
Raport Badawczy

Research Report
RB/18/2011

Determining s-t and K-terminal
path sets and cut sets

in graph-modeled networks
by a unified approach

J. Malinowski

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

01-447 Warszawa

tel.: (+48) (22) 3810100

fax: (+48) (22) 3810105

Kierownik Zakładu zgłaszający pracę:
Prof. zw. dr hab. inż. Olgierd Hryniewicz

Warszawa 2011

l. lntroduction

The current paper presents a set of algorithms for fin ding minimal path and cut sets of

various types in graph-structured networks (computer, telecommunication, transportation,

etc.) Those sets are crucial in reliability analysis of network systems. The presented

methodology is based on the construction of the acyclic paths tree, where each path

connects two nodes of the considered network. Based on this tree the s-t minimal paths are

readily obtained, and after minor transformations the so-called simplified fault tree is

constructed from which the s-t minimal cuts are determined. In consequence, we have a

common starting point for finding both the s-t path and cut sets, while many existing

algorithms use very different approaches for paths and cuts. Apart from that, fairly simple

methods are demonstrated allowing to obtain K-terminal (all-terminal) minimal paths or cuts

from s-t minimal paths or cuts respectively. lt is important that all path or cut sets can be

composed of both nodes and links, while many known algorithms do not take node failures

into account. Furthermore, the presented methods can be applied both in the case of

directed and undirected lin ks. Thus we have a coherent set of procedures for determining

essential network reliability characteristics, founded on a common basis and with a wide

a rea of applicability

A network under consideration will be modeled by a graph denoted as['= (V,E1,E2),

where V= {v1, ... ,v0 } is the set of vertices which represent the network's nodes, E1 -the set of

directed edges which represent one-way links, E2 -the set of undirected edges which

represent two-way lin ks. A directed edge can be regarded as an ordered pair of vertices,

whi le an undirected one-a set of two vertices. lf all edges are directed then E2=0, ifthey

are undirected then E1=0. An ordered set of components (v;(i), ei!l), V;(2), eH2), .. ,, ej(k-l),vi(k))

such that v;(i)=v, V;(kl=w, and eHhl is the directed edge (v;(hJ,V;(h+1J) or the undirected edge

{v;(h),Vi(h+lll, is called a path from v to w. A loop-free path will be called acyclic. Let ~and •

be relations in the set V defined as fellows: v~w or v• w if there exists a path from v to w

such that all respective nodes and links are operable; the former relation is applicable if

E1=0 (all edges are undirected), the latter- if Ert0 (some edges are directed}. Clearly, both

relations are transitive, and"~" is symmetric, unlike "•".

1

A set of nodes and links, such that it contains (is) an acyclic path from a source node

v, to a terminal node v, will be called a (minimal) s-t path. An s-t path set is minimal if none

of its subsets is an s-t path set. Clearly, there is a connection from v, to v, if and only if all

components in at least one minimal s-t path are operable.

A set of nodes and links such that it contains at least one component of each minimal

s-t path set will be called an s-t cut set. An s-t cut set is minimal if none of its subsets is an s-t

cut set. Clearly, there is no connection from v, to v, if and only if all components in at least

one minimal s-t cut set are failed. Apart from s-t path and cut sets, the so called K-terminal

path and cut sets are also considered in this paper. Their definitions will be given in chapters

4 and 6.

2. Generating all minimal s-t path sets

In this chapter a well-known method offinding all minimal s-t path sets, based on the

breadth first search algorithm, is described. lt consists in constructing the tree of acyclic

paths, denoted as T,_1 , connecting two distinguished vertices of r - the source vertex v, with

the terminal vertex v,. As in generał r has directed edges, it is important which of the two

vertices is the source, and which the terminal one. The rules for constructing T,_, are very

simple. To the nodes and lin ks of T,_, the vertices and edges of r are assigned. To the root

node of T,_, the source vertex v, is assigned. To each other node VET,_, are assigned those

vertices of G directly reachable from v, which in T,-t are not located between the root node

and v. lf v=v1 or v has no chi Id nodes then vis a leaf node. A path which connects v, to a leaf

node other than v1 will be called a dead-end path . Clearly there is one-to-one

correspondence between all paths in T,_1 beginning at v, and ending at v,, and all minimal s-t

path sets ensuring a connection from v, to v,. For illustration, an exemplary network

structure is presented in Fig.1, and the tree of acyclic paths connecting A with F - in Fig.2.

