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Abstract 

The paper deals with the Two-Constraint Einary Knapsack Problem, 
which is special case of Multi-Constraint Knapsack Problem, with 2 con­
straints only. It is assumed that some of the problem coefficients are real­
izations of mutually independent random variables. Asymptotical proba­
bilistic properties of selected problem characteristics are investigated . 

1 Introduction 

Let us consider a Two-Constraint Einary Knapsack Problem in the following 
formulation: 

It is assumed that: 

n 

=oPr(n) = max I: ci · Xi 
i=l 
n 

subject to I: aji · Xi ,:;; bj(n) 
i=l 

where j = 1, 2, Xi = O or 1 

n 

Ci> O, aji > O, O< bj(n),:;; Laji, i= 1, ... ,n, j = 1,2. 
i=l 

(1) 

Without restricting the generality of considerations it may be also assumed that: 

b1(n):::;; b2(n) 

The assun'iptions that Ci > O, aji > O, O< bj(n) ,:;; I:~=l aji, i= 1, ... , n, j = 
1, 2,are supposed to avoid the trivia! and degenerated problems. More precisely 



interpretation of the aji = O or c; = O is far unobvious. When bj(n) > I:;:'.,.1 aji 
then the j-th constraint is always fulfilled and therefore it may be removed 
from the problem formulation, otherwise if bj(n) = O then (1) has only the 
trivia! solution i.e . .::opr(n) = O. 

Two-Constraint Einary Knapsack Problem is special case of the binary mul­
ticonstraint knapsack problem, also known as m-constraint knapsack problem, 
see Nemhauser and Wolsey [10] and Martello and . Toth [7], where in generał 
case there is arbitrary number m of constarints, i.e. j = 1, ... , m. Anat.her 
import.ant special case is classical (single constraint) or, in ot.her words, Einary 
Knapsack Problem, which have only one constraint , i.e. j = 1 (see Martello a1~d 
Toth [7]). In the Szkatula's papers see [13] and [14] probalistic analysis results 
of the different cases of the binary multiconstraint knapsack problem were pre­
sented. Moreover full case of the classical (single constraint) Einary Knapsack 
Problem was considerd in the paper [14]. 

The Multi-Constraint Knapsack Problem is well known to be NP hard, 
moreover, when m ;;, 2, it is NP hard in the strong sense (see Garey and 
Johnson [3]). It does mean that Two-Constraint Einary Knapsack Problem (1) . 
is also NP hard in the strong sense. C!assical (one-constraint) Einary Knapsack 
Problem is NP hard combinatorial optimisation problem, however not in the 
strong sense. 

The papers by Frieze and Clarke [2] , Mamer and Schilling [6], Schilling [11] 
and [12] investigate the asymptot.ie value of .::opr(n) for the random model of 
Multi-Constraint Knapsack Problem, where bj(n) = 1, j = 1, .. . , m. Papers 
by Szkatuła [13] and [14] deal with the random model of the Multi-Constraint 
Knapsack Problem, where bj(n) are not restricted to be equal to 1. Papers 
by Meanti, Rinnooy Kan, Stougie and Vercellis [9] , Lee and Oh [4] consider 
more generał random models of Multi-Constraint Knapsack Problem but only 
for j = 1, 2 some analytical results describing the growth of .::opr(n) were 
obtained. Moreover full case of the Einary Knapsack Problem, j = 1, was 
considerd in the Szkatuła [14]. 

The aim of the present paper is to analyze the growth of the asymptot.ie value 
of .::opr(n) for the class of random Two-Constraint Einary Knapsack Problems 
(1) with full spectrum of the right-hand-sides of the constraints values. Two­
Constraint Einary Knapsack Problem is import.ant special case of the generał 
Multi-Constraint Knapsack Problem, see Martello and Toth [8]. It is difficult, 
NP hard in the strong sense, combinatorial optimisation problem. Results 
of the probabilistic analysis may allow to describe asymptot.ie behavior of the 
.::opr(n) for practical!y all combinations of values of b1 (n) and b2(n) as well as 
ot.her problem coefficients ( considered as realisations of the random variables). 
Those results may help to bet.ter understand the theoretical issues related to 
Two-Const.raint Einary Knapsack Problems as well as enable constrnction of 
more efficient algorithms for solving the practical instances of the (1). 

