





1. Introduction

A commodity transportation network composed of nodes and links arranged in a tree
structure is considered. Its task is to transfer a commodity (electric power, radio signal, electronic
data, water, gas, etc.) from the source (root) node to all terminal (leaf) nodes. Let {eq, €),..., €n} be
the set of all network components, i.e. its nodes and links. The components are indexed so that the
index of each non-root component is greater than the index of its parent component, e, being the

root component, i.e. the root node. An exemplary network consisting of 13 nodes and 12 links is

presented in Fig. 1.
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Figure 1. An exemplary system structure

Each component can be in one of two states: operable — 1 and failed — 0; e¢ is always in the
operable state. The repair of a failed component begins as soon as one of repair teams is available —
due to their limited number a waiting period following a failure may occur. The order in which
failed components are chosen for repair depends on the repair policy applied — two types of policies

will be considered. The functioning of the component e; is characterized by three distribution




functions: F; ~ lifetime d.f. of the operable ¢; connected to eg, G; — lifetime d.f. of the operable ¢;
disconnected from eg, and H; — repair time d.f. of the failed e;. It is assumed that F; and G; are
exponential, unlike H; which can be arbitrary d.f. on [0,00). It is also assumed that F; > G;, which
conveys the idea that the components being “under load” are more failure prone. Thus, a
component's lifetime depends on the behavior of all ,,upstream” components but is not influenced
by the remaining components. However, a component functions independently of the "upstream"
components up to the moment when one of them fails. Furthermore, a component's repair time is
independent of the states of all other components. Note that G; = 0 if it is assumed that e;
disconnected from ey cannot fail.

A commodity can be transferred from eg to e;, i = 1,..., m, if and only if e; is functional and
connected to ep, i.e. all components between e¢ and ¢; are in the operable state. As failures of
components occur, the periods of connection between ¢y and the operable e; are interlaced by the
periods during which e; is failed or disconnected from eg. Our objective is to determine the mean
durations of both time intervals, i.e. the equivalents of MTBE and MTTR parameters, for each
component. As statistical estimation will be used, special attention will be paid to its accuracy.

Clearly, the durations of connection and disconnection periods depend on two more factors:
the number of repair teams assigned to the network maintenance, and the repair policy
implemented. Obviously, each component’s average disconnection time decreases as the number of
repair teams increases, because the average time a component waits for a repair to commence
becomes shorter. As to the second factor, three repair policies will be considered. According to the
first policy the components are chosen for repair in the order in which they failed, i.e. they form a
FIFO queue; if multiple components fail at the same time (such event occurs with zero
probability unless it is a common cause failure), the one with the largest index is sélected as first.
This policy will be named "FIFO with largest index priority”. If G; = 0, 1 <i <m, then for each
“linear” subset of components (i.e. all components located between e and a leaf node) it prioritizes

the components most distant from eg. Indeed, as only the components connected to eq can fail, if e,



is located below e, (yielding y>x), then e, can only fail if e is operable, i.e. ey can only fail before
or simultaneously with e,, hence e, must precede e in the queue for repair.

According to the second policy the components are selected for repair in the order
reverse to that in which they failed, i.e they form a LIFO queue; if multiple components fail at the
same time, the one with the smallest index is selected as first. This policy will be named "LIFO
with smallest index priority". If G; = 0, 1 <i <m, then for each “linear” subset of components it
prioritizes the components least distant from eo. Indeed, if ey is Jocated above e, (yielding y<x), then
ey can only fail after or simultaneously with ¢, hence e, must precede e, in the queue for repair.

The third policy prioritizes the components according to their indexes, i.e. the first
component in the queue for repair is the one with the smallest index. This policy will be named
"smallest index priority". Note that it does not take into account the order in which the components
fail, and is only determined by the numbering of the components. Certainly, in general case, the
numbering scheme reflecting a particular repair policy for a multi-component system can be
different from the one adopted in this paper.

