
Raport Badawczy 

Research Report 
RB/32/2009 

Simulating failure-repair process 
and evaluating reliability parameters 

for single-source multiple-sink 
commodity transportation network 

with stochastically dependent 
components 

J. Malinowski 

Instytut Badań Systemowych 
Polska Akademia Nauk 

Systems Research Institute 
Polish Academy of Sciences 



POLSKA AKADEMIA NAUK 

Instytut Badań Systemowych 

ul. N ewelska 6 

01-447 Warszawa 

tel.: (+48) (22) 3810100 

fax: (+48) (22) 3810105 

Kierownik Pracowni zgłaszający pracę: 
Prof. dr hab. inż. Olgierd Hryniewicz 

Warszawa 2009 



1. lntroduction 

In the cun-ent paper a commodity transfer system composed of nodes and links an-anged in a 

tree struclure is considered. Its task is to transfer a commodity (elect1ic power, radio signal, 

electronic data, water, gas, etc.) from the source (root) node to all destination (leaf) nodes. Lei 

(v11 ,v 1, .. . ,v11 ) and (a 1, ... ,a,d be the sets of nodes and links respectively, where ai connects vito its 

parent node, l '.5 i '.5 n. Lei {eo, e1, .. ,,eN) be the set of all network components, N= 2n. The 

components are indexed so thai the index of each non-root component is greater than the index of 

its parent component, eo being the root component, i.e. the source node Vo. An exemplary network 

consisting of 13 nodes and 12 links is presented in Fig. 1. 

Each component can be in one of two states - operable and failed; e0 is always operable. 

The repair of a failed component begins as soon as a repair teams is available - due to a limited 

number of such teams the repair may not start immediately after the component's fai Iure. The order 

in which failed components are chosen for repair depends on the repair policy applied- two of such 

policies will be considered. The functioning of the component ei, l '.5 i '.5 N, is characte1ized by three 

di stribution functions: F; - lifetime d.f. of the operable e; connected to e0, G; - lifetime d.f. of the 

operable e; di sconnected from eo, and H; - repair time d.f. of the failed ei, It is assumed that F; and 

G; are exponential , unlike H; which can be arbitrary d.f. on [O,ro). It is also assumed thai F; 2: G;, 

which conveys the idea thai the components being "under load" are more failure prane, as in many 

real-life systems. Thus, a component's lifetime depends on the behavior of all „upstream" 

componenls but is not influenced by the remaining components (i.e. not located between a given 

component and e0). However, a component functions independently of the "upstream" components 

up to the moment when one of them fails. Furthermore, a component's repair time is independent of 

the states of all other components. Note thai e; directly connected to e0 is only characterized by Fi 

and H; - there is no G; for such e; . Also note thai G; aa O if, by assumption, ei disconnected from eo 

cannot fai I. 



The above characteristic makes the proposed network model mare true-to-life in comparison 

with many probabilistic models of complex systems which often postulate full independence of 

components. In our case it would mean that the life and repair times of all components are 

independent random variables. Obviously, independence of components is mainly taken for 

granted due to cornputational sirnplicity. In reality, however, such independence rarely occurs. 

A comrnodity can be transferred frorn v0 to v;, I Si Sn, if and only if v; is operable and 

connected to v0, i.e. all components between v0 and v; (including v;) are in the operable state. As 

failures of components occur, the periods of connection between v0 and the operable v; are 

interleaved by the periods during which v; is failed or disconnected from v0• The aim pursued in this 

paper is to determine the mean durations of both time intervals, and the average number of 

reconnections between v0 and the operable v;. in a given time period (e.g. month or year). 
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Figure I. An exemplary system structure 

Clearly, connection and disconnection times of individual components depend on two mare 

factors: the number of repair tearns assigned to the network maintenance, and the repair policy 

implemented. As to the first factor, the mean disconnection times increase as the number of repair 

teams decreases, and vice versa. If there are fewer than N repair teams, a cornponent's repair may 
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not start immediately after its failure, but the average delay decreases along with the increasing 

number of repair teams, and is equal to zero if this number reaches N. However, such case should 

be considered only for theoretical purposes, because in practice the number of repair teams is 

usually considerably smaller than the number of all components. For example, the mean 

disconnection times computed for N repair teams can be used as !ower bounds of respective mean 

times in case of fewer than N repair teams. 

