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Abstract

The paper deals with the Two-Constraint Binary Knapsack Problem,
which is special case of Multi-Constraint Knapsack Problem, with 2 con-
straints only. It is assumed that some of the problem coefficients are real-
izations of mutually independent random variables. Asymptotical proba-
bilistic properties of selected problem characteristics are investigated .

1 Introduction

Let us consider a Two-Constraint Binary Knapsack Problem in the foilowing
formulation:

n
zopr(n) =max Y. ¢ - x;
i=1
i
subject to S aji-x; < bj(n)
i=1
where j=1,2, z;= 0 or 1

It is assumed that:
n
¢ > 0, Qji >0, 0<bj(n) <Zaﬁ, i=1,...,n, 5=1,2.
i=1
Without restricting the generality of considerations it may be also assumed that:

bi(n) < ba(n)

The assumiptions that ¢; > 0, a;; > 0,0 < b;j(n) < iy aj,i=1,...,n, j =
1, 2,are supposed to avoid the trivial and degenerated problems. More precisely




interpretation of the aj; = 0 or ¢; = 0 is far unobvious. When bj(n) > > 7 aj;
then the j-th constraint is always fulfilled and therefore it may be removed
from the problem formulation, otherwise if b;(n) = 0 then (1) has only the
trivial solution i.e. zopr(n) = 0.

Two-Constraint Binary Knapsack Problem is special case of the binary mul-
ticonstraint knapsack problem, also known as m-constraint kné.psack problem,
see Nemhauser and Wolsey {10] and Martello and.Toth [7], where in general
case there is arbitrary number m of constarints, ie. 7 = 1,...,m. Another
important special case is classical (single constraint) or, in other words, Binary
Knapsack Problem, which have only one constraint, i.e. 7 = 1 (see Martello and
Toth [7]). In the Szkatula's papers see {13] and [14] probalistic analysis results
of the different cases of the binary multiconstraint knapsack problem were pre-
sented. Moreover full case of the classical (single constraint) Binary Knapsack
Problem was considerd in the paper [14].

The Multi-Constraint Knapsack Problem is well known to be AP hard,
moreover, when m > 2, it is /P hard in the strong sense (see Garey and
Johnson {3]). It does mean that Two-Constraint Binary Knapsack Problem (1)
is also AP hard in the strong sense. Classical (one-constraint) Binary Knapsack
Problem is AP hard combinatorial optimisation problem, however not in the
strong sense.

The papers by Frieze and Clarke [2], Mamer and Schilling (6], Schilling [11]
and [12] investigate the asymptotic value of zppr(n) for the random model of
Multi-Constraint Knapsack Problem, where bj(n) = 1, j = 1,...,m. Papers
by Szkatula [13] and [14] deal with the random model of the Multi-Constraint
Knapsack Problem, where b;(n) are not restricted to be equal to 1. Papers
by Meanti, Rinnooy Kan, Stougie and Vercellis [9], Lee and Oh [4] consider
more general random models of Multi-Constraint Knapsack Problem but only
for 7 = 1,2 some analytical results describing the growth of zppr(n) were
obtained. Moreover full case of the Binary Knapsack Problem, j = 1, was
considerd in the Szkatula [14].

The aim of the present paper is to analyze the growth of the asymptotic value
of zopp(n) for the class of random Two-Constraint Binary Knapsack Problems
(1) with full spectrum of the right-hand-sides of the constraints values. Two-
Constraint Binary Knapsack Problem is important special case of the general
Multi-Constraint Knapsack Problem, see Martello and Toth (8]. It is difficult,
NP hard in the strong sense, combinatorial optimisation problem. Results
of the probabilistic analysis may allow to describe asymptotic behavior of the
zopr(n) for practically all combinations of values of b1(n) and ba(n) as well as
other problem coefficients (considered as realisations of the random variables).
Those results may help to better understand the theoretical issues related to
Two-Constraint Binary Knapsack Problems as well as enable construction of
more efficient algorithms for solving the practical instances of the (1).

2 Definitions
The following definitions are necessary for the further presentation:
Definition 1 We denote V,; = Y,,, where n — oo, if

Yn : (1 - 0(1)) < Vn < Yn ) (1 + 0(1))




when V,, Y, are sequences of numbers, or
lim P{Yn - (1—-0o(1}) S Vo <Yn -(1+0(1))} =1

when V;, is a sequence of random variables and Y, is a sequence of numbers or
random variables, where limn_ oo 0(1) = 0 as it is usually presumed.

