresponding to energy production levels) denoted !1, .. ,,Im. It is 

assumed that the length of time during which the factor's value remains within one such 

interval, and the probabilities of transitions to neighboring intervals, depend on the factor's 

earlier behavior, i.e. on the sequence of intervals in which the factor's value had stayed before 

it entered the current interval. The model's accuracy is determined by the total number of 

intervals (111) and the assumed degree of the factor's dependence on its bistory (d) defined as 

the number of previously entered intervals relevant to predicting the factor's future behavior. 

A state of the process is determined by the cunent interval and d previously entered ones, thus 

it incorporates information essential to the future evolution of the factor's value. Further 

details are given in the next chapter. 
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Fig. I. An overview of forecasting methodology 

2. The proposed model in detail 

As it is assumed that the time during which the wind speed remains in an interval I, 

and the number of the next interval (it can be either x-1 or x+ I), depend on the order of same 

previously entered intervals, the wind speed changes can be modeled by a semi-Markov 

process with properly constructed state space Z={z1,- .. ,z11 }. To each interval lx there 

correspond a number of states in Z, where such a state contains information about the 

intervals entered by the wind speed before it reached lx- The number of previously entered 

intervals taken into account in constructing the state space Z is proportional to the model's 

3 



degree of accuracy. In consequence, if we neglect the degenerate case "m=2", the cardinality 

of {z1, ... ,z11 } exceeds that of {Ii, ... ,I 111 }, so that n> m. 

If the first degree of dependence is assumed, the future wind speed values depend on 

whether the speed recently increased or decreased, i.e. whether the previous interval was fx. 1 

or lx,1, Ix being the cmTent interval. The state space of the modeling process is composed of 

n= 2m - 2 states denoted 21 , ... ,Zzm- 2· An even-numbered state is entered if the speed 

increases, and an odd-numbered one - if it decreases. Thus if lx-i and lx are the previous and 

current intervals, then the process is in the state z2,-2; if the respective intervals are łx+ 1 and lx, 

then the process is in the state z2,- 1. Fig. 2 represents the considered state space along with 

possible inter-state transitions for 111=6. 

Fig. 2. The state space architecture for the first level of accuracy and 111=6 

If the second degree of dependence is adopted then future wind speed values depend 

not only on the recent, but also on the preceding speed change, i.e. the last two speed intervals 

are taken into account. The state space of the modeling process is now composed of 4m - 6 
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states which are divided into four groups: G1 = {z1, Z3, Z6, z10, ... , 24111_14}, G2 = {z2, 24, Z7, 

Z11, ... , 24111-10}, 03 = {zs, Zg, Z12, ... , 24111-9, 24111-1}, G4 = {29, Z13, ... , 24111-8, 24111-6}- The states in 

the first group are entered if the speed decreases twice; in the second - if the speed first 

increases and then decreases; in the third - if the speed first decreases and then increases; in 

the fourth - if the speed increases lwice. Fig. 3 represents the considered state space along 

with possible inter-state transitions for m=6. 

Fig. 3. The state space architecture for the second level of accuracy and m=6 

Let Z= {Z,, t?:0} be the stochastic process with the state space {z1, ... ,211 }, modeling 

the wind speed variability. As Z is assumed to be semi-Markov, the following objects have to 

be defined: 

X= {Xk, k?:0} - the embedded Markov chain of Z, i.e. Xk is the state of Z at the moment of 

its k-th state change (Xo is the initially observed state of Z). 
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P = (pij] ij~l ..... n - the transition matrix of X, i.e. Pij= Pr(Xk = Zj I Xk- l = Zi), It is assumed that P 

is the same for every k, i.e. X is homogenous. 

Tk - the moment of the k-th state change of Z 

Sij - the time spent by Z in the state Zi provided that the next state is Zj 

Fij - the distribution function of Sij, i.e. 

P and Fij can be obtained from the statistical analysis of wind speed records. For example, in 

the case of Z with the state space shown in Fig. I we have: 

o 1 o o o o o o o o 
P21 o o P24 o o o o o o 
P31 o o p34 o o o o o o 
o o p43 o o P46 o o o o 

P= o o p53 o o Ps6 o o o o 
o o o o P6s o o P6s o o 
o o o o p75 o o P1s o o 
o o o o o o Ps7 o O Ps,10 
o o o o o o p97 o O P9,10 

o o o o o o o o 1 o 

where Pii=O and Pil + ... +Pin= I for i=!, ... ,n - an obvious condition for a transition matrix. 
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Remark: In generał case the probability of transition from z; to Zj depends on the amount of 

time spent in z; , thus 

may hold for u:;tt. The precise definition of Pij should therefore be as follows 

to underscore the fact that Pij is the probability of transition from z; to Zj if no information 

about the sojourn time in z; is available. However, the event {Tk - Tk- 1 < oo} is irrelevant to Pij 

as expressed by (3), because Pr(Tk - Tk- J < oo) = 1. It should be noted that this remark pertains 

to all semi-Markov processes. 