2 Definitions 

The following definitions are necessary for the furt.her presentation: 

Definition 1 We denote V,; ""Yn, where n--> oo, ~f 

Yn · (1 - o(l)) ,:;; Vn ,;;; Yn · (1 + o(l)) 
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when Vn, Yn are sequences of numbers, or 

lim P{Yn · (1 - o(l)) ~ Vn ~ Yn · (1 + o(l))} = 1 
n-oo 

when Vn is a sequence of random variables and Yn is a sequence of numbers or 
random variables, where limn-oo o(l) = O as it is usually presumed. 

Definition 2 We denote Vn :::5 Yn(Vn ~ Wn) if 

V,,~ (1 + o(l)) · Yn (Vn ~ (l - o(l)) · Wn) 

when Vn, Yn (Wn) are sequences of numbers, or 

lim P{Vn ~ (l + o(l)) · Yn} = 1 ( lim P{Vn ~ (1 - o(l)) ·W,.,}= l} 
n-oo n-oo 

when Vn is a sequence of random variables and Y,., (Wn) is a sequence of numbers 
or random variables, where lim,-,-= o(l) = O. 

Definition 3 We denote Vn ~ Yn ~f there exist constants c" ~ c1 > O such that 

where Yn, Vn are sequences of numbers or random variables. 

The following random model of (1) will be considered in the paper: 

• n-+ oo, i= 1, ... , n, j = 1, 2. 

• Ci, aji are realizations of mutually independent random variables and 
moreover Ci, aji are uniformly distributed over (O, l]. 

• O< 8 ~ b1(n) ~ b2(n) ~ n/2, bj(n) ~ bj(n + 1), for every n~ 1 and all 
bj(n), j = 1, 2, are deterministic, where 8 is a constant. 

Under the assumptions made about ci , aji and bj(n) the following always 
hold 

n n 

O~ =oPT(n) ~ Lc; ~ n, 8 ~ bj(n) ~ Laji ~ n, j = 1,2. (2) 
i=l i=l 

Moreover, from the strong law of large numbers it follows that 

n n 

L Ci~ E(ci) ·n= n/2, L aji ~ E(a 11 ) ·n= n/2. 
i=l i=l 

Therefore, it is justified to enhance formula (2) in the following way: 

(3) 

Formula (3) shows that random model of the Two-Constraint Einary Knap­
sack Problem (1) is complete in the sense that nearly all possible instances of 
the problem are considered. In this respect the model where b1(n) = b2(n) = 1 
is just a very special case. Taking int.o account that L~=l aji ~ n/2 assumption 
that bj(n) ~ bj(n + 1) , for all n~ 1, is quite logical. 

3 



The growth of :::opr(n) - value of the optima! solution of the problem (1) 
may be influenced by the problem coefficients, namely: 

n, c;, aj;, bj(n), where i= 1, ... , n, j = 1, 2. 

We have assumed that c;, aji are realizations of the random variables and there­
fore their impact on the :::opr(n) growth is in this case indirect. Moreover, we 
have assumed that n -, oo. The aim of the probabilistic analysis is to investigate 
asymptotic behavior of :::opr(n) when n-> oo. The impact of the right-hand­
side values - b1 (n), b2(n) - is well illustrated by the Lagrange function and the 
problem dual to (1), see Averbakh [1], Meanti, Rinnooy Kan, Stougie and Vercel­
lis [9], Szkatuła [13] and [14]. Due to the very complicated formulas, impossible 
to handle in the generał case, the papers by Szkatuła [13] and [14] investigate 
only two import.ant special cases of values of constraints right hand sides in the 
case of Multi-Constraint Knapsack Problem. 

