





1. Introduction

In the current paper a commodity transfer system composed of nodes and links arranged in a
tree structure is considered. Its task is to transfer a commodity (electric power, radio signal,
electronic data, water, gas, etc.) from the source (root) node to all destination (leaf) nodes. Let
{va,vi,....vo} and {a;,...,a,} be the sets of nodes and links respectively, where a; connects v; to its
parent node, | <i<n. Let {eg, ei,...en} be the set of all network components, N =2n. The
components are indexed so that the index of each non-root component is greater than the index of
its parent component, eg being the root component, i.e. the source node vo. An exemplary network
consisting of 13 nodes and 12 links is presented in Fig. 1.

Each component can be in one of two states — operable and failed; ey is always operable.
The repair of a failed component begins as soon as a repair teams is available — due to a limited
number of such teams the repair may not start immediately after the component's failure. The order
in which failed components are chosen for repair depends on the repair policy applied — two of such
policies will be considered. The functioning of the component e, | <i <N, is characterized by three
distribution functions: F; — lifetime d.f. of the operable e; connected to e, G; — lifetime d.f. of the
operable e; disconnected from ey, and H; ~ repair time d.f. of the failed e;. It is assumed that F; and
G; are exponential, unlike H; which can be arbitrary d.f. on [0,00). 1t is also assumed that F, > G;,
which conveys the idea that the components being “under load” are more failure prone, as in many
real-life systems. Thus, a component's lifetime depends on the behavior of all ,upstream”
components but is not influenced by the remaining components (i.e. not located between a given
component and eg). However, a component functions independently of the "upstream” components
up to the moment when one of them fails. Furthermore, a component's repair time is independent of
the states of all other components. Note that e; directly connected to eg is only characterized by F;

and H; - there is no G; for such e;. Also note that G; = 0 if, by assumption, e; disconnected from eo

cannot fail.




The above characteristic makes the proposed network model more true-to-life in comparison
with many probabilistic models of complex systems which often postulate full independence of
components. In our case it would mean that the life and repair times of all components are
independent random variables. Obviously, independence of components is mainly tuken for
granted due to computational simplicity. In reality, however, such independence rarely occurs.

A commodity can be transferred from vg to v;, 1 <i<n, if and only if v; is operable and
connected to vg, i.e. all components between vg and v; (including v;) are in the operable state. As
failures of components occur, the periods of connection between v and the operable v; are
interleaved by the periods during which v; is failed or disconnected from vo. The aim pursued in this
paper is to determine the mean durations of both time intervals, and the average number of

reconnections between vg and the operable v;. in a given time period (e.g. month or year).

Figure 1. An exemplary system structure

Clearly, connection and disconnection times of individual components depend on two more
factors: the number of repair teams assigned to the network maintenance, and the repair policy
implemented. As to the first factor, the mean disconnection times increase as the number of repair

teams decreases, and vice versa. If there are fewer than N repair teams, a component's repair may

2




not start immediately after its failure, but the average delay decreases along with the increasing
number of repair teams, and is equal to zero if this number reaches N. However, such case should
be considered only for theoretical purposes, because in practice the number of repair teams is
usually considerably smaller than the number of all components. For example, the mean
disconnection times computed for N repair teams can be used as lower bounds of respective mean
times in case of fewer than N repair teams.

Three repair policies will be studied here. According to the first policy the components are
chosen ftor repair in the order in which they failed, i.e. they form a FIFO queue; if multiple
components fail at the same time (such event occurs with zero probability unless it is a common
cause failure), the one with the largest index is selected as first. This policy will be named "FIFO
with largest index priority”. If Gi =0, 1 <i <N, then for each “linear” subset of components (i.e. all
components locuted between e and a leaf node) it prioritizes the components most distant from eo.
Indeed, as only the components connected to eq can fail, if ey is located below e, (yielding y>x),
then ey can only fail if e, is operable, i.e. e, can only fail before or simultaneously with e,, hence ey
must precede ey in the queue for repair.