The described system has been first investigated in {Malinowski 20097, where the simulation
technique used to imitate the system'’s failure-repair process has been presented in detail, along with
some theoretical results concerning that process. The sought parameters have been evaluated using
interval estimation, and the non-trivial problem of finding their confidence limits has been tackled.
This paper focuses on improving the accuracy with which the considered reliability parameters are
estimated. In order to achieve that aim the appropriately modified "stratified sampling" method -
one of the so-called variance reduction techniques —~ is used. The above mentioned modification
(devised by the author of this paper) is necessary due to the fact that the basic estimated parameter

is the quotient of mean values of two dependent random variables rather than a single mean value.



2. Definitions-and Notation

The following notation will be used in the paper:

Lo, Li(z) — lifetimes of operable e; connected to/disconnected from eq
R; - repair time of ¢;

Tmins Tmax — Minimum and maximum repair time of a single component
Fi, Gy, H; ~ distribution functions of L, Li®, and R;

A; ~ failure intensity of operable e; connected to eq

m, — the “FIFO with largest index priority” policy

11> — the “LIFO with smallest index priority” policy

73 — the “smallest index priority” policy

To avoid over-indexing, it is assumed in the remaining definitions that there are r repair teams and

the policy =, is applied.

Aj“) — length of the j-th period during which operable e; remains connected to €y (independent of r
and s under the above assumptions), j 2 1
B — length of the j-th period during which e; remains failed or disconnected from eg, j > 1
a(i), b — the average durations of Aj(i) and Bj(i) overj2 1
¢ — the average number of restored connections between operable ¢; and eq per unit time
X — the system’s failure-repair process, i.e. the vector-valued random process
{IX1(1),.... X (1)], 20}, where X;(t) 1s defined as follows:
X" = —q, if & is in place q in the repair queue
X, = 0, if & is under repair

XM =1, ife s operable and connected to eg




Xi® = 2, if e; is operable and disconnected from eo
T — the moment of k-th recurrence of X to its initial state, i.e. the state (1,...,1), k>0, 1,=0
Q“) — the number of restored connections between operable ¢; and ep in the interval (1o, 71]

U® _ the total time within (1o, ;] during which e; remains failed or disconnected from eg

We thus have:
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It has been shown in [Malinowski 2009] that
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where ¢ 9¢ means that ¢; is located between ep and e;. On the other hand, b® has to be estimated
(provided it is a constant value) as in the general case finding a close formula for b® is practically
impossible.

Each interval [Ti-1, %), k>1, will be called an operational cycle of X. As L|“),..., Lm“) are
exponentially distributed and independent, X can be divided into the independent and stochastically
identical sub-processes {X(t), te [Tk, )}, k>1. This explains why Q(i) and UY are only defined for

the first cycle — for all subsequent cycles they are identically distributed.




3. Estimating b® with the use of Monte Carlo simulation

In [Malinowski 2009] the algorithm for the simulation of X is presented. Also, several
lemmas constituting theoretical basis for the estimation of b® are given. One of them formulates
certain necessary conditions under which X is a recurrent process. Another lemma states that if X is
recurrent, and repair times are bounded from above and below, i.e. 0 < Iy S R; Stpax < 0

for 1 <i<m, then [B,"+...+B,”}/n converges in probability to E[TU™)/E{Q®] as n—»ee, then

) EUY)
b = ——
EQ") ©

i.e. b is a constant value.

Let us note that a process II= {II(t), t20} is called recurrent if it has the following

properties:

L. The state of IT at t=0 is fixed, i.e. [I(0) has the one-point distribution,
2. With probability one [T returns to the state T1(0) after finite time, i.e. Pr(tj<ee)=1, where 1, is the
(random) time of the first return of I to its initial state

3.11) = {II(11+t), 20} and IT are stochastically identical processes (II “begins anew” at t = 1y).

Sometimes the second property is replaced with a stronger one, i.e. E(1))<c0. For details see [Feller
1968].

According to (3), the quotient of the estimates of E(U(i)) and E(Q(i’) will be used as the
estimate of b, A natural question arises — what is the accuracy of such estimate? In terms of
interval estimation this problem consists in finding a confidence interval for the quotient of two

non-independent random variables. The sought confidence interval is given by the following



lemma, the proof of which is given in [Malinowski 2009].