3 Lagrange and dual estimations 

When the generał knapsack type problem, with one or many constraints, is 
considered then Lagrange function and the corresponding dual problems, see 
Averbakh [l], Meanti, Rinnooy Kan, Stougie and Vercellis [9], Szkatuła [13] and 
[14] are very useful tools to perform various kind of analyses of the original 
problem. In the specific case of the Two-Constraint Einary Knapsack Problem 
Lagrange function of the problem (1) may be formulated as follows: 

n 2 ( n ) 
~c;•x;+?;>..j• bj(n)-~aj;·x; 

2 n ( 2 ) ~ Aj + ~ c; - ~ Aj · aji · X; 

where x = [x1, ... , Xn] and A = [A1, A2] - vector of Lagrange multipliers. More­
over, !et for every A, Aj ~ O, j = l, 2 : 

<fin(A)= max Ln(x,A)= max {tAj-bj(n)+ t(c;-"I:,Aj·aji)Xi }· 
xE{O,l}" xE{O,l}" j=l i=l . j=l 

Using the following notation: 

{ 
2 

x;(A) 
if c; - I: Aj · aji > O 

(4) j=l 

o otherwise. 

{ 
2 

c;(A) 
C; if e; - I; Aj · aj; > O 

j=l 

o otherwise. 

{ 
2 

aj;(A) 
aji if c; - I: Aj · aji > O 

j=l 

o otherwise. 

4 



we have for every A, >.j 2: O, j = 1, 2: 

r/Jn(A) = t>.j-bj(n)+t(c;-t>.j-aj;)·x;(A)= 

= t>.j · bj(n) + t (c;(A)- t>.j. aj;(A)) 

Obviously for i= 1, ... , n, j = 1, 2, 

c;(A) = c; · x;(A), aj;(A) = aji · x;(A). 

Dual problem to Two-Const.raint Einary Knapsack Problem (1) maybe formu­
lated as follows: 

(5) 

For every A 2: O the following holds: 

2 

zopy(n) :S: ć[>~ :S: </i,,(A) = =n(A) + 2::>j(bj(n) - sj(A)). (6) 
j=l 

Let us denote: 

n n n n 

=n(A) L c; · x;(A) = L c1(A), Sj(A) = L aji · x;(A) = L aj;(A), 
i=l i=l 

2 2 

Sn(A) = L >.j · Sj(A), B(A) = L >.j · bj(n). 
j=ł j=ł 

By definition of c;(A) and aj;(A), see also (4), we have: 

2 

and therefore 

c;(A) 2: L >.j • aj;(A), i= 1, ... , n, 
j=ł 

i=l 

(7) 

For certain A, x;(A) given by (4) may provide feasible solution of (1), i.e.: 

Sj(A) :S: bj(n) for every j = 1, 2. (8) 

Then: 

If (8) holds, then the below inequality also holds: 

B(A) - Sn(A) 2: O. 

5 



From (7) we get: 

łn(A) =n(A) B(A) - Sn(A) B(A) - Sn(A) -- = -- + ---'---'------''-'- < 1 + . . 
=n(A) =n(A) =n(A) - Sn(A) 

Therefore if (8) holds, then the following inequality aJso holds: 

l < zoPT(n) < 4")~ < if>n(A) < B(A) . 
- =n(A) - =n(A) - =n(A) - Sn(A) 

(10) 

Formula (10) shows, that if there exits such a set of Lagrange multipliers A(n) 
which is fulfilling the formula (8) and if the formula below holds: 

. B(A(n)) 
/~~ Sn(A(n)) = 1 (11) 

then, due to (10), limn-oo ;'.,'[~{~';l = 1 and therefore x;(A(n)), i = 1, ... , n, 
given by (4), is the asymtotically sub-optima! solution of the Two-Constraint 
Einary Knapsack Problem (1). Moreover the value of =n(A(n)) is an asymptot­
ical approximation of the optima! solution value of the Two-Constraint Einary 
Knapsack Problem i.e . .::opr(n). 