Three repair policies will be studied here. According to the first policy the components are 

chosen for repair in the order in which they failed, i.e. they form a FIFO queue; if multiple 

components fai I at the same time (such event occurs with zero probability unless it is a common 

cause failure), the one with the largest index is selected as first. This policy will be named "FIFO 

with largest index priori ty". If O;= O, 1 Si SN, then for each "linear" subset of components (i.e. all 

componenls located between eo and a leaf node) it prioritizes the components most distant from eo. 

lndeed, as only the components connected to e0 can fai!, if ey is located below e, (yielding y>x), 

then ey can only fai! if e, is operable, i.e. ey can only fai! before or simultaneously with e,, hence ey 

must precede ex in the queue for repair. 

According to the second policy the components are selected for repair in the order reverse to 

that in which they failed, i.e they form a LIFO queue; if multiple components fai! at the same time, 

the one with the smallest index is selected as first. This policy will be named "LIFO with smallest 

index priori ty". If O; = O, I Si SN, then for each "linear" subset of components it p1ioritizes the 

components least distant from eo. Indeed, if ex is located above ey (yielding y>x), then e, can only 

fai I after or simultaneously with ey, hence e, must precede ey in the queue for repair. 

The third policy p1ioritizes the components according to their indexes, i.e. the first 

component in the queue for repair is the one with the smallest index. This policy will be named 

"smallest index priority". Note that it does not take into account the order in which the components 

fai!, and is only determined by the numbering of the components. Certainly, in generał case, the 

numbering scheme reflecting a particular repair policy for a multi-component system can be 
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different from the one adopted in this paper. 

It is obvious chat applying a priority-based repair policy is only necessary if there are less 

chan N repair teams. Otherwise the only feasible strategy is "repair a component upon its failure" , as 

there is always at least one team available when a component fai Is. 

2. Notation and definitions 

We will use the following notation: 

L,(J> - random lifetime of operable e, connected to eo 

L/2> - random lifetime of operable e, disconnected from e0 

R, - random repair time of failed e, 

F,, G,, H; - dist1ibution functions of L/ll, L,m, and R, respectively 

A; - fai Iure intensity of operable e; connected to e0 

<p/> - the moment when , for the j-th time, e; fails or becomes disconnected from e0 

P?- the moment when, for the j-th time, e; becomes operable and connected to eo; by assumption 

Potil = O 

At> - length of time from Pi-I <,J to cp/>, i .e. the length of the j-th pe1iod dUiing which opera ble e; 

remains connected to eo 

B/l - length of time from <p/l to p/l, i .e. the length of the j-th period du ring which e; remains fai led 

or disconnected from eo 

n:1 - the "FIFO with largest index priority" repair policy 

n:2 - the "LIFO with smallest index priority" repair policy 

n:3 - the "smallest index priority" repair policy 

a(i) - the average length of a period during which the operable e; remains connected to e0 
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b(i) - the average length of a period during which e; remains failed or disconnected from e0 

c(i) - the average number of reconnections between the operable e; and e0 per unit time 

In order not to complicate the notation, it will be assumed by default thai the system is 

maintained by r repair teams, and the repair policy :n:, is applied, s = 1, 2, or 3. By definition 

(I) 
1 m . 

a(i) = lim - IA<1i, 
Ili-+"" n, j=I J 

l m 

b(")-1" '°'BOJ 
I - ml!!!.. m L....J j , 

j=l 

The formula for a(i) is readily obtained. Indeed, for any j2:l all components between e; and 

e0 are operational at the instant Pi-l(iJ_ Due to the exponential distribution's "lack of memory" 

property the time from Pi-lCiJ to the failure of any ek located between e; and e0 has d.f. Fk, provided 

that ek remains connected to eo up to the moment of fai Iure. We thus have: 

(2) 
Pr(At ~ t) = Pr(min(L~" : e, <le;)~ t) 

=1-exp[-I(A-, :e, <le;)] 

forj2:l, where e, <le; denotes thai e, is located above e; orek= e; . From (2) it follows thai 

(3) E(A)''J=[I(A., :e, <1eJ-' 

Thus the mean values of A/1 are equal for j2:l. The law of large numbers yields immediately that 

(A,<i> + ... + A111 Cil)/111 converges in probability to a(i) given by the right-hand side of (3). 

In generał case b(i) is a random variable, provided it exists. Under ce1tain assumptions (see 

Lemma 2) b(i) is also a constant value to which (B,CiJ + ... + B111Cil)/m converges in probability as 

m~co. In tum, from the definition of c(i), we have: 
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(4) c(i) = [a(i)+ b(i)r' 

Clearly, the existence of b(i) is necessary for (4) to hold. 