Note that C, although it is not a terminal vertex, is a leaf node ofTA-f, and {A, 1, B, 4, D, 6, C}

is a dead-end path.

2

B 5 E

1 9

A 3 4 7 F

2 8

C 6 D

Fig.1 An exemplary network structure

A

/~
B C

/~ I\
C D E B D

/~~ł\~
DE FCFDEEF

/1 I /1 I I
EF F EFFF

I I

Fig. 2. The tree of acyclic paths from A to F for the network in Fig.1

Analyzing Fig. 2 we obtain the following A-F minimal path sets :

P1 = {A,1,B,3,C,6,D,7,E,9,F}, P2 = {A,1,B,3,C,6,D,8,F}, P3 = {A,1,B,4,D,7,E,9,F},

P4 = {A,l,B,4,D,8,F}, Ps = {A,1,B,5,E,9,F}, PG= {A,2,C,3,B,4,D,7,E,9,F},

P7 = {A,2,C,3,B,4,D,8,F}, Ps = {A,2,C,3,B,5,E,9,F}, Pg = {A,2,C,6,D,7,E,9,F},

P10 = {A,2,C,6,D,8, F}

3

3. Generating all minimal s-t cut sets

In this chapter a new efficient method of finding all minimal s-t cut sets is presented.

lt uses the already constructed tree of minimal s-t paths, which after minor modifications is

transformed into a fault tree wherefrom s-t cuts are obtained. Proceeding to the details, let

cD(x1, ... ,xn) be the Boolean function equal to 1 if the re is no connection from v, to v1 , or to O

otherwise. The variables x1, . . . ,Xn represent reliability states of respective components, i.e.

X; = 1 if the i-th component is failed, X;= O otherwise. For each node v let

where i(u) is the index of the f''s element (vertex or edge) assigned to ueT,-, , and L(v) is the

set of all nodes weT,_1 fulfilling the following conditions:

1) V< W

2) w has more than one child link or w is a leaf node

3) if u is a node (link) such that v <u< w then u has only one child link (node)

Obviously, if vis a leaf node, the n L(v) is empW and cDv(x1, ... ,Xn) = X;(vl• lt can be easily shown

that

where r is the root node of T. Based on (2.1) and (2.2), the tree of acyclic paths can be easily

transformed into a fault tree by placing an OR gate directly above the root node, an AND

gate directly below each node having more than one child node, and a number of OR gates

directly below each AND gate - one OR gate per each child node. The rules for constructing

OR gates are the following:

1) a leaf node v plus all elements located between v and the lowest AND gate above v

become inputs to the respective OR gate;

2) if AND gates Gx and Gy are in the parent-child relation (there areno AND gates between Gx

and Gy), then Gy plus all elements located between Gx and Gy become inputs to the

respective OR gate;

4

3) the top AND gate and all elements located above it become inputs to the top OR gate.

Thus obtained fault tree can be reduced to a simpler form by making OR gates default, i.e.

not placing them in the fault tree diagram. In consequence, the simplified fault tree is

isomorphic to the acyclic paths tree, whereas its analysis can be performed in the same way

as if OR gates were present. In Fig. 3 a simplified fault tree obtained from the acyclic paths

tree in Fig. 2 is presented.