Definition 2 We denote V,, < Y, (V,, = W,,) #f
V< (1+0(1)) Yo (Va2 (1—0(1)) Wa)
when V,,, Y. (W, ) are sequences of numbers, or
HILHQGP{V" <(1+40(1) - Yuy=1 (nlll}gg P{Vo2(1-0(1) Wrt=1)
when'V,, is a sequence of random variables and Y, (W, ) is a sequence of numbers
or random variables, where lim,_.., 0(1) = 0.
Definition 3 We denote V,, ® Y,, if there exist constants ¢’ > ¢/ > 0 such that
Y=V Y,

where Y, V,, are sequences of numbers or random variables.

The following random model of (1) will be considered in the paper:

en—ooo,1=1,...,n 7=1,2

e c;, aj; are realizations of mutually independent random variables and
moreover c;, aj; are uniformly distributed over (0, 1].

e 0 <6< bi(n) <ba(n) <n/2 bj(n) <bj(n+1), for every n 2 1 and all
bj(n), j = 1,2, are deterministic, where 0 is a constant.

Under the assumptions made about ¢;, a;; and b;(n) the following always
hold

n n
0< z0pr(n) €Y ci<m, §<b(n) <Y au<m, j=1,2. (2)
i=1

i=1

Moreover, from the strong law of large numbers it follows that

Zci ~ E(c;) - n=n/2, Zaﬁ ~ E(a;;) -n=n/2.
i=1

i=1
Therefore, it is justified to enhance formula (2) in the following way:
0 < zopr(n) 2 n/2, 0 <8 < bi(n) < ba(n) <n/2 (3)

Formula (3) shows that random model of the Two-Constraint Binary Knap-
sack Problem (1) is complete in the sense that nearly all possible instances of
the problem are considered. In this respect the model where b1(n) = by(n) =1
is just a very special case. Taking into account that 3 ., aj; & n/2 assumption
that b;(n) < bj(n + 1), for ali n 2 1, is quite logical.




The growth of zopr(n) - value of the optimal solution of the problem (1)
may be influenced by the problem coefficients, namely:

n, ¢, aji, bj(n), wherei=1,...,n, j=1,2.

We have assumed that ¢;, aj; are realizations of the random variables and there-
fore their impact on the zppr(n) growth is in this case indirect. Moreover, we
have assumed that n — co. The aim of the probabilistic analysis is to investigate
asymptotic behavior of sopr(n) when n — co. The impact of the right-hand-
side values - by(n), ba(n) - is well illustrated by the Lagrange function and the
problem dual to (1), see Averbakh [1], Meanti, Rinnooy Kan, Stougie and Vercel-
lis [9], Szkatula [13] and [14]. Due to the very complicated formulas, impossible
to handle in the general case, the papers by Szkatula [13] and [14] investigate
only two important special cases of values of constraints right hand sides in the
case of Multi-Constraint Knapsack Problem.

3 Lagrange and dual estimations

When the general knapsack type problem, with one or many constraints, is
considered then Lagrange function and the corresponding dual problems, see
Averbakh (1], Meanti, Rinnooy Kan, Stougie and Vercellis [9], Szkatula [13] and
[14] are very useful tools to perform various kind of analyses of the original
problem. In the specific case of the Two-Constraint Binary Knapsack Problem
Lagrange function of the problem (1) may be formulated as follows:

Lo (z)

n 2 n
ZC{ ST +Z/\j . <bj(n) - Zaﬁ ~:ri> =
i=1 j=1 =1
2 n ’ 2
Z/\j+z ci—zz\j-aﬁ -xg
i=1 i=1 J=1

where z =[z1,...,z,) and A = [Ay, Ao] - vector of Lagrange multipliers. More-
over, let for every A, A; >0, 7=1,2:

z€{0,1}" z€{0,1}"

2 n 2
¢n(A) = max Ln(z,A)= max Z Aj - bi(n) + Z ¢ — Z Ajcags |z
j=1 i=1 j=1

Using the following notation:

2
1 ife — Aira;; >0
z(h) = PR @
0 otherwise.
2
C ife - Ao - Qs
q(A) = ¢ ifg ]Z:l 5 a5 >0
0 otherwise.
2
a;; if e — Ajra >0
an(h) = § © PRl

0 otherwise.




we have for every A, X; 20,7 =1,2:

Obviously fori=1,...,n, j = 1,2,
Ci(A) = C; - zi(A), aj,‘(A) = aji - :Ei(A)

Dual problem to Two-Constraint Binary Knapsack Problem (1) maybe formu-
lated as follows:

o7 = mind, (A). {6

For every A > 0 the following holds:

zopr(n) < O < ¢, (A) =z (A) + i:/\j(bj(n) = 55(A)). (6)
Let us denote:
(A) = anci czi(A) = ; ci(A), 55(A) ilaﬂ zi(A) = Za”
ixj +55(A), B(A) = f:lxj b5(n).