3. Theoretical basis for the Monte Carlo estimation of b(i) 

In this chapter a theoretical background for evaluating b(i) is presented. Clearly, 

constructing exact analytical formulas for this parameter is beyond question, as can be concluded 

from the example of a two-component system analyzed in [7]. Thus, b(i) will be estimated using 

Monte Carlo simulation. When estimating parameters of a stochastic process the following problem 

is often encountered: whether statistical data may come from one sample path (realization) of the 

process or should they be collected from multiple sample paths? Clearly, one sample path is 

sufficient in case of a recurrent process, i.e. a process X={X(t), t2:0} with the following properties: 

- the state of X at t = O is fixed, i.e. X(O) has the one-point distribution, 

- with probability one X returns to the state X(O) after finite time, measured from O, 

- if Y(t)=X(,,+t), where , 1 is the (random) time of the first return of X to its initial state, then 

Y={Y(t), t2:0} and X are stochastically identical processes (X begins anew at t = , 1). 

Sometimes the second prope11y is replaced with the stronger one, i.e. E(, 1)<ro. For details see [6]. 

Let K be the vector valued stochastic process {lX,(ll, ... ,X,'N1J, t2:0), where x,'il denotes the 

state of the component e; at time t. For recurrent K we define: 

'k - the moment of the k-th return of Kto the state l, k 2: O, ,o= O 

c/l _ the total time within (,k-l, ,d during which the operable e; remains connected to e0 

D/l - the total time within (,k-l, ,d dming which e; remains failed or disconnected from e0. 

Q/l - the number of periods in (1:k-l, 1:k] during which e; remains failed or disconnected from eo 
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Obviously, {C/l, k?. l}, {Dk(il, k?. I}, and {Qk(il, k?. l} are sequences of IIDRV. Moreover, 

C/i1 + D/il = 'k - •k-l, k?. l. The following lemma gives some necessary conditions for K to be 

recurrent. 

Lemma 1 

lf G; = O for I :Si :SN, e1 is located above all other components and the repair policy n 1 is 

applied, then K is a recurrent process. 

Proof 

Note thai Ko= l and K begins anew at any moment t when K, = l, due to the "lack of 

memory" property of the exponential distribution. Moreover, 

(5) E(r,) = E(L,) + E(r, - L, ), 

and 

(6) 

E(r, -L,) = 
=E(r, -L, Ir, >L,)Pr(r, >L,)+ 

+E(r, -L, Ir, $L,)Pr(r, $L1)$ 

$E(r, -L, Ir, >L,) 

From (5) , (6) , and the analysis of the worst case scenario, i.e. "there is only one repair team and all 

components are failed when e 1 fails", it follows that 

(7) 
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Thus the stronger version of the second property is fulfilled if E(R;)<oo, 1 :'Si :'SN. For the weaker 

version it is sufficient that Pr(R;<oo)=l. 

If the policy n2 or n3 is applied, then the question whether X is recutTent remains open, even 

for exponentially distributed L 1, .. ,,LN. Most likely, some additional assumptions regarding the 

distribution functions H 1, .. ,,HN should be made to ensure that X possesses this property. 

It follows from (2) that A 1<i>, A/>, ... are independent identically distributed random variables 

(IIDRV). However, B/i>, B2<il , .. . may not be IIDRV, e.g. if R 1, .. ,,RN are not exponentially 

di stributed. In consequence, defining b(i) as the average time during which e; remains failecl or 

disconnected from e0, one must remem ber that the successi ve periods of disconnection may not 

have one distribution function, therefore in this context "average" is not equivalent to "expected 

value of'. The proper meaning of thus defined b(i) is given by the following lemma. 

Lemma 2 

If the assumptions of Lemma 1 are fulfilled, and O< rmin :<SR; :<S rmax < oo for l :<S i :<S N, then 

(8) 
1 "' . E(D ',i) 

- '\' B''i ~ --'-. -
L., j µmb E(Q (,)) 

111 j= I I 

as m--> oo, where ~p,ob denotes convergence in probability. Thus b(i) is a constant value equal to 

the right-hand side of (8) . 

Proof 

We first prove the second part of (8). By virtue of (7) 

(9) 
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i.e. E(D 1(i)) is finite, thus we have: 

oo 00 Jrm11, 

E(Di 0 )= f[l-H(t)]dt=L f[l-H(t)]dt2: 
O J=I (j-l)rnM" 

(10) 

- -
2: 1;,,;,, L [I - H (j · r,,,;,, ) ] = 1;,,;,, L Pr( Di0 2: j · r,,, ) 

j=I }=I 

where His the distribution function ofD 1(i)_ It is also true that: 

- - -
(I I) E(Qi 0 ) = L.i·Pr(Q,u> = j) = LPr(Q,u> 2: j) ~ LPr(D,u> 2: J·r"';,,) 

i=I j=I j=I 

where the last inequality is a consequence of the following implication: if Q/>::: j, then at least j 

repairs are performed from <p,<i> to 1:1• From (10), (11), and (7) we obtain: 

