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1. lntroduction 

A commodity transportation network composed of nodes and links arranged in a tree 

structure is considered. Its task is to transfer a commodity (electric power, radio signal, electronic 

data, water, gas, etc.) from the source (root) node to all terminal (leaf) nodes. Let {eo, e 1, ••• , em} be 

the set of all network components, i.e. its nodes and links. The components are indexed so that the 

index of each non-root component is greater than the index of its parent component, e0 being the 

root component, i.e. the root node. An exemplary network consisting of 13 nodes and 12 links is 

presented in Fig. l. 
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Figure l. An exemplary system structure 

Each component can be in one of two states: operable - l and failed - O; e0 is always in the 

operable state. The repair of a failed component begins as soon as one of repair teams is available -

due to their limited number a waiting period following a failure may occur. The order in which 

failed components are chosen for repair depends on the repair policy applied - two types of policies 

will be considered. The functioning of the component ei is characterized by three distiibution 



functions: Fi - lifetime d.f. of the operable ei connected to e0, Gi - lifetime d.f. of the operable ei 

disconnected from e0, and Hi - repair time d.f. of the failed ei . It is assumed that Fi and Gi are 

exponential, unlike Hi which can be arbitrary d.f. on [O,oo). It is also assumed that Fi 2: Gi, which 

conveys the idea that the components being "under load" are more failure prone. Thus, a 

component's lifetime depends on the behavior of all „upstream" components but is not influenced 

by the remaining components. However, a component functions independently of the "upstream" 

components up to the moment when one of them fails. Furthermore, a component's repair time is 

independent of the states of all other components. Note that Gi = O if it is assumed that ei 

di sconnected from e0 cannot fai!. 

A commodity can be transfen-ed from e0 to ei, i= 1, ... , m, if and only if ei is functional and 

connected to e0, i.e. all components between e0 and ei are in the operable state. As failures of 

components occur, the periods of connection between e0 and the operable ei are interlaced by the 

periods during which ei is failed or disconnected from e0. Our objective is to dete1mine the mean 

durations of both time intervals, i.e. the equivalents of MTBF and MTTR parameters, for each 

component. As statistical estimation will be used, special attention will be paid to its accuracy. 

C!early, the durations of connection and disconnection periods depend on two more factors : 

the number of repair teams assigned to the network maintenance, and the repair policy 

implemented. Obviously, each component's average disconnection time decreases as the number of 

repair teams increases, because the average time a component waits for a repair to commence 

becomes shorter. As to the second factor, three repair policies will be considered. According to the 

first policy the components are chosen for repair in the order in which they failed, i.e. they form a 

FIFO queue; if multiple components fai! at the same time (such event occurs with zero 

probability unless it is a common cause failure), the one with the largest index is selected as first. 

This policy will be named "FIFO with largest index priority". If Gi = O, 1 Si Sm, then for each 

" linem·" subset of components (i.e. all components located between e0 and a leaf node) it prioritizes 

the components most distant from e0• Indeed, as only the components connected to e0 can fai!, if ey 



is located below e, (yielding y>x), then ey can only fai! if e, is operable, i.e. ey can only fai! before 

or simultaneously with e,, hence ey must precede ex in the queue for repair. 

According to the second policy the components are selected for repair in the order 

reverse to that in which they failed, i.e they form a LIFO queue; if multiple components fai! at the 

same time, the one with the smallest index is selected as first. This policy will be named "LIFO 

with smallest index pliority" . If G; = O, l::: i::: m, then for each "linear" subset of components it 

prioritizes the components least distant from e0. Indeed, if ey is located above e, (yielding y<x), then 

ey can only fai! after or simultaneously with e,, hence ey must precede e, in the queue for repair. 

The third policy plio1itizes the components according to their indexes, i.e. the first 

component in the queue for repair is the one with the smallest index . This policy will be named 

"smallest index priority" . Note that it does not take into account the order in which the components 

fai!, and is only determined by the numbering of the components. Certainly, in generał case, the 

numbering scheme reflecting a particular repair policy for a multi-component system can be 

different from the one adopted in this paper. 

