





1. Introduction

A transmission network composed of n linearly arranged components eq,....e, is
considered. For each i=1,...,n—1 the component ¢; is directly connected to e;_; and e;,1, while e, is
directly connected to e,_; alone; eg is the source component from which certain commodity (electric
power, radio signal, electronic data, water, gas, etc.) is transferred, via e,....ea s, to e, Each
component can be in one of two states: 1 ~ operating, 0 — failed; eo is always in operating state. The
repair of a failed component is started as soon as one of repair teams is available — due to a limited
number of them the repair may not start immediately after the component's failure. The order in
which failed components are chosen for repair depends on the repair policy applied — two of such
policies will be considered. The time-to-failure and time-to-repair of €; are random variables with
distribution functions F; and G; respectively.

A commodity can be transferred from e to e, i=1,...,n, if and only if e; is functional and
connected to eg, i.e. ey,...,¢; are in the operating state. As failures of components occur, the periods
during which functional e; is connected to eq are interleaved by the periods during which e; is failed
or disconnected from eg. The main goal of this paper is to determine the mean durations of these
time intervals, i.e. the mean time from the moment when the connection between ey and e; is
interrupted to the moment when it is restored, and the mean time of uninterrupted connection
between eg and e;.

Most probabilistic models of compiex systems assume full independence of their
components. In particular, it means that the components' lifetimes and repair times are independent
random variables. Obviously, this assumption is made for the sake of computational simplicity. In
reality, however, such independence rarely occurs. In order to make the considered network model
more true-to-life it is assumed that the functioning of e; depends on the states of ey,...,ei.; in the
following way: e; can only fail if ey,....ei.; are in the operating state; as long as this condition is

fulfilled the time-to-failure of e; has the distribution function F.. In consequence, an element cannot




fail if it is disconnected from ep. This conveys the idea that only components being “under load” are
failure prone as is the case in many real-life systems. Thus, it can be said that e; functions
independently of ey,...,ei.; up to the moment when one of ey,...,ei; fails. It must be stressed that e;
functions independently of ej,,....en, moreover, a component's repair time is independent on the
behavior of other components.

It is clear that the network's behavior and, consequently, mean connectedness and non-
connectedness times of components depend on two factors: the number of repair teams assigned to
the network maintenance, and the repair policy implemented. As to the first factor, the greater the
number of repair teams, the shorter the mean non-connectedness times of individual components,
and vice versa. If there are fewer than n repair teams, a component's repair may not start
immediately after its failure — the average time of delay decreases with the total number of repair
teams and is equal to zero if this number reaches n. However, this case should be considered only
for theoretical purposes, because in practice the number of repair teams is usually considerably
smaller than the number of system's components. As follows from the above argument, the mean
non-connectedness times of components in the cases of one and n repair teams are the upper and
lower bounds of these mean times in each remaining case (more than one and less than n repair
teams).

Passing to the subject of repair policies, two of them will be considered. According to
the first policy, the components are chosen for repair in the same order in which they fail. As only
the components connected to eg can fail, the next component selected for repair (by the first
available team) is the one farthest from eg. This means that the queue of components waiting to be
repaired is of the FIFO type. The second policy consists in prioritizing the components which are
least distant from ey, i.e. the next component selected for repair is the one nearest to ey. Thus the
order in which failed components are chosen for repair is reverse to the order in which they fail.

This means that the queue of components waiting to be repaired is of the LIFO type.
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Obviously, choosing between multiple maintenance policies makes sense only if there
are Jess then n repair teams. Otherwise the only feasible policy to follow is “repair a component

upon its failure”, as there is always at least one team available when a component fails.

2. Definitions and notation
Throughout the paper the following notation will be used:

L; — time-to-failure for e;, provided that ey,...,e;_; remain in operational state up to the failure of ¢;
R; — time-to-repair for e;

Fi, Gi — distribution functions of L; and G; respectively;

(pjm — time of the j-th disconnection of ¢; from ey, } > [;

pj“) — time of the j-th reconnection of ¢; to gg, j > 1 it is assumed that po” = 0;
XJ(” — length of trime from pH(” to (pj(i),j >1,ie. Xj(i) = (pj(i) - pj_l(i) is the length of the j-th period
during which e; remains connected to eg

\|/j“) — length of time from (pjm to pj(i),j >1ie y= pj(i) - (pj(i) is the length of the j-th period during
which e; remains disconnected from eq

7 — the “first failed, first selected” policy;

m; — the “last failed, first selected” policy;

Ci(i,n,r,s), Dy(i,n,r,5) — the expected values of xi(i)and \yj“), provided that the system is composed of
n components, the number of repair teams equals r, and the repair policy = is applied, s = 1, 2;

C(i,n,r,8), D(>i.n,r,5) — the expected values of limiting means of )q(") and \yj‘i), provided the limiting

means exist.