C

G, 0 -1\
C D E B D

__ D/ A l GsT~ ~
G3~ J E F D E E F

t ~ l A l i
I E F

I

Fig.3. The simplified fault tree obtained from the acyclic paths tree in Fig.2

Once the system's fault tree is constructed it can be used to determine all minimal s-t

cut sets of that system. For this purpose the following Boolean expression is defined for each

AND gate:

(2.3) ct>(G) = 4\(G) /\ ... /\ 4'H(G)(G)

where G denotes the considered gate, H(G) is the number of OR gates placed immediately

below G, and 4'h(G) is the expression for the h-th OR gate, 1 $ h $ H(G). The expression for

an OR gate is the sum of all its inputs. For example, referring to Fig. 3, we have:

5

<!J(G1) = 't'1(G1) A 't'2(G1) A 't'3(G1),

't'i(G1) = X3 V Xe V X6 V Xo V <!J(G3)

't'2(G1) = X4 v Xo v <!J(G4)

't'3(G1) = Xs V XE V Xg V Xr

The expression for AND gates are found recursively, starting from bottom level gates,

passing through intermediate levels, until the top AND gate is reached. E.g., for the fault tree

in Fig.3, first the expression for G7 (third-level gate) is found, then the expressions for G3, G4,

Gs, G6 (second-level gates), then the expressions for G1, G2 (first-level gates), and finally the

expression for G0 (zero-level or top gate).

Clearly, if Gis an AND gate, then <!J(G) is a sum of products. Let J(TI) denote the set of

indices of the factors of a product TI, e.g. J(x1x3x6) = {1,3,6). lf J(TI) is a cut set then TI will be

called a cut set product. As follows from the principles of fault tree analysis, the expression

for the top OR gate, after removing all redundant products (a product is redundant if it

includes all variables of any other product in the same expression), corresponds to the family

of all minimal s-t cut sets, which will be denoted by L. For example, the expression for the

top (default) OR gate in Fig. 3 is equal to xA v <!J(G0).

However, in order to generate the list Lit is not necessary to include in the

expressions for AND gates all cut set products obtained at the !ower levels. Those products

can be removed as soon as they occur, and the respective cut sets added to L (provided they

are not redundant), due to the following proposition:

Proposition 1

lf G is an AND gate, and <!J(G) contains a cut set product TI, then in each AND gate

located above G the product TI is expanded to the product p such that J(TI)~J(p) .

Proof: lndeed, the above proposition holds true, as constructing the expressions for gates

located above G involves multiplying TI by at least one variable.

Let <!J*(G) be the expression obtained by removing from <!J(G) all cut set products,

and 't'*h(G) - the expression for the respective OR gate, in which <!J is replaced by <!J* for the

6

respective child AND gate of G (if any) . In view of Proposition 1, the list L can be generated

by means of the following procedure:

1. L=0.

2. For each successive AND gate G do:

calculate the expression 'l'*1(G) A ... A 'l'*H!GJ(G) and search it for products corresponding

to cut sets;

add new minimal cut sets to L;

assign to G the expression <ll*(G) obtained by removing from 'l'*1(G) /\ ... /\ 'l'*H(GJ(G) all

products which correspond to cut sets

Thus constructed procedure is highly efficient, because products which correspond to cut

sets are not passed from lower to high er level gates.

Before proceeding to the detailed presentation of the above outlined procedure, two

auxiliary lemmas will be formulated. The first lemma states that a different sums which are

in inclusion relation for detecting redundant products - they are irrelevant for an

expression being a sum of products, and hence can be removed from it. Clearly, shorter

expressions make the procedure run faster.

Lemma 1

Let 51 = TI1V ... VTig, S2=p1v ... v ph

lf l(TI;) c l(pi) for some 1 i g, 1 $ j $ h, then (TI1V ... VTig) Pi= Pi

lf l(TI;) ::i l{pi) for some 1 i g, l $ j $ h, then = TI; (p1v ... v ph) = TI;

lf l(TI;) = l(pi) for some 1 i g, 1 $ j $ h, then = TI; (p1v ... v ph) = (TI1V ... VTig) Pi= TI;

Proof: To prove the first implication it is sufficient to note that l(TI;) c l(pi) implies TI; Pi = Pi ,

hence (TI1 v ... v Tig) Pi= (TI1 v ... v TI;-1 v 1 v TI;+1 v ... v Tig) Pi= Pi. The remaining two

implications are proved similarly.

7

The second lemma shows how to check whether a product corresponds to an s-t cut set.

Lemma 2

Let Q(i) be the set of numbers of these minimal s-t path sets which canta in e;, i.e.