4 Pro babilistic analysis 

In the present section of the paper some probabilistic properties of the Two­
Constraint Einary Knapsack Problem (1) will be investigated. We have assumed 
that that c;, aii i= l, ... , n, j = 1, 2 are realizations of mutually independent 
random variables and moreover c;, aii are uniformly dist.ributed over (O, 1]. 
Moreover we have assumed that O< o~ b1 (n) ~ b2 (n) ~ n/2, bi(n) ~ bi(n+l). 
In addition we will assume that Lagrange multipliers .A1 and .A2, .A2 ::; .A1, A= 
(.A1, .A2) are also deterministic. Monotonicty of constraints right hand sides, 
b1 (n) ~ b2 (n), is in this case determinig montonicity of the Lagrange multipliers, 
.A2 ::; .A1. This is pretty standart probabilistic model of the generał knapsack 
problems and it suits well also to Two-Constraint Einary Knapsack Problem 
(1). 

Let us first observe that due to the assumptions made the following holds, 
for i= 1, ... , n, j = l, 2: 

{ 
O when x ~ O { O when x -~ O 

P(aji < x) = x when O< x ~ l , P(c; < x) = x when O< x ~ l . 
1 when x ~ l 1 when x ~ 1 

(12) 
In order to preceed with probabilistic analysis of the Two-Constraint Einary 

Knapsack Problem (1) it is neccesary to consder probalisitc distribution of the 
following random variables 

k 

L .Aj · aji, k = l or 2 
i=l 

6 



lxl + x { x if x ;=:: O .• { 1 if j = 2 
Let (x)+ = - 2- = O th . , J = 2 'f . 1 , Then for or o erw1se 1 J = 

i= 1, ... , n, j = 1, 2, the following holds: 

1 
P {..\j · aji < x} = 3:((x)+ - (x - Aj)+), 

J 

1 

P {..\1 · ali + A2 · a2; < x} = A~ j Fi(x - Aj•t, A\Aj)dt =(13) 

o 

~ ((x)! - (x - A1)! - (x - A2)! + (x - A1 - A2m 
"l ' "2 

The dist.ribution functions of the random variables aj;(A), c;(A), i= 1, ... , n, 
j = 1,2 are: 

Gj;(x, A) = P { aj;(A) < x} = 

p { aji < X u aji ;::: X n t Ak · a;k ;;:: C;} = (14) 

1 1 

1 - J J F1(r - Aj· t, A\,,\j)drdt 
X Q 

Hi(x,A) P{ci(A)<x}= 

p { Ci < X u Ci ;::: X n t Ak · aik ;;:: Ci} = (15) 

1 

1 - J F2(t, A)dt, 
X 

Using above fromulas (14) and (15) expectations of the aji(A), c;(A) could 
be expressed as fellows: 

1 1 1 J xdGj;(x, A)= J x J Fi(r - Aj· x, A \Aj)drdx = (16) 
o o o 

A~• (! x !((r-x • Aj)+ - (r-x • Aj - Aj•)+)drdx) 

7 



1 1 

E(c;(A)) j xdH;(x, A)= j x · F2(x, A)dx = (17) 

o o 
1 

1 J ( 2 2 2) 2. >-1. >-2 x. (x)+ - (x - >-1)+ - (x - >-2)+ + (x - >-1 - >-2)+ dx = 
o 

2 . ,\~. ,\2 ( ¼- / x · ((x - >-1)! + (x - A2)!- (x - >-1 - >-2)!) dx). 