We thus have:

C,@,n,r,s) =E))
D,(i,n1.9) = E(y")

C(,n,r,s) = Eflim _x,(i,n,1,8)]
100 j:l

D(,n,r,5) = E[lim 3"y (i,n,1,5))
n—oe =

3. Analytical computation of C(i,n,r,s) and D(i,n,r,s) for a two-component system

In this chapter the two basic reliability parameters, i.e. C(i,n,r,s) and D(i,n,r,s) will be
computed analytically for a two-component system. The additional assumption, making the

computations possible, is that L, Lz, Ry, R; are exponentially distributed, i.e.
0 F(r)=1-exp(=A1), G (1) =1-exp(-u1), i=12

The definitions given in chapter 2 imply that every period of time during which both e; and e,
remain connected to eg falls within the limits of one of the intervals [pj_|(2), (pJ(Z)), j=1, while every
period of time when e; or e; remains disconnected from eq falls within the limits of one of the
intervals [, p;™), j>1. As the lifetime distributions of e, and e, are exponential, the system’s
behavior is stochastically identical on each interval [pj_l(z), pj(z)), j=1. Thus, by the end of this
chapter, let time be measured from any moment pj(Z), 320, i.e. from the moment 0 or any other
moment when e, is reconnected to eg.

It is very easy to compute Cj(i,n,r,s). Indeed, for any j>1 the components e,...,¢; are all
operational at the instant pj_lm, and the time from F’H(i) to the failure of e, is exponentially
distributed, k=1,...,i (the “lack of memory” property of the exponential distribution). We thus have:
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) P(x}’) <f)=P(min(L,,...,.L,) Sty =1~exp[—(4, +..+ 4,)]
From (2) it follows that

. . 1 .
3 C=C=7——-, jz2I
() ! A+ + A
The analytical computation of Dj(i,n,r,s) is more difficult, however it will be presented for
n=2. It should be noted that for a two-component system both repair policies are equivalent. Indeed,
if r=1 then the queue of components awaiting repair has maximum length I, if r=2 then the queue

always has zero length. In both cases no selection decision has to be made. First, the case of one

repair team will be considered. Let the events A, B, and C be defined as follows:

A={L <L,}
@) B={L >L,, R,>L ~L,}
C:{LI >L3, R1<L1_L2}

Clearly, A, B, and C form a complete system of events. As e; can be disconnected from €g only in
case of the event A or B, the expected time-to-reconnection for e, provided that €, was
disconnected from ep, is equal to E(\VJ‘(I)|AUB). The latter symbol denotes the conditional
expectation of \|/j“), given the event AUB.

In general, the conditional expectation of a random variable X, given the event E such that

P(E)>0, is defined as follows:

(5) IZ‘IF(X|E) @),




where

1
(6) Foy :}EP({X <) NE)

Fixjg) is called the conditional distribution function of X, given the event E.

Following the above definition, we obtain

E@w" | AYP(A) + Ew™ | BYP(B)
P(A)+ P(B)

N EW"|AUB) =

In case of the event A, i.e. when e, fails before e,, the repair of e, starts immediately after its

failure, and e, cannot fail until the repair of e, is completed. The time-to-reconnection for e, is thus

equal to R, therefore

1 1
(8) Ewy) IA>=E(R.):;I—
with
©) P = [P(L, > 0dF (1) = -2
o . : /1, + /7.2

In case of the event B the failure of e; precedes that of e, while the repair of e», starting
immediately after its failure, ends after the failure of ¢,, being followed by the repair of e;. We thus

have:




(10) E(w™ | B)=E®R® | B)+ E(R,)

where R, is equal to the residual repair time of ¢, , i.e. the time elapsed from the failure of e, to

the completion of e;’s repair. It is also true that

(ry PR <t}nB)= ffPl‘(.\'—y< R, S x— y+1)dF,(y)dF (x)
00
and
T A A
= (R, X = 1F1 Nl = T
(12) _P(B) Ojojpl( L > x = y)dF, (y)dF, (x) SRR

(13) Prix—y <R, Sx—y+ 1) =exp[-u,(x - Yl —exp(~=u,1)] = G, (1) Pr(R, > x - y) |

the following equality holds:

(14) PR <1}| B) = G, (1)

meaning that the conditional distribution function of R,", given the event B, is equal to the

distribution function of R,. In view of (10) this result yields:




1 1
Er™ = : R)=—4—
(15) W 1B = ER)+ BR) = -+

Summing up, we obtain the following formula:

1 1 A,
16 D(L21)=D(12])=—+— ——F——
(16) (121)=D,121) o p, A+ A+,

Based on a similar argument as in the case of e, the expected time-to-reconnection for
€2, provided that e, was disconnected from ey, is equal to E(\VJ‘(Z)JAUBUC) — each of the events A,

B, and C results in disconnecting e» from ep. Using the total probability law, we obtain:
17) Ey? |AUBUC) = EW” | AP(A)+ E(w | B)P(B)+ E(y ' [C)P(C)

In case of the event A, the time-to-reconnection for e, is equal to that of e,. We thus have:

1
Ew™ A = E(w® -
(18) WA =EW A u

i
In case of the event B, the time-to-reconnection for e; is equal to R, + Ry, therefore

19 EWP|B)=ER)+ER) =f+i

a

In case of the event C, the repair of e; starts and finishes before the failure of e, hence




a I
EQ|C) = E(R,) =—
20 My
with
My
= -y IF, —_—
@ P(C) = Ojoij(R X ROME ) = 5 /1) T

Finally the following resuit is obtained:

D@21y =D @2l =L A +L+1 A A
v e o A+ A, My A +A4) (A +u)

1 A, M

+;¢2 (A +4) 4 +u)

(22)

Now the case of two repair teams will be considered. As ¢, fails independently of the
state of e, and one repair team is always available for el, the failure and repair process of e, is an
alternating renewal process independent of the state of e;. The mean time-to-reconnection for e, is

thus given by E(R)), i.e:

23) D(,22)=D,(1,2,2) =

Let {Y(t), t=0}denote the failure and repair process of e;, where Y(t)=1 if e, is
operational at the time t, otherwise (e is under repair) Y(t)=0. Let Z(t) denote the time elapsing
from t to the next state change of e,. Obviously. {Z(t), t>0} is also a stochastic process. As L, and

R, are exponentially distributed, for the process Z we have:




Pr(Z() < s|Y(1) = 1) = | —exp(-4,s)

(24)
Pr(Z(1) < s|Y(r) =0) =1—exp(—44s)

and for the process Y:

A e+ )]

PrY(r+s)=1|Y(1)=1)=
| At At

A
1>r(}’(r+s):01y(r)=1)=/1 ’} [1-exp[~(4, + 1,)5]]

| A

The latter are the formulas for the transition probabilities of Y which is a Markov process (see [6]).

Let the events A, B and C be defined in the following way:

A={Z(0)<L,}
26) B={Z(0)>L,, Y(L,+R,)=0}
C={Z(©O)>L,, Y(L,+R,)=1)

Clearly, A, B, and C form a complete system of events. As e, is disconnected from ¢ in case of the
event A, B or C, the expected time-to-reconnection for e,, provided that e; has been disconnected

from ey, is equal to E(\Vj(z)IAUBUC). Using the total probability law, we obtain:

By | AP(A)+ E(w” | BIP(B)+ £y} | C)P(C)

I

7N D(2,22)=D (2,2,2)

In the case of A, the time-to-reconnection for es is equal to that of ;. We thus have:

5 1
(28) Ewi 14 =—-

1
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with

I A
29 P(A) = j (L, > a0 =21

In case of the event B the repair of ey, starting before the failure of e, continues for some

time after the repair of e; has been completed. We thus have:
(30) E(y” | B)= E(R,) + E(R™ | B)

where R;" is equal to the residual repair time of e, , i.e. the time elapsed from the completion of

e’s repair to the completion of e,’s repair. Using (24) we obtain:

PR <1}"B)={Z(0) > L,, Y(L, +R,)=0, Z(L, +R,)<1)=

= i[P(Z(x +¥)S1 Y(x+y) =0, Z(0) > x)dG,(y)dF,(x) =

]

B]‘P(Z(x+ YIS Y(x+y)=0)x
(3D @
X P(Y(x+y)=0, Z(0)> x)dG,(y)dF,(x) =

= exp(_,,l,)]p(y(x +3) =0, Z(0) > x)dG, (y)dF, (x) =
0

= exp(~4,1)P(B)

while (25) yields:

11




P(B) = ].P(Y(x +)=0]Z(0) > X)P(Z(0) > x)dG, (y)dF, (x) =

= T’.P(Y(x +y) =0V (x) = D)P(Z(0) > x)dG,(y)dF,(x) =
0

(32)

T A
= ] [l —exp(-A,y — 4, )]exp(=A4 x)dG, (y)dF,(x) =
A+ u

i}

A A 1- 1y
A+A, A+ A+
From (31) it follows that:
(33) PR <e}{B)=G,(1)

meaning that the conditional distribution function of R,™, given the event B, is equal to the

distribution function of R,. In view of (30) this result yields:

, 11
E@'® |B)=E(R)+E(R)=—+
34 | Yo m

In case of the event C, e, is operational when the repair of e, ends, thus the time-to-

reconnection for es is equal to Ry, which means that

, 1
(35) Ew,?1€) = B(R,) =—-

5

where, using (25), P(C) is computed as follows:




P(C)= [P(Y(x+ y) =1] Z(0) > )P(Z(0) > )dG, (y)dF, (x) =
]

= B]P(Y(x +v) = 1| F(x) = DP(Z(0) > x)dG, (y)dF, (x) =
0

(36)

r A
= '[ M L—exp(—4, ¥ ~ 44, y) |exp(-4,x)dG, (y)dF,(x) =
DLt A ru

_ 4 H, + 4 . Hy
A+ \A At A+,

Finally the following result is obtained:

D(2,2,2):D](2,2,2):L. A +
woA+A,
(37) +[L+L). b _A .[1_ “ )+
Mo My ) At A, A+ u FRr—
LA s A K
Ha /1‘+/12 Atu Aty /11+/l|+/'lz

In conclusion, one remark should be made. For the system under consideration, the
analytical method seems to be of minor practical significance, mainly due to the assumption that
random variables describing components’ behavior are exponentially distributed, but also because
of enormously complex formulas that would be derived for n>2. It should be underscored that
analytical computation of D(i,n,r,s) for large n is an open problem that can possibly be solved using
some recursive method. Nevertheless, the results obtained for n=2 can be helpful in testing the

coryectness and accuracy of the simulation method presented in the next chapter.
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4. Computing C(i,n,r,s) and D(i,n,r,s) by means of Monte Carlo Simulation

In this chapter algorithms for estimating C(i,n,r,s) and D(i,n,r,s), based on Monte Carlo
simulation are presented. When estimating the parameters of a stochastic process one often
encounters the following problem: whether statistical data may come from one sample path
(realization) of the process or should they be collected from multiple sample paths? Clearly, one
sample path is sufficient in the case of a recurrent process, i.e. a process X={X(t), t>0} with the
following properties:

- the state of X at t = 0 is fixed, 1.e. X(0) has the one-point distribution,

- with probability one X returns to the state X(0) after finite time, measured from 0,

- if Y(t)=X(t,+t), where T, is the (random) time of the first return of X to its initial state, then
Y={Y(1), 20} and X are stochastically identical processes (X begins anew at t = 1y).

Sometimes the second property is replaced with the stronger one, i.e. E(ty)<co. For details see [5].

Lemma 1

If the components' lifetimes (the random variables L,...,.L,,) are exponentially distributed,
and the repair policy m is applied, then the vector valued process X={[X,(t),...,.Xn(1)], >0}, where

Xi(t) denotes the state of e; at time t, is recurrent.

Proof

Note that X(0)=1 and X begins anew at any moment t when X(t)=1, due to the “lack of

memory” property of the exponential distribution. Moreover,

38)  n=p" =" +w" <min(L,...L)+R +. .. +R,

The above inequality becomes equality only in the “worst” case, i.e. =1, e, is the first failed
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Procedure 1

To=0;avi_rt=r;g_len=0;i*=n+ 1,
repeat fori=1,...,n {

XoW = 1; S = sim(1,1);}

repeat fork > 1

{

Te=min(Siy ™ : 1 <i <n, Xy nalezy do {0,1});
##If at Ty a component was failed and awaiting repair
## or it was operable and disconnected from eo

## then the component is irrelevant in determining Ty

## adding failed components to the queue (repair policy ;)
repeat fori=i*-1,.,1
if 1™ = 1 AND S, =T) then {

Xk“) =—qg_len~1;q len=g_len+1; }

## releasing repair teams
repeat fori=1,..,n
if (X = 0 AND S, = Ty) then {

ka =1;avl_rt=avl_rt+1; }
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Remarks:

I. The time S is simulated only if e; changes its state to 0 or | at the instant Ty. Obviously, if &
remains in the state O or 1, the residual sojourn times for e; at Ty, and Ty differ by the length of
time elapsed from Ty_; to Ty. If e; changes its state to 2 or a negative value, or remains in one of
those states, it is irrelevant in determining Ty, as neither failure nor repair completion is possible

for a component whose state is not O or 1.