According to the second policy the components are selected for repair in the order reverse to
that in which they failed, i.e they form a LIFO queue; if multiple components fail at the same time,
the one with the smallest index is selected as first. This policy will be named "LIFO with smallest
index priority". If G; =0, I <i <N, then for each “linear” subset of components it prioritizes the
components least distant from eo. Indeed, if e, is located above e, (yielding y>x), then ex can only
fail after or simultaneously with e,, hence e, must precede ey in the queue for repair.

The third policy prioritizes the components according to their indexes, i.e. the first
component in the queue for repair is the one with the smallest index. This policy will be named
"smallest index priority". Note that it does not take into account the order in which the components
fail, and is only determined by the numbering of the components. Certainly, in general case, the

numbering scheme reflecting a particular repair policy for a multi-component system can be




different from the one adopted in this paper.
It is obvious that applying a priority-based repair policy is only necessary if there are less
than N repair teams. Otherwise the only feasible strategy is “repair a component upon its failure”, as

there is always at least one team available when a component fails.

2. Notation and definitions

We will use the following notation:

LV - random lifetime of operable e; connected to ey

L? — random lifetime of operable ¢; disconnected from e

R; — random repair time of failed e;

F., Gi, H; — distribution functions of L;"?, L', and R, respectively

Ai — failure intensity of operable €; connected to e

(pj(i) — the moment when, for the j-th time, e; fails or becomes disconnected from eg

pj(i) - the moment when, for the j-th time, e; becomes operable and connected to eg; by assumption
oo =0

Ajm — length of time from pj_l(i) to tpj(i), i.e. the length of the j-th period during which operable &;
remains connected to ep

BJ“’ — length of time from cpj(i) to pj(i), i.e. the length of the j-th period during which e; remains failed
or disconnected from eg

7, — the “FIFO with largest index priority” repair policy

m; — the “LIFO with smallest index priority” repair policy

3 — the “smallest index priority” repair policy

a(i) — the average length of a period during which the operable e; remains connected to eg




b(i) ~ the average length of a period during which e; remains failed or disconnected from ey

c(i) — the average number of reconnections between the operable e; and e per unit time

In order not to complicate the notation, it wil] be assumed by default that the system is

maintained by r repair teams, and the repair policy 7 is applied, s = 1, 2, or 3. By definition
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The formula for a(i) is readily obtained. Indeed, for any j>[ all components between e; and
ey are operational at the instant pjﬁl“). Due to the exponential distribution’s “Jack of memory”
property the time from pj_lm to the failure of any ey located between e; and eg has d.f. Fy, provided

that e, remains connected to e up to the moment of failure. We thus have:

Pr(A" <ry=Pr(min(Ly 1e, <) <1)
=l—exp[-) (4 e, <¢)]

for j>1, where ¢ <¢; denotes that e, is located above e; or ex = ¢;. From (2) it follows that

@ EAN =[N e )]’

Thus the mean values of Aj(i) are equal for j=1. The law of large numbers yields immediately that
A+ A NYm converges in probability to a(i) given by the right-hand side of (3).

In general case b(i) is a random variable, provided it exists. Under certain assumptions (see
Lemma 2) b(i) is also a constant value to which (B,(i)+...+ Bm(”)/m converges in probability as

m—w. In turn, from the definition of c(i), we have:
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Clearly, the existence of b(i) is necessary for (4) to hold.

3. Theoretical basis for the Monte Carlo estimation of b(i)

In this chapter a theoretical background for evaluating b(i) is presented. Clearly,
constructing exact analytical formulas for this parameter is beyond question, as can be concluded
from the example of a two-component system analyzed in [7]. Thus, b(i) will be estimated using
Monte Carlo simulation. When estimating parameters of a stochastic process the following problem
is often encountered: whether statistical data may come from one sample path (realization) of the
process or should they be collected from multiple sample paths? Clearly, one sample path is
sufficient in case of a recurrent process, i.e. a process X={ X(t), >0} with the following properties:

- the state of X at t = 0 is fixed, i.e. X(0) has the one-point distribution,

- with probability one X returns to the state X(0) after finite time, measured from O,

- if Y(O)=X(t,+t), where 1, is the (random) time of the first return of X to its initial state, then
Y={Y(t), =0} and X are stochastically identical processes (X begins anew at t = ;).