(2.5) Q(i) = U: ei E lj}

A product rr = /\,El (rr) xi corresponds a cut set if and only if

(2.6) LJiEl (rr) Q(i) = {1, ... , W}

Proof: (2.6) is fulfilled if and only if each minimal s-t path set contains at least one element of

l(n), which is equivalent to l(n) being a cut-set (not necessarily minimal).

Based on the above premises, a procedure creating the list of all minimal s-t cut sets

can naw be presented in detail. lts employs an algorithm, run repeatedly for each AND gate

of the simplified fault tree, starting from bottom-level gates, passing from lower to higher­

level gates, and ending at the top-level gate. This algorithm is composed of two fragments.

In the first one it is checked whether products from different inputs to a gate G (OR gates

located immediately below G) are in inclusion relation (cf. Lemma 1), and the expression

from which <l>*(G} will be obtained is constructed (this expression may stili contain cut set

products). Be low the pseudo-code for this fragment is given.

8

Algorithm 1 (first part)

<D*(G) +- S1(G)

<Daux +- 0

for h +- 2 to H(G) {

for ree<D*(G) {

for peSh(G) {

if l(p) c l(re) then move re from <D*(G) to <Daux

if l(re) c l(p) then move p from Sh(G) to <Daux

if l(re) = l(p) then move re from <D*(G) and Sh(G) to <Daux

}

}

fo r ree<D*(G) {

for p e Sh(G) {

add rep to <Daux

<D*(G) +- <Daux

<Daux +- 0

In the second fragment it is checked for each ree<D*(G) whether re corresponds to a cut-set

(cf. Lemma 2). lf not, then re remains in <D*(G), otherwise re is removed from <D*(G) and

compared with each pel. lf J(p) c J(re) for some pel then re is not a minimal cut-set and is

not added to L. if J(re) c J(p) for same p e l then pis not a minimal cut-set and is removed

from L. lf J(re) does not include any J(p), pe L, then re is added to L. Thus it is guaranteed that

L will consist of all and only minimal cut-sets after the procedure is run for the top AND gate

(excluding one-element cut sets corresponding to components located between the top OR

9

and top AND gates). Moreover, no two cut sets in L will be identical. Below the pseudo-code

for this fragment is given.

Algorithm 1 (second part)

for rrE<l>*(G) {

if J(rr) is a cut set then {

remove rr from <l>*(G)

X +---1

forpEL{

if J(p) i;;; J(rr) then {x +- O; break}## J(rr) is not a minimal cut set or rr is already in L

if J(rr) c J(p) then remove p from L ## J(p) is not a minimal cut set

if x = 1 then add J(rr) to L

In order to create the full list L, the above algorithm is run for all AND gates, starting

from those located at the lowest level, passing from lower to higher levels, and ending at the

top AND gate. Next, one-element cut sets -the components being the inputs to the top OR

gate are added to L. Prior to running Algorithm 1 for the first AND gate the list L must be

empty.

For illustration and better understanding let us find all minimal s-t cut sets for the

network in Fig. 1, assuming that s=l, t=9, and only the links are failure-prone (the nodes do

not fail therefore they are not cut sets' elements). Applying the presented method to the

fault tree in Fig. 2 we obtain:

<l>**(G1) = (xg V X7) Xs = XgXs* V X7Xg; <l>*(G1) = X7Xg; L = {9,8}

<!>**(GG)= (Xg V X7) Xs =~V X7Xs; <l>*(GG) = X7Xs

<!>**(Gs)= (<l>*(G7) V X4](X9 V Xs] = X7XsX2 V X7XgX5* V X4X9 V X4X5; <!>*(Gs)= X4X9 V X4X5;

L = {9,8}, {7,8,S}

<l>**(G4) = (xg V X7) Xs =~ V X7Xs; <l>*(G4) = X7Xs

10

(J)**(G3) = (Xg V X7) Xs =~V X7Xs; (J)*(G3) = X7Xs

(j)**(G2) = [(J)*(Gs) V X3](<l>*(G5) V X5] = ~.1_~9 X7 Xs V X4 X5 X7 ~ V X4 Xg X5* V X4 Xs X5* V X3 X7 Xs V