It is easy to observe that above formulas (16) and (17) may take different 
values, depending on the mutual relations between A1 , A2 and x, r since severa! 
items of the formulas above may become O or be strongly postive. 4 specific 
cases could be distiguished for i= 1, ... , n, j = 1, 2: 

1. Case of "large" values of the Lagrange multipliers 1 ::o .\2 ::o A1 . In this 
case: 

1 11/>._1 11 1 
- x (r-x·Aj)drdx= 2 (18) 
Aj• o X•Aj 24 · \ · Aj• 

l 

E(c;(A)) 1 jx3dx = 1 . 
2 · A1 · >-2 8 · >-1 · >-2 

o 

2. Case of "mixed" values of the Lagrange multipliers >-2 ::o 1 ::o A1. In this 
case: 

E(c;(A)) 

3. Case of "moderate" values of the Lagrange multipliers >-2 :'.S >-1 :'.S 1, 

8 



A2 + A1 2'. 1. In this case: 

2_ ( [1 x1
1 

(r - x · \)drdx- (20) 
A1• Jo x->.; 

r(l->.;-)/>.; X j 1 (r - X. Aj - Aj• )drdx) = 
Jo (x ->.;+>.;•) 

1 3A5 - SAJ + 6AJ - 6AJ. + 4Aj• - Ai. + 4AJ. - 1 

24 AJ Aj• 

E(c;(A)) l (! -J1 
X· (x - A1)2 dx - /

1 
X· (x - A2)2dx) 2 . A1 . A2 4 

~\1 .>,,:l 

24} 1A2 (Ai - 6Ai + 8A1 + A~ - 6A~ + 8A2 - 3). 

4. Case of "small" values of the Lagrange multipliers A2 ::; A1 ::; 1, A2 + A1 ::; 
1. In this case: 

E(c;(A)) 

+ 

Probablistic, or in other words average case, analysis consists in determining 
such Lagrange multipiers = (A1(n),A2(n)) that when n-+ oo, x;(A(n)), i= 
1, ... , n, defined by (4) will provide solutions of the Two-Constraint Einary 
Knapsack Problem (1) which are, in the sense of convenrgence in probability, see 
Loeve [5], providing solutions which are asymptotically feasible , i.e. sj(A(n)) 
is satifying (8) and moreover if Sn(A(n)) is fulfilling (11) then, due to (10) , 

limn~= ~'.:[~illl = 1 and .::n(A(n)) is suboptimal solution of the (1) and morever 

zoPT(n)::::: Zn(A(n))::::: E(.::n(A(n))). 

The above goal may be achived by determing A(n) as the solution of the fol­
lowing system of equations: 

E(s1(A(n))) = b~(n), E(s2(A(n))) = b;(n), (22) 

g 



where b~(n) < b1(n) and b2(n) < b2(n) and A(n) is fulfilling both (8) and (11). 
Each of the 4 cases rnent.ioned above should be consdiered independently. Let 
us observe that E(sj(A(n))) = n·E(aj1(A(n))), E(.::n(A(n))) = n·E(ci(A(n))). 

Lemma 1 ff c;, aji i = 1, ... , n, j = 1, 2, are realizations of mutually inde­
pendent random variables uniformly distributed over (O, 1), and ~f 1 :<::: >-2 :<:'.: ,\1 

then 

is the solution of (22) and 

Proof. Above formulas follow immediately from the (18) and (22). • 

5 Concluding remarks 

In the present paper same preliminary results describing probabilistic properties 
of the Two-Constraint Einary Knapsack Problem (1) are considered. 

In the paper distribution functions of the various random variables repre­
senting important problerns characteristics are presented. 

Future research should be devoted to investiagting remaing 3 cases of the 
mutual relations bet.ween >-1(n) and >.2(n), feasibility of the received solutions 
and estimations of the Two-Constraint Einary Knapsack Problem (1) optima! 
solution values .::apr(n) growth, when n-. oo 
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