( 12) 

Let K(i, 111), 111:::0, be an integer valued random variable equal to k if the interval (<p 111<i>, Pm(i)] 

is included in the interval (tk-l, tk], i.e. K(i, m) = k if Q1(i) + ... + Qk-l(i) < m::; Q,<iJ + ... + Q/il, where 

Qu°> = O. Obviously K(i, 111) is non-decreasing in 111. As a consequence of (12) 

( I 3) lim K(i, 111) = = 
J//-400 
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holds with probability 1. Form such that Q? + ... + QKci.m)-l(il >Owe have: 

(14) 

(15) 

(16) 

Dul+ + Dul 1 "' Dul + + Dul 
I ' ' ' K(i,m)-1 <-"' (i)< I ··• K(i,111) 

-------- L.iB1 - u, u, 
Q?' + · · · + Q~:i.m) In j=I QI + · · · + QK(i,111)-l 

Dl(i) + · · · + D~:i.111)-I Dl(i) + · · · + D~·:i,111) D~:i,m) 

Ql(i) +' '' + Qi:i,m) Qi"') + · •' + Qf:i.m) Q?' + · · · + Qt:i.111) 

Dl(i) +.,. + D~:i.m) 

Qti) +'' · + Q~·:i,m)-1 

(i) (i) {i) 
D, + ... +DK(i.m)-1 + DK(i.m) 

Qi°) + ''' + Qf~i.111)-I Qi°) +''' + Qf'~i,111)-I 

From (13) - (16) it follows that: 

(17) 
1 "' Dcn+ +D<n 1· D,u, + ... +D,<_n k I. °"B(i) _ J" I ••• K[i.m) 1m - L. . - Im . . = Im------ ------

111--+oo 111 j=] J m--+oo Q](I) + • • • + Q~~i.111) k--+00 k Ql(i) + • • • + Q1i) 

Now (8) is obtained by applying the Khinchin law of large numbers to (17). 

Corollary: Under the assumptions of Lemma 2 we have: 

(18) 
m ( . E(D~'l))_, 

m ~prnb a(I)+--(i)-
°"[A(i) +B<')J E(Q, ) 
L., J J 
j=I 

as m ~ oo, where a(i) is given by the right hand side of (3). 
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4. Simulation technique to estimate b(i) 

Let us first modify the notation from chapter 3 so thai it is beller suited to desciibe the 

estimation algorithm presented in this section. Thus c 0>, o<i>, and Q(iJ will denote random vaiiables 

with the same di stributions as c 1<i>, 0 1<il, and Q 1(il respectively, while ck0>, Dk(il, or Qk(iJ will denote 

the k-th element of the random sample from c 0>, o 0>, or Q0>, l :S:: k :S:: K. 

In order to compute b(i) from (8) we first need to estimate E(D(iJ) and E(Q(iJ). For this 

purpose we will simulate a sample path of the process X/i> desciibing the behavior of the 

component e; (see Lemma 1). Obviously, the component e; can fail, or become disconnected from 

or reconnected to e0, solely at the instants T1,, h?:l, which are the consecutive moments when any 

component changes its operational state, i.e. either the component fails or its repair is finished. In 

consequence, the estimation algorithm consists of the following tasks: 

I) Generale the sequence {T1,, h ?: I}, and the states of all components at the instants T1,. The last in 

thi s sequence is the moment when the process K returns to its initial state l. 

2) Compute sample va lues of the variables D(iJ and Q(iJ from the sequence {Th, h ?: I} . 

3) Estimate b(i) in the following way 

( 19) 
D o, 0 c,1 

b(i ~ 1. + ... + K 

) Q:•1 + .. . +Q~) 

i.e. as the quotient of respective sample means from K-element random samples obtained by 

repeating K limes the tasks l and 2. 