X3X5; (J)*(G2) = X3X7Xs V X3X5; L = {9,8}, {7,8,5}, {4,9,6}, {4,5,6)

(J)**(G1) = [(J)(G3) V X5 V X3]((J)(G4) V X4](X9 V Xs] = (X1Xs V X5X4 V X3X4){X9 V Xs) = X7Xs~ V

~L~~~ V X5X4 Xg V X5 X4X5 V X3 X4X9 V X3 X4X5; <!J*(G1) = X3 X4 Xg V X3 X4X5;

(J)**(Go) = [(J)(G1) V X1][(J)(G2) V X2) = J<;L¼X9h)(g V J<;LX4¼X6 V X3X4X5X7Xs V l<;L¼XsX6 V

X3X4X9X2* V X3X4X5X2* V X1X3X7Xs* V X1X3X5* V X1X2*; (J)*(Go) = 0;

L = {9,8}, {7,8,5}, {4,9,6}, {4,5,6}, {3,4,9,2), {3,4,5,2), {1,3, 7,8}, {1,3,6}, {1,2}

The underscored products correspond to redundant cut-sets (a cut set is redundant if it

includes or is equal to another cut set on L), therefore they are removed from G, the ones

marked with an asterisk correspond to non-redundant cut sets, thus they are moved from G

to L. lf nodes' failures were taken inte account, all calculations would be carried out in the

same way as above, however, they would be more com pl ex and the obtained cut sets would

also include nodes.

Using the above example Algorithm 1 was compared to other known methods of s-t

cut sets generation, e.g. Abel and Bicker [1] or Arunkumar and Lee [2], or those surveyed or

presented in recently published literature, e.g. [6], [8], [9], and it proved to be faster.

Besides, Algorithm 1 can be applied in the same form to directed, partly directed, or

undirected graphs. Moreover, it can generate cut sets including both vertices and edges,

while most existing methods are limited to cut sets composed of edges alone - node failures

are not taken inte account, which is unacceptable from the practical point of view. lt should

also be noted that the algorithm is particularly useful when both paths and cut sets are to be

found, as it is based on the acyclic paths (minimal paths sets) tree.

4. Generating all minimal K-terminal cut sets

AK-terminal cut set is sucha set C of the considered network's components, that the

failure of all elements in C causes a disconnection between the nodes of a set U~V, i.e. there

exist nodes VE U and WE U such that the re is no connection from v to w. A K-terminal cut set

is minimal if none of its subsets is a K-terminal cut set. In this chapter a simple method of

11

finding all minimal K-terminal cut sets will be presented . This method assumes that the

minimal s-t cut sets for some node pairs (v1,v2) are known, and is based on the following

lemmas:

Lemma 1

lf r is undirected then all nodes in U,;;;V are connected if and only if v~w for any ve U and

each we U such that W7'V.

The,,=>" implication is obvious, it thus remains to prove the,,<=" implication. Let us take

two arbitrary nodes W1E U, W2EU such that w1 * v, w2 * v. By assumption, v~w1 and v~w2,

thus symmetricity of the,,~" relation implies that w1~v, hen ce w1~v~w2. The,,~" relation is

transitive, therefore w1~w2, which completes the proof.

Lemma 2

lf r has directed edges then all nodes in U={v1, ... ,vk},;;;V are connected if and only if v1• v2,

Proof:

Lemma 2 is a direct consequence of the transitivity of the"•" relation.

Let r be an undirected graph, v and w - arbitrary nodes of r, q(v,w) -the number of

minimal s-t cut sets separating v from w, and Ci(v,w) - the j-th such cut set, 1 $ j $ q(v,w). By

definition, let

where X;, 1 $ i$ n represent the components' reliability states X;= 1 if the i-th element is

failed, X; = O if it is operable. Clearly, <Dv-w is a Boolean function equal to 1 if there is no

connection between v and w, otherwise <Dv-w is equal to O. Based on lemma 1 we can

formulate the following proposition

12

Proposition 1

Let U={v1, ... ,vk} be a subset of V. U is disconnected if and only if

(4.2) <l>v,~vz V .. . V <l>v,~v• = 1

Proof: Lemma 1 yields that U is disconnected if and only if a node in U is disconnected from

one of the remaining nodes in U, i.e . the equality (4.2) holds.