The described system has been first investigated in [Malinowski 2009], where the simulation 

technique used to imitate the system's failure-repair process has been presented in detail, along with 

some theoretical results concerning that process. The sought parameters have been evaluated using 

interval estimation, and the non-trivia! problem of finding their confidence limits has been tackled. 

This paper focuses on improving the accuracy with which the considered reliability parameters are 

estimated. In order to achieve that aim the appropliately modified "stratified sampling" method -

one of the so-called variance reduction techniques - is used. The above mentioned modification 

(devised by the author of this paper) is necessary due to the fact that the basie estimated parameter 

is the quotient of mean values of two dependent random valiables rather than a single mean value. 



2. Definitions·ond Notation 

The following notation will be used in the paper: 

L/ 1l, L/2l - lifetimes of operable e; connected to/disconnected from eo 

R; - repair time of e; 

rmin, rmax - minimum and maximum repair time of a single component 

F;, O;, H; - distribution functions of L/1l, L/2l, and R; 

A; - fai Iure intensity of operable e; connected to eo 

1t1 - the "FIFO with largest index pri01ity" policy 

1t2 - the "LIFO with smallest index priority" policy 

1t3 - the "smallest index priori ty" policy 

To avoid over-indexing, it is assumed in the remaining definitions that there are r repair teams and 

the policy 7t5 is applied. 

A/l- length of the j-th period during which operable e; remains connected to eo (independent of r 

and s under the above assumptions), j ~ I 

B/l - length of the j-th pe1iod during which e; remains failed or disconnected from e0, j ~ I 

il, b(il - the average durations of A/l and B/l over j ~ I 

c(il - the average number of restored connections between operable e; and e0 per unit time 

X - the system's failure-repair process, i.e. the vector-valued random process 

{1X 1(t), ... ,Xm(t)], t:=-:O}, where X;(t) is defined as follows: 

X/'l = -q, if e; is in place q in the repair queue 

X/'l = O, if e; is under repair 

X/1) = I, if e; is operable and connected to e0 



Xi'IJ = 2, if e; is operable and disconnected from eo 

,, - the moment of k-th recurrence of X to its initial state, i.e. the state (1, ... ,1), k2:0, , 0=0 

Q<il - the number of restored connections between operable e; and e0 in the interval (,0, , 1) 

u<il - the total time within (,0, ,I] during which e; remains failed or disconnected from e0 

We thus have: 

a<i> = lim~ IA (i), b<i> = lim~ fB.(i) 
m--+..., Il j=I J m--+oo /1 j=l J 

It has been shown in [Malinowski 2009] that 

(1) 

(2) 

where ei <le; means that ei is located between e0 and e;. On the other hand, b(iJ has to be estimated 

(provided it is a constant value) as in the generał case finding a close formula for b(i) is practically 

impossible. 

Each interval [•k-I, 'k), k2:l, will be called an operational cycle of X. As Lt>, ... , Lm(t) are 

exponentially distributed and independent, X can be divided into the independent and stochastically 

identical sub-processes [X(t), tE [•k-l, •k)}, k2:l. This explains why Q(i) and u<i> are only defined for 

the first cycle - for all subsequent cycles they are identically distributed. 



3. Estimating b(iJ with the use of Monte Carlo simulation 

In [Malinowski 2009) the algorithm for the simulation of X is presented. Also, severa! 

lemmas constituting theoretical basis for the estimation of b(il are given. One of them formulates 

certain necessary conditions under which X is a recun-ent process. Another lemma states thai if X is 

recurrent, and repair times are bounded from above and below, i.e. O< rmin SR; S fmax < oo 

for 1 Si Sm, then [B/l+ ... +B/il]/n converges in probability to E[U(i)]/E[Q(i)) as n• 00 , then 

(i) 
bCii = E(U ) 

E(QO)) 
(3) 

i.e . b(iJ is a constant value. 