In order to perform Task l we need a procedure generating T1, from T1,_ 1, h ?: l. This is 

accompli shed by Procedure 1, outlined below. 
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Variables used by Procedure 1: 

x/>: the state of e; at Th ; it is assumed that: 

xh<iJ = ---q, if e; occupies the q-th place in the queue of components awaiting repair, 

xh<iJ = O, if e; is under repair, 

xh<iJ = I, if e; is operable and connected to e0, 

x 11 <il = 2, if e; is operable and disconnected from e0 , 

s11<il : the sojourn time of e; in the state Xh(i>, counted from T 11 , on the assumption that all other 

components do not change their states before e; does, 

q_len : the number of components awaiting repair (queue length), 

avl_rt: the number of available repair teams, 

sim(2,i), sim(l,i), sim(O,i): the functions simulating the r.v. L;'2>, L;''>, and R;; the simulation is of 

Monte Carlo type, therefore it is based on random numbers generation, 

PARENT[i] - parent node of component e; in the tree structure 

Procedure 1 

12 

## setting default values of Xh (il 

repeat for i= I, ... ,N 

xh <i) t---- xh_, (i); 

## computing Th -Th-I 

## (a component awaiting repair at Th-I (Xh_,<iJ < O) is irrelevant in finding T 11 ) 

Th -Ti,_, f--- min(Sh_,(i): 1 :Si :SN, Xh_1(i) ~ O); 



## adding newly failed components at the end of the queue (repair policy n1) 

repeat for i= N, ... ,l 

if (X1,_/> ::,,_ 1) AND (Sh-l(iJ = Th -T1,_i) then { 

x/> f- -q_len - I; 

q_len f- q_len + l; 

## releasing repair teams 

repeat for i= 1, ... , N 

if (X11_ 1<iJ = 0) AND (S 11_/il = T 11 -T11_ 1) then { 

avl_rt f- avl_rt + l; 

## taking at most avl_rt components for repair 

x f- avl_rt; 

repeat for i= 1, ... , N ( 

if (-x '.S X1? < O) then ( 

X1? f-0; 

avl_rt f- avl_rt - I; 

q_len f- q_len - I; 
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##updating the states of operable components 

## (an operable component may change its state between l and 2 at Th) 

repeat for i = ! , ... ,N { 

if (X/l ~ !) then { 

j f- i ; 

X f- Xh(i); 

repeat while (i > O AND x > 0) { 

j f- P ARENT[j] ; 

if (i> 0) then x f- xh(j); 

if (Xh(i) = l AND x :5 O) then x/> f- 2; 

if (Xh(i) = 2 AND x > O) then xh(i) f- l ; 

##simulating the residua! sojourn limes of components in their states after T 11 

repeat for i = 1, ... ,N { 

if (X/l < O) then continue; 

.. 



Remarks: 

l. s1? has to be simulated when e; changes its state to O, 1 or 2 at the instant Th, because at such 

moment e; "forgets its history". Obviously, if e; remains in one of these states after Th, the 

difference between S1,(iJ and S1,_1<iJ is equal to T1,_1 -T1, . If e; changes its state to a negative value, 

or remains in a "negative" state, then e; is i1,-elevant in finding Th+!, as neither fai Iure nor repair 

completion is possible for a component whose state is less than O. 

2. If the repair policy n2 is in place, then newly failed components have precedence over already 

failed ones, and those with smaller indexes are favored in case of simultaneous failures. Thus the 

"old" queue has to be "moved backward" at each Th, and the following code fragment is used to 

acid failed components to the queue: 

X= O; 

repeat for i = 1, ... ,N 

if (X11-1 1iJ c:: 1 AND S11_1<i> = T1, -T1,_1 then { 

x f-x+l; 

X/l f- -X; 

q_ len f- q_len + 1; 

repeat for i = I , ... ,N 

i f (Xh-1 (i ) < 0) the n xh (i) f- xh-1 (i) - X ; 

3. lf the policy n, is applied, then it may be necessary to reairnnge the whole queue at each T11 , 

because a component's place in the queue is solely determined by its index. Thus in case of n3 

the following code fragment is used to acid failed components to the queue: 
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X= O; 

repeat for i = l , ... ,N 

if (Xh-1(i) < O OR (Xh-1°>?: l AND S11_/i> = Th -Th-1 )) then { 

X~ X+ l; 

q_len ~ x; 

As stated in Task 3, b(i) will be estimated using sample means from the random samples 

{D 1°l, ... ,DK(i)} and {Q 1(i>, ... ,Q/>} obtained in K simulation cycles, where a cycle co1Tesponds to 

the time interval between two consecutive retums of the process X to the state 1, i.e. one of the 

intervals [•k-l, Tk), k?:l. Thus, the estimation procedure consists in embedding Procedure I into 

Tasks l and 2, and repeating these tasks K times. The resulting Procedure 2 is outlined below. 