By definition of ¢;(A) and aj;(A), seé also (4), we have:

2
E jaji(A =1,...,n,

and therefore
sn(A) 2 Sn(A). (7
For certain A, z;(A) given by (4) may provide feasible solution of (1), i.e.:
5i{A) <bj(n) forevery j=1,2. (8)
Then:
zn(A) < zopr(n) < &5 < ¢, (A) = 20 (A) + B(A) ~ Sn(A). (9)
If (8) holds, then the below inequality also holds:

B(A) — Sa(A) > 0.

1




From (7) we get:

Therefore if (8) holds, then the following inequality also holds:
zopr(n) 2. Pn(4) B(A)
1< < < < . 10
@) S 50 S ) <5 to

Formula (10) shows, that if there exits such a set of Lagrange multipliers A(n)
which is fulfilling the formula (8) and if the formula below holds:

o BlA@) _
B Am) )

then, due to (10), limp—eo %’—(—’:\’—(E% = 1 and therefore z;(A(n)), i = 1,...,n,
given by (4), is the asymtotically sub-optimal solution of the Two-Constraint
Binary Knapsack Problem (1). Moreover the value of z,(A(n)) is an asymptot-
ical approximation of the optimal solution value of the Two-Constraint Binary
Knapsack Problem i.e. zopr(n).

4 Probabilistic analysis

In the present section of the paper some probabilistic properties of the Two-
Constraint Binary Knapsack Problem (1) will be investigated. We have assumed
that that ¢;, a;; 1 =1,...,n, s = 1,2 are realizations of mutually independent
random variables and moreover ¢;, aj; are uniformly distributed over (0,1].
Moreover we have assumed that 0 < § < b1 (n) < ba(n) < n/2, b;(n) < bj(n+1).
In addition we will assume that Lagrange multipliers A; and Ag, Ao < Ay, A =
(A1, A2) are also deterministic. Monotonicty of constraints right hand sides,
b1(n) < ba(n), is in this case determinig montonicity of the Lagrange multipliers,
A2 < A;. This is pretty standart probabilistic model of the general knapsack
problems and it suits well also to Two-Constraint Binary Knapsack Problem
(1).

Let us first observe that due to the assumptions made the following holds,
fori=1,...,n,5=12

0 when z <0 0 when 2 <0
Plaji<z)=< z whenO<z<1l,Plgg<z)=¢ £ whenO<z<1.
1 whenz > 1 1 when z 2 1
(12)

In order to preceed with probabilistic analysis of the T'wo-Constraint Binary
Knapsack Problem (1) it is neccesary to consder probalisitc distribution of the
following random variables

k

ij-aﬁ, k=1lor2

=1




> o
lz| + z z ifz>0 )j*:{l if 5 Q,Thenforor

Let (z)+ = 2 = 0 otherwise 2 ifj=1

i=1,...,n,j =12, the following holds:

1
Fl(z7/\j) = P{/\J aji <.’L‘}——/\—— )+_(z—)‘j)+)1
1
1
FQ(.’L‘,A) = P{/\1 say; + Agcag < I} = X—/F;(I — /\j*t,A\/\j)di =(13)
70
1
= oy (@) —@-2)i - (z-2)f+ (- —-)})
The distribution functions of the random variables a;;(A), ¢;(A),i=1,...,n,
7 =12 are:

Gji(I,A) = P{aji(A) < I} =

2
= P{ﬂ._—,‘i<IUajiZImZ/\k'aik2ci}: (14)
k=1

1
= 1——//F1(r-—/\j<t,A\/\j)drdt

1
z 0

Hi(sz)

1l

Ple(A) <z} =

2
= P{ci<rUci21ﬂZAk-aik2ci}= (13)
k=1

1
= 1—/F2(t,A)dt

Using above fromulas (14) and (15) expectations of the a;;(A), ¢;(A) could
be expressed as follows:

1 1

Elan(A)) = /rdGﬁzA /:r/lFlr—)\j-:rA\/\»)drdx: (16)