Let us note that a process IT= {IT(t), t2::0} is called recuITent if it has the following 

properti es: 

I. The state of IT at t=0 is fixed, i.e . IT(0) has the one-point distribution, 

2. With probability one IT retums to the state IT(0) after finite time, i.e. Pr(t1<oo)=l, where t 1 is the 

(random) time of the first return of IT to its initial state 

3. I11 = {IT(t1+t), t2::0} and IT are stochastically identical processes (IT "begins anew" at t = t 1). 

Sometimes the second property is replaced with a stronger one, i.e. E(t1)<co. For details see [Feller 

1968]. 

According to (3), the quotient of the estimates of E(U(il) and E(Q(i)) will be used as the 

estimate of b<il_ A natura! question arises - what is the accuracy of such estimate? In terms of 

interval estimation this problem consists in finding a confidence interval for the quotient of two 

non-independent random variables. The sought confidence interval is given by the following 



lemma, the proof of which is given in [Malinowski 2009]. 

Lemma 1 

Let X <". O and Y <". Ymin > O be random variables with finite means µx and µy, and finite standard 

deviations crx and CJy (Ymin is a constant). Let XK and YL be sample means from X and Y of sizes 

Kand L. Let 

(4) 

where q 1-a14 is the l - a/4 quanti le of the standardized norma! distribution, i.e. 

(5) 

for normally distiibuted Z with the expected value O and variance l. Then, for sufficiently large K 

and L we have: 

(6) 

To fu11her simplify the notation, the symbols U and Q will be used in place of u(i>, and Q(i>, 

it being understood that i is the default component's index. Let U* and Q* be conditional random 

variables defined as follows: U* = U/Q 2: land Q* = Q/Q 2: 1, i.e. the underlying condition is that e; 



fai Is or is disconnected from e0 at least once during the interval ('tk-1, 'tk), Thus U* and Q* are 

defined on { w: Q(w):2::1), and their distribution functions Fu•(u) and FQ•(q) are given by 

Pr(U < u, Q '.': 1)/Pr(Q '.': 1) and Pr(Q < q, Q '.': 1)/Pr(Q '.': I) respectively. As E(UIQ=O) = O, we have: 

EU 

EQ 

E(U,Q:2::l)+E(U,Q=O) 

E(Q,Q :2:: 1) + E(Q,Q = O) 

E(U IQ :2:: I) 

E(QIQ:2::1) 

E(U*) 

E(Q*) 

Thus we can estimate E(U*)/E(Q*) instead of E(U)/E(Q), obtaining the same result. 

(7) 

Note that Lemma l makes no assumption about the independence of X and Y, therefore it 

covers the case of strongly dependent random variables such as U* and Q* . Also note that Q*'.':1>0, 

i .e. Q* is bounded from belo w by a positive constant, which is not true in case of Q. Thus Lemma l 

can be applied to U* and Q*, but not to U and Q. Replacing in Lemma I X and Y by U* and Q* we 

obtain the following corollary: If 

_? O'u,µo• cro,µu, 
e 0 - _q 1_a14 max ( ✓K , ✓L ) (8) 

then, for sufficiently large K and L, [ U"*K/Q"*L - ea, U"*K/Q"*L + ea] is a l - a confidence 

interval for E(U*)/E(Q*). In consequence, if eis a given small number and 

(9) 

then taking at least K samples from U* and L samples from Q* allows to estimate E(U*)/E(Q*) 

with the accuracy at least e (the half-length of the confidence interval) at the given confidence level 

l - a. In practice, the expected values and standard deviations of U* and Q* are replaced in (9) with 

the respective sample means or sample standard deviations. 



The above considerations lead to the following algorithm estimating E(U*)/E(Q*). 