From (4.2) it follows that the list Lu of all minimal K-terminal cut sets separating the

nodes of U={v1, ... ,vk}s::;V is the union of the lists L1-2, -- -,L1-k with redundant cut sets removed,

where L1-; is the list of all minimal s-t cut sets separating v1 and v; , 1 !>i!> k. Thus we obtain a

sim ple algorithm to generate Lu.

Algorithm 2

Lu = L1-2;

for i=3 to k

for j=l to q(v1,v;)

forC ELu{

if Cs::; Cj{v1,v;) then continue;

if Ci(v1,v;)s::;C then {replace C with Ci(v1,v;); continue}

Lu = Cv Ci(v1,v;)

The "if" commands in the innermost "for" loop safeguard against adding redundant cut sets

to Lu.

Example 2

Let us consider the network depicted in Fig. 4 with U={A, B, C}. Applying Algorithm 1 we

obtain the following lists of minimal s-t cut sets :

LA.B = {1,2}, {1,3,4}, {1,3,5}

LA.C = {1,2}, (2,3,4}, (2,3,5}

13

The above lists serve as input data for Algorithm 2 which yields:

Lu= {1,2}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}

B

A D

C

Fig. 4. A network structure with undirected links

Let naw r be a graph with directed edges. By definition, Jet

where the symbols used in (4 .3) have the same meanings as those used in (4.1). However, it

should be noted that for a graph with directed edges q(v,w) * q(w,v}, Cj(v,w) * Ci(w,v}, or

<Dv• w c/c <Dw• v may hold . Clearly, <Dv• w is a Boolean function equal to 1 if the re is no

connection from v to w, otherwise <l)v• w is equal to O. Based on lemma 2 we can formulate

the following proposition

Proposition 2

Let U={v1, .. . ,vk} be a subset of V. U is disconnected if and only if

Proof

Lemma 2 yields that U is disconnected if and only if at least one link in the connections cycle

v1• v2• ... •vk•v 1 is failed, i.e. the equality (4.4) holds.

14

In view of (4.4} the list Lu of all minimal K-terminal cut sets separating the nodes of

U={v1,, .. ,vk}~V is the union of the lists L1• 2 , L2• 3 , ... , Lk-l• k, Lk• l, with redundant cut sets

removed, where L;• i is the list of all minimal s-t cut sets separating v; from vi. Thus we obtain

the following algorithm to generate Lu.

Algorithm3

for i=l to k-1

for j=l to q(v;,V;+1l

forCELu{

if C~ Ci(v;,V;+1l then continue;

if Ci(v;,V;+1}~C then {replace C with Ci(v;,V;+1); continue}

Lu= Cv Cj(V;,V;+1)

Example 3

Let us consider the network depicted in Fig. 5 with U={A, B, C}. Applying Algorithm 1 we

obtain the following lists of minimal s-t cut sets:

LA• B = {1,2}, {1,3}

LB• C = {1,4}, {1,5}, {2,4}, (2,5}

Lc• A = (2,3), {1,2}

The above lists serve as input data for Algorithm 3 which yields:

Lu= (2,3}, (1,2}, {1,3}, (1,4}, (1,5}, {2,4}, (2,5}

15

B

A D

C

Fig. 5. A network structure with directed links

5. Generating minimal cut sets of other types

In practice cut sets of typ es other than s-t or K-terminal can be encountered. For

example a network administrator may want to divide a complex network into a number of

fragments such that unrestricted communication is possible within each fragment, but

certa in restrictions are imposed on inter-fragment communication . In order to illustrate such

a problem let us consider the following example.

Example 4

Four LANs (loca I a rea networks) denoted by A, B, C, D are connected by three routers

denoted by P, Q, R by means of nine router-to-network interfaces denoted by l, ... ;9, as

shown in Fig. 6.