3. Equations for parameters characterizing the wind turbine power output 

The model constructed in the previous section 1s useful for determining many 

parameters that characterize the wind power production process, especially for predicting 

their future values. For example, it is possible to forecast the total expected energy output 

during a given time period, the probability that during that period the wind speed will remain 

within certain limits, or the expected number of times it will cross these limits. It will now be 

shown in detail how to determine the first parameter. Let it; be the power generated when Z is 

in the state z; , i.e . when the wind speed remains in the respective interval. Let G;(u,t) be the 

expected value of the energy produced in the time interval [u,t], provided that at the moment u 
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the process Z enters the state z;. It can be easily shown that G;(O,t), i=l, ... ,n satisfy the 

following set of equations: 

lndeed, taking into account that 

the first component on the right-hand side of (4) is related to the energy produced in the [O,t] 

time interval, provided that no state change occurred from O to t. In tum, the second 

component is related to the energy produced in that interval, provided that the first state 

change occurs at u :5 t. 

Being a semi-Markov process, Z "forgets" its bistory at each state change, so that 

G;(s,t) = G;(O,t- s), i=l, ... ,n. In consequence (4) transforms to: 

Note thai 

where E denotes the expected value, hence (7) can be written in the following compact form: 
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where 

(9) Hij(t) = E[min(S;j,t)] 

As (8) is a system of integral equations, the transform calculus can be used to find its solution. 

Let 

where L and L* denote Laplace and Laplace-Stieltjes transforms respectively, and f;j is the 

probability density function of Sij . From the basie properiies of the Laplace transform it 

follows that 

(11) lJl;j(s) = (1- <J:>ij(s)]/s2 

Applying L to both si des of (8) we obtain: 

Note that the integral in (8) is the convolution of Gj and f;j, which, after applying Laplace 

transform, becomes the product of rj and <l>ij- As (12) is a system of linear algebraic 

equations, it can be presented in the following matrix form: 
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where the elements of A(s) are given by: 

4. Determining the sought parameter from the obtained equations 

A closed-form solution of (13) should express f";, i=l, ... ,n in terms of n;, Pij, <P;j, and 

4';j , i,j=l , ... ,n. However, it is practically impossible to find sucha solution in generał. For 

example, in case of the system with the state space showu in Fig. I we have the following 

matrix A(s): 

1 - <P.,(s) o o o o o o o o 
-p21 <Ą,(s) 1 o -p,. <P,. (s) o o o o o o 
-p31 </131 (s) o 1 -p,. <1,,. (s) o o o o o o 

o o -p43 <1143 (s) 1 o -P•• <P .. (s) o o o o 
o o -p53 </Js, (s) o 1 -p,. </J,.(s) o o o o 
o o o o -P•s <1,., (s) 1 o -p•• <P•a(s) o o 
o o o o -p,, <P,s(s) o 1 -p,a</J,a(s) o o 
o o o o o o -pa, </Ja,(s) 1 o -Pa.to <Pa.10Cs) 
o o o o o o -p.,<P,,(s) o l -p9_10</>9.IO(S) 
o o o o o o o o - <1'10 .• (s) 1 

As A is a sparse matrix (in this case a tri-diagonal one), the equation (13) can be solved by 

Gauss elimination (GE) with !ower than maxima! complexity which is O(n3). However, even 

applying the Thomas algorithm (a simplified form of GE especially designed for tri-diagonal 
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matrices) to the above given A, results in very complex closed formulas which for greater n 

are practically impossible to derive. 

As follows from the above considerations, (I 3) has to be solved numerically rather 

than analytically. For example, it is possible to find f;(s) for a number of discrete values of s 

along a vertical line in the complex space, thus obtaining data which allow to compute G;(0,t) 

by numerical integration using the following well-known formula for the reverse Laplace 

transform: 

Here, x is the point where the vertical line crosses the real axis. 

Other parameters, e.g. the probability that during a given time period the wind speed 

will remain within certain limits, or the expected number of limes it will cross these limits, 

can be found in a way similar to that described in the last two chapters. 
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