Algorithm 1 

• Perform Nr "pilot simulations" (i.e. simulate Np operational cycles of X) to find approximate 

val ues of µu •, CJu•, fl-0•, and CJQ• 

• Compute minimal values of Kand L fulfilling (9) 

• Execute the mai n estimation procedure outlined below 

Procedure 1 

j I = Q ; jz = Q ; µu • = Q ; µQ• = Q ; 

do { 

simulate one full operational cycle of X; 

if (Q~l) { 

ifU1<K){ 

j 1 = j 1 + l ; µu• = µu.+ (U - µu •) I j 1 ; 

if U2 < L) { 

j2 = j2 + l ; µQ• = fl-0.+ (Q - µQ ,) I j2 ; 

} while U1 < K OR jz <L); 

return (µu , / µQ • ); 

Remark: µu, and µQ• are updated based on the following formula: 

/-li = µ j-1 + (x i - µ j-1 )/j (10) 



where 

(11) 

4. Stratified sampling as a means of reducing the computational complexity 

Stratified sampling is an estimation technique (one of the so-called variance reduction 

techniques) used when there are two dependent random variables - X with unknown mean value 

(to be estimated), and a finite-valued random vatiable Z which fulfills the following condition: 

Pr(Z=z)=p,, l::S:z::S:m, fp,=l (12) 
z=J 

Let X 1, ... ,Xn be a random sample of size n from X, and Xi'> , ... ,X~'; - a random sample of size nz 

from the conditional r. v. X/Z=z defined by its distribution function FxlZ=z in the following way: 

Fxiz=, (x) = Pr(X ::S: x /Z= z)= Pr(X ::S: x, Z= z)/Pr(Z = z) (13) 

It is assumed that the sizes of the random samples from X/Z=z, 1 :S z :Sm, add up to n, i.e. the 

equality 

m 

In, =n (14) 
z=I 

holds. In order to estimate µx = E(X), the "stratified" estimator Xn,st given by 



'_m l~(z) x ..... - LP, - Lxi 
z=I n z j=I 

(15) 

is used instead of the usual (non-stratified) estimator X., where 

(16) 

Both X„ and x.,,, are unbiased estimators, hence the latter can also be used to approximate µx. 

Furthermore, as shown in Glasse1man 2003, for large n we have: 

(17) 

2 
where q 1-a12 is the 1 - oJ2 quanti le of the standardized norma! distribution (see (5)), cr x.st is the so-

called stratified variance of X defined as follows: 

1 lll n ., ") A 

cr;:__,. = L -p;cr;:_12=, = nVar(X") 
z=I n z 

(18) 

and crx1Z=z is the standard deviation of the conditional r. v. XIZ=z, i.e. 

cr~IZ=, =Var(XIZ=z), l$z$m (19) 



The second equality in (18) follows from the independence of x/z>, l $z$ m, l $j $ nz. Thus Xst 

and cr X.st can be used to compute confidence bounds for µx. In practice, cr x.st is often unknown, 

hence it is replaced in (17) by &x.st defined as follows: 

... m n .,,.., 
a X.st = I-p;cr}qz:z 

z=I TI z 

where &~IZ=, is the sample variance of XIZ=z obtained from its nz sample values. 

Using the well-known fact that 

Var(X) = E[Var(X I Z)]+ Var[E(X I Z)] 

(20) 

(21) 

where X and Z are arbitrary random variables defined on the same probability space, we obtain: 

cr~ = Var(X) ;:c: E[Var(X I Z)]= 

= f Var(X I Z= z)Pr(Z =z)= f p,cr~IZ=, 
(22) 

z=I z=I 

From (22) it follows that if 

nz = npz = n~rop (23) 

i.e. the so-called propo1tional sampling is perf01med, then 

(24) 



Thus, estimating µx with the use of X: 51 and cr x,st, we obtain, according to (17), the confidence 

interval which is n an-ower in compaiison with the one obtained using X and cr x . In other words, 

proportional sampling allows either to estimate µx with greater accuracy without increasing n - the 

total size of the random sample, or to reduce n while retaining the same accuracy. Applying 