Sometimes the second property is replaced with the stronger one, i.e. E(t))<co. For details see [6].

Let X be the vector valued stochastic process {[X.(”,...,XK(N)], >0}, where X% denotes the
state of the component ¢; at time t. For recurrent X we define:

Ty ~ the moment of the k-th return of X to the state 1, k>0, 1p=0
Ck“) — the total time within (14—, 7¢] during which the operable e; remains connected to &g
Dk(i) — the total time within (1., 7] during which e; remains failed or disconnected from eq.

Qk(i) — the number of periods in (T, Tk} during which e; remains failed or disconnected from e,



Obviously, {Ck“),kz 14, {Dk“’,kz 1}, and {Qk(i),kz 1} are sequences of IIDRV. Moreover,
CP+D® =t -1y, k2 1. The following lemma gives some necessary conditions for X to be

recurrent.

Lemma 1

If Gi=0for I <i <N, e is located above all other components and the repair policy 7, is

applied, then X is a recurrent process.
Proof

Note that Xg =1 and X begins anew at any moment t when X, =1, due to the “lack of

memory” property of the exponential distribution. Moreover,

(5)  E(@)=EL)+E@ ~L),

and
E(r,-L)=
=E(r,~L |7t,>L)Pr(r, > L)+
©) +E(r, L |7, SL)PKT, <L) <

<SE(r,-L |7, >L)

From (5), (6), and the analysis of the worst case scenario, i.e. “there is only one repair team and all

components are failed when e, fails”, it follows that
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Thus the stronger version of the second property is fulfilled if E(R;)<co, 1 <1 <N. For the weaker

version it is sufficient that Pr(R;<oo)=1.

If the policy m; or 73 is applied, then the question whether X is recurrent remains open, even
for exponentially distributed L;,...,.Ln. Most likely, some additional assumptions regarding the
distribution functions Hy,...,Hx should be made to ensure that X possesses this property.

It follows from (2) that A A L are independent identically distributed random variables
(IIDRV). However, B9, Bz(i),.,. may not be DRV, eg. if Ry,...Ry are not exponentially
distributed. In consequence, defining b(i) as the average time during which e; remains failed or
disconnected from ey, one must remember that the successive periods of disconnection may not
have one distribution function, therefore in this context “average” is not equivalent to “expected

value of”. The proper meaning of thus defined b(i) is given by the following lemma.

Lemma 2

If the assumptions of Lemma 1 are fulfilled, and 0 < rin SR S 1y <0 for | <1 <N, then

J o E(D(I))
—ZB] _—)pmb—,—

® m = E(Ql('))

as m — oo, where —,o, denotes convergence in probability. Thus b(i) is 2 constant value equal to

the right-hand side of (8).

Proof

We first prove the second part of (8). By virtue of (7)

9 E(D,‘”)SE(T,)S—/—ll—+E(R] +...+RN)5/1L+N-r‘mx
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i.e. E(D,") is finite, thus we have:

E(D") = ?[1 ~H(t)ldr = i J[l - H()]dt >

J= =D
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where H is the distribution function of D,(i). It is also true that:
(D EQ"M) =i PO =)= PrQ" 2 )<Y Pe(D 2 jr,)
=1 J=l Jj=1

where the last inequality is a consequence of the following implication: if Q,% > j, then at Jeast j

repairs are performed from (P](i) to 1. From (10), (11), and (7) we obtain:

)
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i.e. E(Q"™) is finite.
Let K(i, m), m>0, be an integer valued random variable equal to k if the interval ((pm(i), pm“)]

is included in the interval (T, T, i.e. KG, m) =k if Q¥ 4.+ Qe < m < Q" ..+ Q™. where