Lemma 1

Let X >0 and Y 2 ymin > 0 be random variables with finite means px and Py, and finite standard

deviations ox and Oy (ynin 18 a constant). Let XK and ?L be sample means from X and Y of sizes

Kand L. Let
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where g is the 1 ~ o/4 quantile of the standardized normal distribution, i.e.

a
PrZ<q,_u) =1—Z (5)

for normally distributed Z with the expected value 0 and variance 1. Then, for sufficiently large K

and L we have:

X p
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ie. [XK/YL -£&,, XK/YL +é&,]1s a1 — o confidence interval for px/py.

To further simplify the notation, the symbols U and Q will be used in place of U, and QY
it being understood that i is the default component’s index. Let U* and Q* be conditional random

variables defined as follows: U* =U|Q > | and Q* = Q|Q > 1, i.e. the underlying condition is that e;



fails or is disconnected from eg at least once during the interval (T, Tx). Thus U* and Q* are
defined on {w: Q(w)21}, and their distribution functions Fy«(u) and Fg«(q) are given by

Pr(U <u, Q> 1)/Pr(Q > 1) and Pr(Q < q, Q = 1)/Pr(Q > 1) respectively. As E(U|Q=0) = 0, we have:

EU _ E(U,Q2D+EU,Q=0) _ EU|Qz1) _ EU% -
EQ EQ.QzD+EQ,Q=0) EQ|Q=21) EQ"

Thus we can estimate E(U*)/E(Q*) instead of E(U)YE(Q), obtaining the same result.

Note that Lemma 1 makes no assumption about the independence of X and Y, therefore it
covers the case of strongly dependent random variables such as U* and Q*. Also note that Q*>1>0,
i.e. Q* is bounded from below by a positive constant, which is not true in case of Q. Thus Lemma 1
can be applied to U* and Q*, but not to U and Q. Replacing in Lemma 1 X and Y by U* and Q* we

obtain the following corollary: If
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then, for sufficiently large K and L, [ UM*x/Q M ~gq , UM /QM + €, ] is a | —a confidence

interval for E(U*)/E(Q*). In consequence, if & is a given small number and

29wy Tipblgr ’ 29, 4O gethys :

then taking at least K samples from U* and L samples from Q* allows to estimate E(U*)/E(Q*)
with the accuracy at least & (the half-length of the confidence interval) at the given confidence level
1 - a. In practice, the expected values and standard deviations of U* and Q* are replaced in (9) with

the respective sample means or sample standard deviations.




The above considerations lead to the following algorithm estimating E(U*)/E(Q*).

Algorithm 1
¢ Perform N, “pilot simulations” (i.e. simulate N, operational cycles of X) to find approximate
values of Uys, Oys, U+, and o«
s Compute minimal values of K and L fuifilling (9)

s Execute the main estimation procedure outlined below

Procedure 1
J1=03j2=0;pu+=0; pug==0;
do {
simulate one full operational cycle of X;
if(Qz1) {
if i <K){
Jr=ivt b poe = pos+ (U= pon) /i s
}
if Ga<D){

J2=l2+ 15 P = por +(Q - Moo /J2;
}
| while (ji <K OR j; <L);

return (pye/ po- );

Remark: py» and po+ are updated based on the following formula:

Hy = Py + (K = 450 (10)




where

W=+ %)/ (1)
4. Stratified sampling as a means of reducing the computational complexity

Stratified sampling is an estimation technique (one of the so-called variance reduction

techniques) used when there are two dependent random variables — X with unknown mean value

(to be estimated), and a finite-valued random variable Z which fulfills the following condition:

Pr(Z=2z)=p,, 1<z<m, 2pz=l (12)

z=]

Let X,,...,X, be a random sample of size n from X, and X®,..,X® - a random sample of size n,
p [ n,

from the conditional r. v. X|Z=z defined by its distribution function Fxz-, in the following way:
Fype, () =Pr(X £x|Z=2)=Pr(X<x,Z= 7)/Pr(Z=7z) (13)

It is assumed that the sizes of the random samples from X|Z=z, | <z <m, add up to n, i.e. the

equality

n,=n (14)

holds. In order to estimate px = E(X), the "stratified" estimator X5 given by




~ m 1 n g
Ry =20, — DX (15)
2=

z =1

is used instead of the usual (non-stratified) estimator )A(., , where
5 1
X,==YX, (16)

Both 5(,, and X, are unbiased estimators, hence the latter can also be used to approximate px.

st

Furthermore, as shown in Glasserman 2003, for large n we have:
PHO) R P € Gy 22 21— (17
' N

where qi_q2 is the | — /2 quantile of the standardized normal distribution (see (5)), Gf(.sl is the so-

called stratified variance of X defined as follows:

m

B n 45 4 ky
Oy = Z;—p;G;an = nvar(xsl) . (18)

2=l z
and oxjz-, is the standard deviation of the conditional r.v. X|Z=2, i.e.