Lagrange multipliers it can be shown that cr x,st attains its minimum value (with respect to nz, 

l:;; z:;; m) if 

n = Jl o1>1 = n p,cr XJZ=z 
z z m 

L Pw(j XJZ=w 
w=I 

i.e. the so-called optima! sampling is performed. Therefore we have: 

2>f, 2 _f,n 22 > 
(j X - L., p z (j XJZ=z - L., ~ p z (j XJZ=z -

z=I z=I TI z 

>f,n 22 -~ 2 
- L.,--;,;;- p z (j XJZ=z - ( L., p z (j XJZ=z ) 

z=l n z z=I 

For subsequent use Jet us define: 

m 

(j X,opt = L P z (j XIZ=z 
z=l 

i.e. cr~·""'" and cr~_0 ,,, are stratified variances of X for the proportional and optima! cases. 

(25) 

(26) 

(27) 

If n is fixed, then in order to find n/'0 P, 1 $z$ m, we only need to know Pr(Z=z), which is a 

frequent assumption regarding the stratified sampling technique. However, sometimes Pr(Z=z) are 

not known and have to be found, e.g. by simulation. On the other hand, nz°P', I $z$ m, can only be 



calculated if the conditional variances cr2x12=2 are known. As this is seidom the case, the usual 

practice consists in performing certain number of "pilot" simulations in order to find approximate 

values of cr2x12=" necessary to compute nz°Pt, l::; z::; m. 

Stratified sampling appears to be well-fitted to the estimation problem considered in this 

paper, as both U and Q are dependent on Z defined as the number of the first component failed from 

the beginning of an operational cycle (i.e. from an instant 'tk, k ~ 1). Clearly, the value set of Z is 

equal to { l, .. . ,m} and 

Pr(Z = z) = 'J....,I(\ + .. . +Am), I ::; z ::; m (28) 

However, in our considerations U and Q are replaced with U*= UIQ~l and Q* = QIQ~l, as 

the condition "Q~l" is necessary so that Lemma 1 can be applied. In consequence, Z has to be 

replaced with Z*= ZIQ~l, because stratification technique requires the use of the conditional 

expectations E(U*IZ*=z) and E(Q*IZ*=z), l ::; z::; m, and the conditioning random variable Z* has 

to be defined on the same probability space as U* and Q*, i.e . {m: Q(m)~l} . The evaluation of 

E(U*IZ*=z) and E(Q*IZ*=z) will be based on the following lemma: 

Lemma 2 

The conditional expectations of U* and Q* with respect to Z* are given by: 

E(U*I Z*= z) =E(UI Q ~ l,Z = z), E(Q*I Z*= z) =E(QIQ ~ 1,Z=z) (29) 



Proof: 

We will prove the first of the above equalities, the proof of the second one follows the same 

paltem. In view of the fact that U*=U and Z*=Z on { w: Q(w)2'.l}. and Pr(·)/Pr(Q2'.l) is the 

probability measure on { w: Q(w)2'.l}. we have: 

E(U* I Z*= z) = E(U*, Z*= z)/Pr(Z* = z) = 

(30) 

E(U,Z = z,Q 2'. l) E(UI Z= z,Q 2'. l)Pr(Z= z,Q 2'.l) 

Pr(Z* = z)Pr(Q 2'. I) Pr(Z* = z)Pr(Q 2'. I) 

and 

Pr(Z=z Q>l) 
Pr(Z* =z)= Pr(Z = z IQ 2'. l) = ' -

Pr(Q 2'. l) 

= Pr(Q 2'. l I Z= z)Pr(Z = z) 
(31) 

Pr(Q 2'. l) 

From (30) and (31) we obtain (29), which completes the proof. 