Q" =0. Obviously K(i, m) is non-decreasing in m. As a consequence of (12)

(13) lim K(i,n) = o=

n—yeo




holds with probability 1. For m such that Ql(i) +ot QK(L,,,)_,(” >0 we have:

(f) O] (l) [0}
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@) (i) @ 4 [0}
Ql +ot K(im)y m Q ‘ -+ QK’(i,m)—l
(A) () ) 16 (i)
(15) Dl +DK(|m)l _Dl +"'+DK'(IIN)_ DK(lm)
(i) (i) Y0 (B (n [
Ql t...t QK(i,m) 1 LT QK(:‘.m) Tt Qk(i,m)
(i) 0 0} 0} G}
(16) DI +"‘+DK(i.m) - Dl +... DK(xm) 1 DK(im)
) (i) 4] [0 n) 3]
1 +ot QK(/.I!))—I 1 +.ot Ql((l,m)—l -t QK(:.m)~]
From (13) - (16) it follows that:
(i) O] (i i
(17 lim— iBm"ll Do+ * Do (o DO+ + D k
m—se 1y . Q(” +oF Q’((’gi‘m) koo k (’) +..+ Q(”

Now (8) is obtained by applying the Khinchin law of large numbers to (17).

Corollary: Under the assumptions of Lemma 2 we have:

(x)
(18) i——n—]—- oo [aﬁ) + EEQ(U ))
[AY +B]

i=l

as m — co, where a(i) is given by the right hand side of (3).
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4. Simulation technique to estimate b(i)

Let us first modify the notation from chapter 3 so that it is better suited to describe the
estimation algorithm presented in this section. Thus C(i), D(i), and Q(i) will denote random variables
with the same distributions as C.“), DI“), and Ql(i) respectively, while Ck(i), Dk(i), or ka will denote
the k-th element of the random sample from c® DY orQ® 1<k <K.

In order to compute b(i) from (8) we first need to estimate E(D(i)) and E(Q(i)). For this
purpose we will simulate a sample path of the process X describing the behavior of the
component ¢; (see Lemma 1). Obviously, the component ¢; can fail, or become disconnected from
or reconnected to e, solely at the instants Ty, h>1, which are the consecutive moments when any
component changes its operational state, i.e. either the component fails or its repair is finished. In

consequence, the estimation algorithm consists of the following tasks:

1) Generate the sequence {Ty, h > 1}, and the states of all components at the instants Ty. The last in
this sequence is the moment when the process X returns to its initial state [.

2) Compute sumple values of the variables DY and QY from the sequence {Tp, h>1}.

3) Estimate b(i) in the following way

D" +...+D{

19 b)) » 40—
() ® QY +..+QY

i.e. us the quotient of respective sample means from K-element random samples obtained by

repeating K times the tasks I and 2.

In order to perform Task 1 we need a procedure generating Ty from Ty, h > 1. This is

accomplished by Procedure |, outlined below.




Variables used by Procedure 1:
Xhm : the state of e; at Ty ; it is assumed that:
X = —q, if e; occupies the g-th place in the queue of components awaiting repair,
Xh(i) =0, if e; is under repair,
Xh“) =1, if e; is operable and connected to e,
Xh(i) =2, if e; is operable and disconnected from eg,
Sh“) : the sojourn time of e; in the state Xh(i), counted from T}, on the assumption that all other
components do not change their states before e; does,
q_len : the number of components awaiting repair (queue length),
avl_rt : the number of available repair teams,
sim(2,i), sim(1,i), sim(0,i) : the functions simulating the r.v. Li(z), Li”), and R; ; the simulation is of
Monte Carlo type, therefore it is based on random numbers generation,