00
101
= 3\1—(/1/ r—2z-X)g— (r—zAj — Aje)4)drdz
00




Elci(p)) = /IdHi(I,A)= z Fy(z,A)dz =
0

O\N

a7

1
= —1——/35-((x)+—(:L‘—Al)i—(:C—)\z)i-i-(.’r—/\l—)\z)i)d:ﬂ:
0

221X
1
1 1
= 2,)\1.A2 Z_/I((I—Al)_z;_+($—/\2)_2‘,—(I—)\l——)\g)i)daj

0

It is easy to observe that above formulas (16) and (17) may take different
values, depending on the mutual relations between Aj, A2 and z, 7 since several
items of the formulas above may become 0 or be strongly postive. 4 specific
cases could be distiguished for i =1,...,n,57=1,2:

1. Case of "large” values of the Lagrange multipliers 1 < Ay < A;. In this
case:

Blay(A)) = —/1/A / (r = Ndrde = e (18)

Blei(h))

I

1
3d _
2-)\1-)\2/ RISV

0

2. Case of "mixed" values of the Lagrange multipliers Az < 1 < A;. In this
case:

/2 1
Ela;(A) = )\iz </ :c/‘,\ (r—z-A)drdz— (19)

- / / (r—z- A — A)drdz | =
(z- A +X22)

1 4— 6,\2_A +4x2

- i

22— 8A
Elay(A)) = N </ /,\ T—T- Ay dra'.r) . 3———)‘1—H_—§,
T Ay

Ble(h)) = ‘2717 i'/ﬂr—xz)?dr =
A2
- (A3 =622 +8)
245, V2T R

3. Case of "moderate” values of the Lagrange multipliers Ay < A\ < 1,




Ay + A1 > 1. In this case:

1 1
Elaji(A) (/ a:/ (r—z-))drdz— (20)
M [ X ’
(I=24%)/%4 1
- / :c/ (r—z-Xj—Xjo)drdz | =
0 (- X+ 0)
_ 1 30— 8AT 46X —BM% + 40 — AL+l -1
2 )
24 AZxj-
1 1
: = _~1__ _1_ _ R _ 2 _ . _ 2 _
E(ci(4)) = 5 g | /:c (z— A1)%dz /:c (z— Ag)dz | =
Ay Az
1
= on (A — 627 +8M + 23 — 623 +8)y — 3).

4. Case of "small" values of the Lagrange multipliers Ao < XA < 1, Mg+ A1 <
1. In this case:

1 1
E(aji(h) = i(/ I/ (r — 2 - A;)drdz— (21)
ihd 0 ED
1
- /:c/ (r—z-X5— A )drd:c):
0 (z-Aj 25T
1 1
=373 J‘"ZAJ'"
1 1 1 1
E(e(A)) = T Z—/I.(I—,\l)2dz—/z-(zaxg)2dz+
TAL T A2
Ay Az

Probablistic, or in other words average case, analysis consists in determining
such Lagrange multipiers = (A1(n), A2(n)) that when n — oo, z;(A(n)), i =
1,...,n, defined by (4) will provide solutions of the Two-Constraint Binary
Knapsack Problem (1) which are, in the sense of convenrgence in probability, see
Loeve (5], providing solutions which are asymptotically feasible , i.e. s;(A(n))
is satifying (8) and moreover if S,(A(n)) is fulfilling (11) then, due to (10),
limp— oo % = 1 and z,(A(n)) is suboptimal solution of the (1) and morever

sopT(n) = zp(A(n)) = E(zsn(A(n))).

The above goal may be achived by determing A(n) as the solution of the fol-
lowing system of equations:

E(si(A(n)) = by(n), E(s2(A(n))) = by(n), (22)




where b (n) < by(n) and b5(n) < by(n) and A(n) is fulfilling both (8) and (11).
Each of the 4 cases mentioned above should be consdiered independently. Let
us observe that E(s;(A(n))) = n-E(a;1(A(n))), E(zn(A(n))) = n- E(c1 (A(n))).

Lemma 1 If ¢;,a; 1 = 1,...,n, j = 1,2, are realizations of mutually inde-
pendent random variables uniformly distributed over (0,1), and if 1 < A < Ny
then

1 afneby(n) - by(n) 1 yfn-bi(n)-bh(n)
AD S )= :

)\1(77,)

is the solution of (22) and

afn-bi(n) - by(n)

Blea(A(n)) =3- z

Proof. Above formulas follow immediately from the (18) and (22). m

5 Concluding remarks

In the present paper some preliminary results describing probabilistic properties
of the Two-Constraint Binary Knapsack Problem (1) are considered.

In the paper distribution functions of the various random variables repre-
senting important problems characteristics are presented.

Future research should be devoted to investiagting remaing 3 cases of the
mutual relations between \;(n) and Aa(n), feasibility of the received solutions
and estimations of the Two-Constraint Binary Knapsack Problem (1) optimal
solution values zppp(n) growth, when n — oo
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