The estimation of E(U*) and E(Q*) will be performed using their stratified estimators based 

on the following formulas derived directly from (29): 



E(U*) = f E(U IQ :::C: l,Z = z)Pr(Z* = z) 
z=I 

(32) 
m 

E(U*) = LE(U IQ :::C: 1, Z= z)Pr(Z* = z) 
z=I 

The probabilities Pr(Z*=z) (unlike Pr(Z=z)) are not given a priori, but can be computed from (31), 

while Pr(Q:::C:I) can be found from the following obvious equality: 

Pr(Q :::C: I)= f Pr(Q :::C: l I Z= z)Pr(Z = z) (33) 
z=l 

Thus, in order to evaluate E(U*) and E(Q*) we only need the approximate values of 

E(UIQ:::C:1, Z=z), E(QIQ:::C:l, Z=z), and Pr(Q:::C:llZ=z), which will be obtained by means of simulation. 

We can now pass on to our main task, i.e. estimating the quotient E(U*) I E(Q*) by means 

of stratified sampling, where Z* is the stratification variable. In order to assess how many samples 

are necessary to accomplish this task we need the following "stratified" equivalent of Lemma l : 

Lemma3 

If X and Y are as in Lemma 1, XK.s1 and YL." are stratified estimators of µx and µy, of sizes 

Kand L respectively, and 

(34) 

then , for sufficiently large Kand L, [XK.s1/YL.s1 -E•·"' XK. 51 /YL. 51 +E 0.s1 lis a 1-a confidence 

interval for µx/~ty. 



The proof of Lemma 3 is conducted in the same way as that of Lemma 1, the only difference 

being that "stratified" standard deviations, i.e. Gx, st and Gy, stare used in place of "raw" ones, i.e. Gx 

and Gy. The immediate consequence of the above lemma is the following corollary: If Eis a given 

small number and 

(35) 

then taking at least K samples from U* and L samples from Q* allows to estimate µu•/µQ• with the 

accuracy at least E (half-length of the confidence interval) at the given confidence level 1 - a. In 

practice, ~tu•, Gu •,st, µQ •, and GQ•,st are replaced in (35) with the respective sample means or sample 

standard deviations. 

We can now present (in outline) the algorithm for the estimation of E(U*)/E(Q*), applying 

the stratified sampling technique. 

Algorithm 2 

• For each z=l, ... ,m pe1form Npil pilot simulations to find approximate values of Pz*=Pr(Z*=z), 

~tu•1:2=z, CJu•1:2=/ , µQ *IZ=z , and CTQ•J:2=/ 

• Compute minimal values of Kand L fulfilling (35). E.g. for the proportional case: 

(36) 

• For each z=l , ... ,m compute K2 and L 2 - the sizes of random samples from U*IZ*=z and Q*IZ*=z 

used to obtain the stratified estimators of µ 0 , and µQ'· E.g. for the proportional case: 

Kz = K Pz *, Lz = L Pz * (37) 



• Execute the main estimation procedure outlined below 

Procedure 2 (the propo1tional case) 

~lu• = 0 ; µQ • = 0 ; 

for z= 1, . .. ,m do { 

j 1 = O ; j2 = O ; µu •JZ=z = O ; ~ •JZ=z = O ; 

do { 

simulate one "truncated" operational cycle 

of X, i.e. begin from ez's failure, assuming that 

ez is the first failed component; 

if (Q2'.l) { 

if 01 < Kz) { 

j1=j1+l; 

µu •.z = µu•.z + (U - µu •JZ=z) I j 1 ; 

if 02 < Lz) { 

j2=j2+l; 

~LQ•,z = µQ' JZ=z + (Q - µQ*JZ=z) / jz ; 

} while 01 < Kz OR j2 < Lz ); 

~Lu• = ~Lu• + Pz* ~lu•jZ=z ; 

~lQ• = ~lQ• + Pz * µQ*IZ=z ; 

return (µu, / ~• ); 



As in Procedure 1, µu• and µQ• are updated based on (10) and (li). 