Variables used by Procedure 2: 

D, Q: the sample values of D(i> and Q(i) 

ED, EQ : the sample means of D(i) and Q(i) 

UD, UQ : the sample means of (D(il)2 and (Q0>)2 

VD, VQ : the sample variances of D(i) and Q(i) 

yh(i): a binary vatiable; Yh(i) = l if the operable e; is connected to e0 at Th, otherwise Y1? = O 

zh : a bi nary vatiable; zh = l if x/> = l for l :si :s N, otherwise zh = o 

Procedure 2 

ED=O; EQ=O; UD=O; UQ=O; VD=O; VQ=O; 
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repeat for k 2': 1 ( 

D ~ O; Q ~ O; To~ O; avl_rt ~ r; q_Ien ~ O; 

repeat for i = I, .. ,N ( 

x/>~ l; 

sn°> ~ sim(l,i); 

repeat for h 2': I ( 

obtain T11 and x/>, ... , X11'"> using Procedure l; 

compute Y111i> from xt>, ... , X11' 11 >; 

il" (Y11j> = O) then ( 

## if e; was failed or disconnected from eo at T11_1, 

## then D is increased by the time elapsed from T11_1 to T11 

D ~ D + (T1, -T11-1); 

## if e; is reconnected to e0 at T11 then Q is increased by 1 

if (Y/> = 1) then 

Q~Q+l; 

compute Z11 from X111I), ... , X/'>; 

i f (Z11 = I) the n break; 

} ## end of "repeat for h 2': l" 
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ED +- ED + (D - ED)/k ; UD +-UD+ (D2 - UD)/k ; YD +- UD - (ED)2 ; 

EQ +- EQ + (Q - EQ)/k ; UQ +- UQ + (Q2 - UQ)/k ; VQ +- UQ - (EQ)2 

if (k fulfills the stopping condition) then break; 

} ## end of "repeat for k ~ l" 

Remarks: 

I. The sample means of o<il, Q(i>, and their squares are updated in the step k of the outer loop 

(repeat for k ~ 1) according to the following formula : 

(20) 

where 

(21) 
x , + ... +x, 

µ, = k 

To update the sample variances of o<il and Q(il the following formula is used: 

(22) 

where 

(23) 
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z xi2 + ... + x; a, =~--~-µ; 
k 

2 (x,-µ,)2+ . . . +(x, - µ,)2 
a, = k 



2. Note that in the step h of the inner loop (repeat for h;::: l) only the values Xh_, 0 , X/l, Th-I, Th are 

used to update C or D, and possibly Q, while the analogous values obtained up to the step h-2 are 

irrelevant. In consequence, it is necessary to store only the X's and T's obtained in the cun-ent and 

the previous cyc le of the considered loop. 

5. Accuracy of the estimation 

Clearly, E[C<il)/E[Q<il) is estimated by [D 1<iJ + ... + D/l)/[Q/il + ... + Q/>J with growing 

accuracy as the total number of simulation cycles (K) increases. A natural question arises: how to 

gauge this accuracy? It should be noted that we have to estimate a quotient of two expected values 

rather than a single expected value. Let us quickly remind how the estimation accuracy is assessed 

for a random variable X with finite expected value µ and standard deviation cr. The statistical 

estirnation theory states that for sufficiently large k (k > 30): 

(24) .Jv: .Jv: 
Pr(M k - z,-a1' t, :<;µ:<;Mk + z,-a,, t, ) 2'. I - a 

--vk --vk 

M, and V, are respectively the sample mean and sample variance of X, i.e . 

(25) 

(26) 

x,+ ... +xk 

k 

(X, -Mk)° + ... +(Xk -Mk)' 

k 

where X,, ... ,X, is a random sample frorn X, and z 1_a12 is the l - a/2 quantile of the standardized 
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norma! distribution, i.e. 

(27) 
a 

Pr(Z ~ z,-a, 2 ) = 1-2 

where Z is normally distributed with mean O and variance l. The formula (24) defines the limits of 

a confidence interval which includes µ with probability l - a known as the confidence level. In 

consequence, if the confidence level is set to 1-a and the estimation accuracy to E (the half-length 

of the confidence interval), then the minimal number of samples necessary to obtain thi s accuracy is 

given by: 

where [x] is the integer patt of x. Our aim is to derive expressions analogous to (24) and (28) , i.e. 

defining the confidence interval limits and the number of samples yielding the given estimation 

accuracy for E[D(iJ]/E[Q(it For that purpose we will need two following lemmas. 

Lemma3 

Let X?. O and Y?. Ymin > O be random variables with finite means µx and ~Ly respectively 

(Ymin is constant). Let Mx,k and Mv,k be the sample means of size k from X and Y respectively. 