PARENT]i] — parent node of component e; in the tree structure

Procedure 1
## setting default values of X,®
repeat fori=1,...,N

Xh(i) — Xh—](i);
## computing Th — Ty

## (a component awaiting repair at Ty, (Xh_,(i) < 0)isirrelevant in finding Th)

Th = Tioy ¢~ min(Sp-i () - 1 <1 <N, X (i) 2 0);
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## adding newly failed components at the end of the queue (repair policy m;)
repeat fori = N,...,1
if (X1 > 1) AND (Spot® = Ty ~ i) then {
Xh(” ——~q_len—1;

q_len ¢=q_len + 1;

## releasing repair teams
repeat fori=1,.., N
if (X1 = 0) AND (St = T, = Ty then {
X\ e 1,

avi_rt & avl_rt + 1;

## taking at most avl_rt components for repair
x « avl_rt;
repeat fori=1,.., N {
if (—x < X, < 0) then {
X, e 0;
avl_rt «—avi_rt—1;
q_len «q_len-1;
}

if O < =x) then X,V « X, + x;
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##updating the states of operable components
## (an operable component may change its state between 1 and 2 at Ty,)
repeat fori = 1,...,.N {
if (X" > 1) then {
jei;
x &« X,
repeat while (j > 0 AND x > 0) {

j <~ PARENTJj] ;

if > 0) thenx « X],G) ;

}
if (X, =1 AND x £0) then X, ? 2 ;

if (X, =2 AND x > 0) then X ¢~ 1 ;

##simulating the residual sojourn times of components in their states after Ty
repeat fori=1,....N {
if (Xh(i) < 0) then continue;
if (Xn" = X3 )
then Sy ¢ Spt® — [Ty = Toul 5

else Shm — sim(Xhm, i)




Remarks:

1. Sh(” has to be simulated when e; changes its state to 0, 1 or 2 at the instant Ty, because at such
moment ¢; “forgets its history”. Obviously, if e; remains in one of these states after Ty, the
difference between Sh“) and Sh_lm is equal to Th.y — Ty, If €; changes its state to a negative value,
or remains in a “negative” state, then e; is irrelevant in finding Th.1, as neither failure nor repair
completion is possible for a component whose state is less than 0.

2. If the repair policy m is in place, then newly failed components have precedence over already
failed ones, and those with smaller indexes are favored in case of simultaneous failures. Thus the
“old” queue has to be “moved backward” at each T, and the following code fragment is used to

add failed components to the queue:

x =0;
repeat fori=1,....N
if (Xoo'> 1 AND Sy @ = Ty~ They then {
XX+ 1;
X e —x ;

q_len «q_len + I;

repeat fori=1,....N

if (Xoet™ < 0) then X4 e Xyt ¥ = x5
3. 1f the policy =3 is applied, then it may be necessary to rearrange the whole queue at each T,

because a component’s place in the queue is solely determined by its index. Thus in case of m3

the following code fragment is used to add failed components to the queue:
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x =0;
repeat fori=1,...,.N
if (Xpt® <0 OR (Xt > 1 AND S, =Ty, = Ty )) then {
X e x+1;
X e —x
}

g_len ¢ x;

As stated in Task 3, b(i) will be estimated using sample means from the random samples
{D,(i),...,DKm} and {Qx(i),...,QK(i)} obtained in K simulation cycles, where a cycle corresponds to
the time interval between two consecutive returns of the process X to the state 1, i.e. one of the
intervals [1e.1, 7)., k>1. Thus, the estimation procedure consists in embedding Procedure 1 into

Tasks 1 and 2, and repeating these tasks K times. The resulting Procedure 2 is outlined below.

Variables used by Procedure 2:

D, Q : the sample values of DY and Q®

ED, EQ : the sample means of D and Q(i)

UD, UQ : the sample means of (Dm)2 and (Q(i))2

VD, VQ : the sample variances of D% and Q¥

Yhm : a binary variable; Yh(i) = 1 if the operable e; is connected to eg at Ty, otherwise Yh(i) =0

Z, @ a binary variable; Z, = 1if X,¥ = 1 for | <i <N, otherwise Z, =0

Procedure 2

ED=0; EQ=0; UD=0; UQ=0; VD=0; VQ=0;
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