In the optimal case L2 = O if CTQ•.z = O which occurs if Pr(Q=IIZ=z) = I (e.g. for a 

consecutive system, i= m, l ~z~ m). As the condition j 2 < L, is then not fulfilled in any cycle of 

the do-while loop, the command "if (L2 = O) then µQ•,z = I" has to follow the do-while loop in order 

to customize Procedure 2 to the optimal case. 

5. Estimation of other reliability parameters 

Directly from the definition of c<il it follows that 

(38) 

provided that b(il exists, i.e. [B 1<il + ... + Bn(i)]/n converges in probability to a constant value. The 

following lemma (proved in [Malinowski 2009]) defines the confidence limits for c(il_ 

Lemma4 

Let 

fPu = [a (i) + r . ]2 
mm 

(39) 

where Ea is given by (8). Then for sufficiently large Kand L we have: 



p{ >•}" (40) 
ac•>+ ~ ac•J + U* __ K_ 

µQ. Q*L 

As in the case of Lemma 1, Lemma 4 can be converted into its "stratified" version by 

substituting <Ju• and OQ• with <Ju •, SI and OQ•, SI respectively. Based on the converted Lemma 4 we 

obtain the following corollary: If <pis a given small number and 

(41) 

then (a<iJ + U'\ .,/ Q * L.st )-1 estimates c<iJ with the accuracy at least <p (half-length of the confidence 

interval) at the given confidence level l - a. Using (41), the algorithm estimating c<il, similar to 

Algorithm 2, can be constructed. 

One more important reliability parameter characterizing repairable (renewable) systems is 

component or system availability. The most often used is the so called average availability defined 

as the percentage of component or system uptime over a long period of time. According to this 

definition we obtain the following formula 

(42) 



where A y<iJ denotes the average availability of e;. Clearly, if b(i) defined in (1) is a constant (see 

Lemma 2 in [Malinowski 2009]), then A y<il is also a constant and 

[
:tA/i) l O) ( (i)J-1 

AV 0>=1im Ł'..__ n =--a--= l+.!:_ 
li-+.., n " . . a<i> +b<i) a<i> 

LA/1)+B/1) 
j=I 

(43) 

From (43) and Lemma 4 (converted to the stratified case) we obtain that if 

(44) 

with Ea being given by (8), then for sufficiently large K and L 

A y<i>_ We also have the following corollary: If x is a given small number and 

(45) 

then (1 +U* K.st / a'0 Q * L.st )_, estimates A y<il with the accuracy at least x (half-length of the 

confidence interval) at the given confidence level 1 - a. Using (45), the algorithm estimating A y<i>, 

si mi lar to Algorithm 2, can be constructed. 



6. Exemplary numerical results 

Severa! results obtained with Procedures l and 2 for the system in Fig. l are presented in 

Tables l and 2. It is assumed that L;'2> = oo with probability one for l _<::: i _<::: m (i.e. Gi = O), which 

means that components disconnected from e0 cannot fai!. Furthermore L;< 1> and R; are exponentially 

distributed, mean time to failure is 500 h for a node, 250 h for a line. Mean time to repair is 10 h 

for a node, 5 h for a line. The time unit is one hour. K, K* , and T denote the number of all 

simulation cycles, the number of cycles with Q;?:l , and the computing time respectively. V(,) and 

V _strat(·) are used to denote non-stratified and stratified variance, i .e. cr.2 and cr .. / . The 

computations were carried out on a PC machine with an Intel Core 2 (2.14 GHz) processor. 