Under the above assumptions the following formula holds : 

(29) 
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Proof: 

(30) 

We have: 

I Mx., _!:!3_,= jMx.,,u,, -Muf'x I= 
M l'.k /11, M r,,flr 

=IM x.,/ly + flx/ly - flx/1,, -M r,;/lx I 
Mufl,, 

= j[M x., -f1xlflr +[/ly -Mr.,lflx I< 
M Y.,/ly -

~ IM x ., - fi x I /Ir 7 IM r., - /Ir I /I x 

Y1~1in 

where the last inequality follows from the fact that Y 2'. Ymin a.s. Let 

(31) 

On the basis of (30) and (31) we obtain: 

/
Mu l'x/ Pr(-·-· -->c)~Pr(v, +w, >c)~Pr(2max(v,,w,)>c)= 
M,._, ł1 r 

(32) 

c c c c c 
=Pr(max(v„w,)>-)=Pr({v, >-}v{w, >-})~Pr(v, >-)+Pr(w, >-) 

2 2 2 2 2 

which completes the proof. 
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Lemma4 

Let X and Y be as in Lemma 3 with the additional assumption that they have finite standard 

deviations crx and crx. Let 

(33) 

where z1-a14 is the 1 - a/4 quanti le of the standardized norma! distribution, i.e. 

a 
(34) Pr(Z ~ z,_a14 ) = 1-4 

for normally distributed Z with the expected value O and variance I. Then, for sufficiently large k, 

we have: 

(35) 

i.e. [ -Ea, Ea] is a 1 - a confidence interval for µx/µy. 

Proof: 

From (33) it follows thai 

(36) 
2 

Ca·Ymin >z <7x 
2µy - l -a/ 4 ✓k • 

? 

ca. J,'.;,;" > z !!.x_ 
2µx - i-a/4 ✓k 

hence 
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' 
(37) P ·(IM I ca·Y,;,;,,)<P·(IM I O"x) 

I x., - flx > -?-- - I x., - flx > z,-at4 "k 
-/ly V K 

and 

(38) P ·(IM I ca·Y,;,;,,)<P·(IM I O"y) I 1, , - /ly > --- _ I 1., - /ly > Zi-a/4 „ 
· 2/tx · vk 

For sufficiently large n the central limit theorem yields: 

(39) 

so that 

(40) 
& · y 2 a & • )' 2 a 

Pr(! Mx., - fi x I > ~) ~ -? , Pr(! M . - fi I > ~) ~ -
2/ly _ r., r 2flx 2 

Now, (35) is a consequence of (40) and Lemma 3 with E =Ea.The proof is thus completed. 

To further simplify the notation the symbols C, D, and Q will be used in place of c(i>, n<il, 

and QCil, the upper index left out as the default component index. Let D* and Q* be conditional 

random variables defined as follows: D* = D/Q?. l and Q* = Q/Q?. 1, the underlying condition 

being that e; fai Is or is disconnected from e0 at least once in the interval ("tk-l, "tk)- We have: 
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(41) 
ED = E(D IQ 2: l)Pr(Q 2: l) + E(D IQ= O)Pr(Q =O)= E(D IQ 2: l) = E(D*) 

EQ E(Q IQ 2: l)Pr(Q 2: l) + E(Q IQ= O)Pr(Q = O) E(Q IQ 2: l) E(Q*) 

Thus, we can estimate E(D*)/E(Q*) instead of E(D)/E(Q), obtaining the same result. 

Note that in Lemmas 3 and 4 no assumption was made about the independence of X and Y, 

therefore they cover the case of strongly dependent random variables such as D* and Q*. Applying 

Lemmas 3 and 4 to D* and Q* we obtain that [ -Ea, Ea], where 

(42) 

is a l - a confidence interval for E(D*)/E(Q*) (note thai lemmas 3 and 4 cannot be applied to D and 

Q, because it is not true thai Q~l). In consequence, if 

which is equivalent to 

then taking at least k samples from D* and Q* allows to estimate E(D*)/E(Q*) with the given 

accuracy E (the half-length of the confidence interval) at the given confidence level l - a . For the 

sake of computational practice, the expected values and standard deviations of D* and Q* are 

replaced in (44) with the respective sample means or sample standard deviations. Thus the 

following condition to stop the outer loop (repeat for k ~ l) in Procedure 2 is obtained: 
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if(kl>30 AND 

(45) kl2'.4-z 2 -VD·(EQ) 2 /e 2 AND 

kl 2'. 4 · z 2 · VQ · (ED)2 /e 2 ) then break 

where kl counts all of the outer loop's cycles in which Q2'.l, z is the l -a/4 quantile of the 

standardized norma! distribution, and e is the half-length of the confidence interval. It is required 

that kl>30 so that it can be large enough to approximate the Student's t-distribution by the norma! 

distribution (see [4] for details). The respective updating commands (after the end of the inner loop) 

have to be modified as follows: 

i f (Q 2'. l) then { 

kl.-kl+l; 