2. In case of the repair policy m the newly failed components are placed before those awaiting

repair, hence the following code fragment is used to add failed components to the queue:

x =0;
repeat for i=1,...,i*— 1
if (X1 = 1 AND S, = Ty then {
X =x+1; Xk“’ =-x;qg_len=q_ len+1I;}
repeat for i=i¥*,...n

if (Xt < 0) then X, V=X, - x;

As follows from the specification of Task 3, C(i,n,r,s) and D(i,n,r,8) will be estimated by
taking sample means from Xj‘i) and q/_i(i) over L operating cycles, where a cycle is the time interval
between two consecutive reconnections of ¢; to ey, i.e. one of the intervals [pj,lm, pjm),j > 1. Thus,
the estimation procedure is constructed by embedding Tasks 2 and 3 into Procedure 1, yielding

Procedure 2 outlined below.




Variables used by Procedure 2:

j : the number of the current cycle,

T1 and TO : the sample values of 3 and y

E! and EO : the sample means computed from 3, and y,” over h varying from 1 to

Ykm : the state of connection between €; and eg at Ty, Yk(i) = 1 if ¢; is connected, otherwise Ykm =0.

Procedure 2

T1=0;T0=0;El=0; EO=0;

j=5

repeat fork> 1

{

obtain Ty and Xk(”,..‘,Xk(") using Procedure |

compute Y, from X, 1,.... X, ™

if (Yees ™ EQ 1) then {
TI=T1 + (Te - T
if (Y, EQ 0) ## ¢; is disconnected from eg at Ty
then {
El = El-( - 1)/j + T1/j; ## updating E1 during the cycle j

Tl=0;}




if (Y, EQ 0) {
TO =TO + (Ty - Tiy);

if (Ykm EQ 1) ## e; is reconnected to eg at Ty

then {

EO = EO(j — 1)/j + TO/j; ## updating EO at the end of the cycle j
TO=0;
j=j+1;

if (j GT L) then terminate; }

} ## end of “repeat for k=17

Remarks:

1. E1 and EO are updated based on the following formula:

(50) Hovl = Py /(0+1) + Xp 0 /(n+1)

where

5D I = (Xy+...+Xy)/n

2. In the step k only the values X9, X, Ti-1, Ty are used to update TO, T1, and possibly EO, E1,

while the analogous values obtained in the steps 1,...k-2 are irrelevant. In consequence, it is

necessary to store only the X's and T's obtained in the cwirent and the previous step of Procedure 2.




5. Some numerical results

In Tables | and 3 several results obtained using Procedure 2 are presented. It is assumed
that L; and R; are exponentially distributed with A; = 0.01, p; = 0.1, 1 <i <n. The time unit is one

hour. The results presented in Table 2 are obtained from (16), (22), (23), and (37).

Tab. 1. Estimated average disconnection periods for a two-component system

DG,2,ns) |r=l,s=1 |r=1,s=2 |r=2,s=1 |r=2,s=2

i=1 10.84 10.84 10.01 10.01

i=2 10.46 10.45 10.23 10.24

Tab. 2. Exact average disconnection periods for a two-component system

DG,2,rs) jr=l,s=1 }jr=1,8=2 |r=2,s=1 |r=2,5=2

i=1 10.8(3) | 10.8(3) | 10.00 10.00

i=2 10.(45) 10.(45) 10.2381 | 10.2381

Tab. 3. Estimated average disconnection periods for a ten-component system

DG, 10,rs) [r=1,s=1 |r=1,s=2 |r=2,s=1 |r=2,s=2
i=1 16.60 15.23 10.43 10.35

i= 15.20 15.03 11.14 11.12

i=10 13.95 14.11 12.10 12.11 —‘

It is interesting to see that if there is one repair team then D(i,n,r,s) is shorter for i=n than for i=1.
This observation is confirmed by the exact results for n=2. To explain this fact note that e, can fail
only if ey,...,e,-; are all in operating state. Thus the repair of e, begins immediately after its failure,

while e has to wait if another component is under repair at the moment of e;’s failure.
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