Table l 

Examined component: 8 
Accuracy: 0.02 
Confidence level : 0.99 

Repair policy: FIFO, No. of repair teams: l Repair policy: LIFO, No. of repair teams: l 

Raw sampling Raw sampling 

E/u:rE(Q*)=10.6077 
E/U*fE(Q*)=9.9729 
E Q* =1 .0279 EO =1 .0178 vf *)=140.1585 v1u•)=152.3857 

V Q* =0.0183 
V Q*)=0.0327 

K=7,983,516, K*=1,994,304, T=1'25" 
K=7,494,940, K*=1,871,033, T =1 '25" 

Proportional sampling Proportional sampling 

E(U*)/E(Q*)=10.6036 Ef U*)/E(Q*)=9.9596 
E(Q*)=1 .0178 E 0*)=1.0293 
V _strat/U*)=119.2477 V _strat1u•)=114.6449 
V _strat Q*)=0.0184 V strat Q* =0.031 O 
K=6,287,391, K*=1,572,673, T =1 '15"' K;6, 193,904, K*=1,544,858, T =1 '15" 

Optima! sampling Optima! sampling 

E(U*)/E(Q*)=10.5976 E1u:)/E(Q*)=9.9670 
E(Q*)=1.0174 EO =1.0292 
V _strat(U*)=105.1993 V _strat/U*)100. 7258 
V _strat(Q*)=0.0127 V _strat Q*)=0.0218 
K=7, 189,606, K*=1,384,276, T =1 '20" K=7,106,720, K*=1 ,361,603, T=1'20" 



Table 2 

Examined component: 24 
Accuracy: 0.02 
Confidence level : 0.99 

Repair policy: FIFO, No. of repair teams: l Repair policy: FIFO, No. of repair teams : 2 

Raw sampling Raw sampling 

Ei U*)/E(O*)=10.1233 Et=rE(O*)=?.0713 
EO =1 .0413 

EO* =1 .0394 V U* =69.0699 
viu:)=171.9243 V(O*)=0.0508 
V O =0.0424 K=13,619,352, K*=5,913,241, T =2'30" 
K=33,074,521, K*=14,665,709, T =6'1 O" 

Proportional sampling Proportional sampling 

Ei U*)/E(O*)=10.1188 
E 0*)=1.0400 

E1u:rE(O*)= 7 .0753 
EO =1 .0410 

V _strat/U*)=141.3368 V _strat/U*)=62.0311 
V _strat 0*)=0.0412 V _strat 0*)=0.0485 
K=27,483,419, K*=12, 195,975, T =4'15" K=12,475,669, K*=5,414,678, T =2" 

Optimal sampling Optima! sampling 

EIU*)/E(O*)=10.1263 E(U*)/E(O*)= 7 .0803 
E 0*)=1.0393 E(O*)=1.0408 
V _strat/U*)=130.907 4 V _strat/U*)=60.2416 
V _strat 0*)=0.0373 V _strat 0*)=0.0332 
K=30,516,923, K*=11, 186,840, T =4'40" K=12,895,815, K*=5, 193,306, T =2" 

As fellows from the presented results, stratified sampling, applied for the considered system, 

does not significantly reduce the number of computations. The reason lies in relatively small 

differences between Gu•. z and cr0,, z, l S z S m, not shown in the tables. Generally, stratified 

sampling gives good results when conditional variances, as defined by (19), differ considerably. 

It can be observed that the computing time strongly depends on the number of repair teams, 

the reason being that operational cycles are longer for smaller number of repair teams. A 

component's distance from e0 also impacts the computing time which is sho1ter for less distant 

components. On the other hand, the computing effort does not practically depend on the repair 

policy applied. 

As could be expected, b<il is more sensitive to the type of repair policy in case of 

components less distant from e0. Clearly, if components located close to the source are repaired 

before those located fu1ther away (LIFO policy), then the former ones are likely to become 



reconnected to e0 more quickly than in case of FIFO policy. 

It is interesting that, paradoxically, total number of simulations in the optima! case can be 

greater than the respective number in the proportional case (e.g. compare the results in the first 

column of Table 2). For explanation note that the numbers Kz or L,, 1 :S z :Sm, as given by suitably 

modified (23) or (25), differ to a greater extent in the former than in the latter case. Also note that 

for each z the total number of simulation cycles in Procedure 2 is proportional to max(Kz, Lz) - the 

number of cycles with Q::::l. Therefore the bigger differences among Kz or Lz lead to the larger 

number of all cycles. 
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