ED .- ED + (D - ED)/kl ; UD.- UD+ (D2 - UD)/kl ; VD .- UD - (ED)2; 

EQ .- EQ + (Q - EQ)/kl ; UQ .- UQ + (Q2 - UQ)/kl ; VQ .- UQ- (EQ)2; 

To assess the accuracy with which c(i) is estimated we have to find the Iimits of a 

confidence interval for [a(i) + E(D*/E(Q*r1, as c(i) is given by (4). These limits are specified in the 

following lemma: 

Lemma 5 

Let 

(46) 
E„ 

((J,. = . ' 
[a(1) + r,,,;,, i-
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(½2) 
where Ea is given by ~ We then have: 

(47) Pr[ l 
a(i) + µD, 

µQ. 

M >rp.]::;a 
a(i)+~ 

MQ •. k 

i.e. [ -(j)u, {jJa] is a 1 - a confidence interval for [a(i) + E(D*)/E(Q*)r1• 

Proof: 

Let us note that D*;:: rm1nQ*, because at least one component has to be repaired during each 

time interval (cp/>, P?l, j;:: l.We thus have: 

(48) 

Pr[ l 
a(i) + µD• 

µQ. 

j [ IMD.,k - µD., l 
- MQ •. k µQ. < M > (f). - Pr ~--'--'-~--'--'---~ > rp0 _ 

a(i) +MD:·• (a(i) + ~10• J(a(i) + Mo•., J 
Q .k ~IQ• MQ •. k 

where the last inequality fellows directly from Lemma 4. 

Lemmas 4 and 5 lead to the following conclusion: if 

(49) 

which is equivalent to 
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(50) 

then taking at least k samples from D* and Q* allows to estimate [a(i) + E(D*)/E(Q*)r1 with the 

given accuracy cp (the half-length of the confidence interval) at the given confidence level I - a. 

Thus we have the following stopping condition for the outer loop (repeat for k 2: 1) in Procedure 2: 

if(k!;>:30 AND 

(51) 4-z' ·YD·(EQ)'/f'(a(i)+r,,,;,,) 4 AND 

k I;,: 4 ·z'· VQ · (ED)' /f' (a(i) + r,,,;,Y ) then break 

where fis the half-length of the confidence interval, and z is the same as in (45). 

S. Exemplary numerical results 

Severa! results obtained with Procedure 2 for the system in Fig. I are presented in Tables I 

and 2. lt is assumed that L/2> = ro with probability I (i.e.Gi = 0), and Li'> and R; are exponentially 

distributed with A.i = O.Ol, µi= O.I, I :Si :SN. The time unit is one hour. Kand t denote the total 

number of simulation cycles and computing time respectively. The computations were caiTied out 

for i= 8. r = 2, s = !, 2. A PC machine with an Intel Core 2 (2.14 GHz) processor was used. 
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Table l. Estimation results fors= 1 

a\E E = 0.1 E = 0.2 

ED*/EQ* = 15.54, EQ* = 1.37 ED*/EQ* = 15.56, EQ* = 1.36 

VD* = 426.57, VQ* = 0.56 YD*= 426.75, YQ* = 0.56 
a=0.99 

K = 4,554,000 K = 1,136,000 

1=2' I= 35" 

ED*/EQ* = 15.55, EQ* = 1.37 ED*/EQ* = 15.52, EQ* = 1.36 

VD* = 426.49, VQ* = 0.55 YD*= 421.86, YQ* = 0.56 
a= 0.95 

K = 2,890,000 K = 714,000 

I= !'20" I= 20" 

Table 2. Estimation results fors = 2 

a\E E = O.I E = 0.2 

ED*/EQ* = 14.34, EQ* = 1.49 ED*/EQ* = 14.33, EQ* = 1.49 

VD* = 492.36, YQ* = 0.92 VD* = 490.61, VQ* = 0.92 
a= 0.99 

K = 6,275,000 K = 1,562,000 

I= 3' I= 50" 

ED*/EQ* = 14.33, EQ* = 1.49 ED*/EQ* = 14.33, EQ* = 1.49 

VD* = 492.72, VQ* = 0.92 VD* = 493.11, VQ* = 0.92 
a= 0.95 

K = 3,990,000 K = 1,00!,000 

I= 2'30" I= 40" 

It is interesting to see that the vaiiances of D* and Q* depend significantly on the repair policy. 

These variances are relatively large (in comparison with ED* and EQ*), therefore a suitable 

variance reduction method should be applied to decrease the computing time. Finding and 

implementing sucha method will be a subject of further research . 
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