R

Fig. 6. An exemplary network environment

16

The considered network can be modeled by a bipartite undirected graph with {A,B,C,D} and

{P,Q,R} as the sets of nodes and (1, ... ,9} as the set of edges. Let us assume that the network

administrator has to choose interfaces on which traffic filtering has to be performed in order

to check data sent between two groups of LANs - first consisting of A and B, and second - of

C and D. This problem can be formulated in terms of cut sets in the following way: assuming

that only the interfaces (edges) are subject to failure find all cut sets separating A and B from

C and D, but not separating A from Bor C from D. Clearly, such cut sets are neither of s-t nor

of K-terminal type . The Boolean function corresponding to the family of thus defined cut sets

has the following form :

where <l>v~w are defined by (4.1). The arguments of <l> are the varia bies x1, ... ,x9, where X;= 1 if

the i-th interface is failed, x; = O otherwise, 1 si s 9. Let us note that

(5.2) ,A~c /\ ,A~o /\ A~s • .s~c /\ .s~o

thus <l> can be written in the simpler form:

where <l>' v~w is obtained from <l>lf'"w by removing products which correspond to cut sets

separating A from Bor C from D - due to the last two factors such products cannot be <l>'s

components. We have

(5.4) L'A-c = L'A-o = {1,3,6,7}, {2,4,5,6}, {5,6,7}

where L' A-c and L' A-o correspond to <l>' A-c and <l>' A-o respectively, thus the list corresponding

to <l>' A-c A <l>' A-o is equal to L' A-c, hen ce it does not contain cut sets separating A from Bor C

from D. In consequence L corresponding to <l> is given by

17

(5.5) L = L'n = {1,3,6,7), {2,4,5,6}, {5,6,7}

6. Generating all minimal K-terminal path sets

A K-terminal path set is such a set P, composed of elements of a considered network,

that if all elements in P are opera ble then each two nodes v and w belonging to a set U,;;;V

are connected, i.e. there exists a connection from v to w. AK-terminal path set is minimal if

none of its subsets is a K-terminal path set. In this chapter efficient methods of finding all

minimal K-terminal path sets will be presented

Let ['bean undirected graph, v and w - arbitrary nodes of[', r(v,w) - the number of

minimal s-t path sets separating v from w, and Pj(v,w) - the j-th such cut set, 1 :5 j :5 r(v,w). By

definition, let

() _ r(v,w)
(6.1) 0v-w yi, .. ,,yn - vj=l /\iePj(v,w)Yi

where y;, 1 :5 i :5 n represent the components' reliability states; y; =1 if the i-th component is

operable, y; =O if it is failed. Clearly, 0v~w is a Boolean function equal to 1 if there is a

connection between v and w, otherwise 0v~w is equal to O, Based on lemma 1 we can

formulate the following proposition:

Proposition 3

Let U={v1, .. ,,vk} be a subset of V. U is connected if and only if

Proof: Lemma 1 yields that U is connected if and only a node in U is connected to each of the

remaining nodes in U, i.e. the equality (6.2) holds.

From (6.2) it follows that the re is one-to-one correspondence between the expression on

the left-hand sicie of (6.2), brought to the form of a sum of non-redundant products, and the

18

list of all K-terminal path sets connecting the nodes of U. The algorithm generating this list is

presented in extenso in []. lt should be noted that it employs certain techniques, developed

by the author of[], which make it highly efficient.

Let naw f' be a graph with directed edges. By definition, let

() 0 () _ r(v,w)
6.3 v~w Y1, .. ·,Yn -Vj=l AiEPj(v,w)Yi

where the symbols used in (6.3) have the same meanings as those used in (6.1) . However, it

should be noted that for a graph with directed edges r(v,w) * r(w,v), Pi(v,w) * Pi(w,v), or

0v• w * 0w• v may hold. Clearly, 0v• w is a Boolean function equal to 1 ifthere is a

connection from v to w, otherwise <Dv• w is equal to O. Based on lemma 2 we can form u late

the following proposition

Proposition 4

Let U={v1, ... ,vk) be a subset of V. U is connected if and only if

Proof: Lemma 2 yields that U is connected if and only if all the links in the connections cycle

v1• v2• ... • vk• v1 are operable, i.e. the equality (6.4) holds.