0§(|Z:z =Var(X|Z=12), 1<z<m a9



The second equality in (18) follows from the independence of Xj(z), 1<z<m, | €£j<n, Thus Xs.

and o, can be used to compute confidence bounds for px. In practice, o, is often unknown,

hence it is replaced in (17) by &y, defined as follows:

where 62X]Z=7. is the sample variance of X|Z=z obtained from its n, sample values.

Using the well-known fact that

Var(X) = E[Var(X | Z)]+ Var[E(X | Z)]

20)

21

where X and Z are arbitrary random variables defined on the same probability space, we obtain:

o6} = Var(X) 2 E[Var(X | Z)] =

=Y Var(X|Z=2)Pr(Z=2) = P,0 %jz=2
z=1

z=1
From (22) it follows that if
— — ny Prop
nz - npz =n,

i.e. the so-called proportional sampling is performed, then

m

1 1 L2
Oxst "szoxlz=z =0y

z=1

(22)

(23)

(24)




Thus, estimating px with the use of 5(5( and o, , we obtain, according to (17), the confidence

interval which is narrower in comparison with the one obtained using X and o, . In other words,

proportional sampling allows either to estimate px with greater accuracy without increasing n — the

total size of the random sample, or to reduce n while retaining the same accuracy. Applying

Lagrange multipliers it can be shown that o, attains its minimum value (with respect to n,,

1<z<m)if

PO xjz=2 ©5)

m
z PuwOxpz=w
w=i
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i.e. the so-called optimal sampling is performed. Therefore we have:

m m

2 3 _ n ;2
Oy 2 zpz°x|z=z = Z prop P20 Xjz=2 2
2=l z=i nl
(26)
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z=1

= N,
For subsequent use let us define:

oom m
0;(,|)ro|) = Z pzc)?z:z ’ 0')(,npl = Z pzoX[Z=z (27)

2=l z=i

i.6. Oy and oy, are stratified variances of X for the proportional and optimal cases.
If n is fixed, then in order to find n,”*", 1 <z £ m, we only need to know Pr(Z=z), which is a
frequent assumption regarding the stratified sampling technique. However, sometimes Pr(Z=z) are

not known and have to be found, e.g. by simulation. On the other hand, n,”, 1 <z £m, can only be




calculated if the conditional variances czxp,:Z are known. As this is seldom the case, the usual
practice consists in performing certain number of "pilot" simulations in order to find approximate
values of 02x|z=z, necessary to compute n,”, 1 <z < m.

Stratified sampling appears to be well-fitted to the estimation problem considered in this
paper, as both U and Q are dependent on Z defined as the number of the first component failed from

the beginning of an operational cycle (i.e. from an instant T, k 2 1). Clearly, the value set of Z is

equal to {1,...,m} and

Pr(Z=2)=4,/(h +...+%,), I£2<m (28)

However, in our considerations U and Q are replaced with U* = U|Q21 and Q* = Q|Q21, as
the condition "Q21" is necessary so that Lemma 1 can be applied. In consequence, Z has to be
replaced with Z* = ZJQz1, because stratification technique requires the use of the conditional
expectations E(U*|Z*=z) and E(Q*[Z*=z), 1 <z < m, and the conditioning random variable Z* has
to be defined on the same probability space as U* and Q%, i.e. {w: Q(w)=21}. The evaluation of

E(U*|Z*=z) and B(Q*/Z*=z) will be based on the following lernma:

Lemma 2

The conditional expectations of U* and Q* with respect to Z* are given by:

E(U*|Z*=2)=EU|Q21,Z=12), EQ*|Z*=2z)=EQ|Q2=1,Z=2) (29)




















