From (6.4) it fellows that there is one-to-one correspondence between the expression on

the left-hand side of (6.4), brought to the form of a sum of non-redundant products, and Lu -

the list of all K-terminal path sets connecting the nodes of U. By the argument similar to that

u sed in constructing Algorithm 1 we obtain the following algorithm generating Lu from L1• 2,

L2• 3 , ... , Lk-1• k, Lk• l, where Li• i is the list of all minimal s-t path sets providing a connection

from v; to vi.

19

Algorithm 4

Lu~ Lk• l

Laux ~ 0

for i~ 1 to k-1 {

for 7tE Lu {

for pELi• i+l {

if l(it)cl(p) then move p from L;• i+l to Laux

if l(p)cl(it) then move 7t from Lu to L,ux

if l(it)=l(p) then move 7t from Lu and Li• i+l to L,ux

}

}

}

foritELu{

for pE L;• i+l {

X~ 1;

for CTE L,ux {

if l(itp)cl(cr) then remove cr from L,ux

if l(cr),;;;l(itp) then {x ~ O; break}

if x=l then add l{itp) to Laux

}

Lu~ L,ux

if i< k-1 then Laux ~ 0

20

The first „for 1tElu" loop in the body of the „for i= 1 to k-1" loop searches lu and l;• i+l for

products which are in inclusion relation with products from the other list. Such products

have to be "isolated", because they would generate redundancies, as fellows from lemma 1.

The second „for 1tELu" loop updates Lu seeing to it that it does not contain redundant

products (the "for crE laux" loop) . lt has to be remarked that for graphs with directed edges

the re is no sim ple criterion for stating whether a given set of components is a K-terminal path set.

Thus such path sets cannot be "isolated" starting from the first cycle of the "for i+-- 1 to k-1" loop,

which would accelerate their generation, as was the case with s-t cut sets in Algorithm 1. They are

only known once Algorithm 4 has terminated.

Example 5

let us consider the network depicted in Fig. 5 with U={A, B, C}. Constructing the respective

trees of acyclic paths we obtain the following lists of minimal s-t path sets:

LA•B = (1), {2,3}

la• c = {1,2), {4,5}

lc•A = (2), {1,3)

Applying Algorithm 4 we obtain:

lu= (2), (1,3}; laux = 0;

laux = {2,3}, {1,3}, {1,2};

lu= (2,3), (1,3), (1,2}; laux = 0;

laux = {1,2}, {2,3,4,5}, {1,3,4,5};

lu= {1,2}, {2,3,4,5), {1,3,4,5}.

21

7. Bibliography

1. Abel U., Bicker R., "Determination of All Minimal Cut-Sets between a Vertex Pair in an

Undirected Graph", IEEE Transactions on Reliability, Vol. R-31, lssue 2, pp . 167-171

(1982) .

2. Arunkumar S., Lee S.H., "Enumeration of all minimal cut-sets for a node pair in a graph",

IEEE Transactions on Reliability, Vol. R-28, lssue 1, pp . 51-55 (1979).

3. Beichelt, Frank: "Zuverlaessigkeit strukturierter Systeme", VEB Verlag Technik Berlin

{1988).

4. Malinowski, Jacek: "A new efficient algorithm for generating all minimal tie-sets

connecting selected nodes in a mesh-structured network", IEEE Transactions on

Reliability, Vol. 59, No 1, pp. 203-211 (2010).

5. Prasad V.C., Sankar V., Prakasa K.S., "Generation of vertex and edge cutsets",

Microelectronics Reliability, Vol. 32, lssue: 9, pp. 1291-1301 (1992).

6. Ross 5., "lntroduction to probability models - 10th edition", Elsevier (2010).

7. Singh B., "Enumeration of node cutsets for an s-t network", Micraelectroics Reliability,

Vol. 34, lssue 3, pp. 559-561 {1994) .

8. Yeh, W.-C., "A new algorithm for generating minimal cut sets in k-out-of-n networks", Reliability

Engineering and System Safety, Vol. 99, lssue 1, pp. 36-43 {2006).

9. Yeh, W.-C., "A simple algorithm to search for all MCs in networks", European Journal of

Operational Research, Vol. 174, lssue 3, pp. 1694-1705 {2006).

22

