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I. lntroduction 

A transmission network composed of n linearly arranged components eo, .. ,,en is 

considered. For each i=l , ... ,n- l the component e; is directly connected to e;_1 and e;+1, while en is 

directly connected to en- I alone; e0 is the source component from which certain commodity (electric 

power, radio signal, electronic data, water, gas, etc.) is transferred, via e,, ... ,e11_ 1, to en, Each 

component can be in one of two states: l - operating, O - failed; eo is always in operating state. The 

repair of a failed component is started as soon as one of repair teams is available - due to a limited 

number of them the repair may not start immediately after the component's failure. The order in 

which failed components are chosen for repair depends on the repair policy applied - two of such 

policies will be considered. The time-to-fai Iure and time-to-repair of e; are random variables with 

distribution function s F; and G; respectively. 

A commodity can be transfe1Ted from e0 to e;, i=l, ... ,n, if and only if e; is functional and 

connected to e0, i.e. e 1, ... ,e; are in the operating state. As failures of components occur, the periods 

during which functional e; is connected to eo are interleaved by the pe1iods during which e; is failed 

or disconnected from e0. The main goal of this paper is to determine the mean durations of these 

time intervals, i.e. the mean time from the moment when the connection between eo and e; is 

inte1rnpted to the moment when it is restored, and the mean time of uninte1rnpted connection 

between eo and e;. 

Most probabilistic models of complex systems assume full independence of their 

components. In particular, it means that the components' lifetimes and repair limes are independent 

random variables. Obviously, this assumption is made for the sake of computational simplicity. In 

reality, however, such independence rarely occurs. In order to make the considered network model 

more true-to-life it is assumed that the functioning of e; depends on the states of e 1, ... ,e;_1 in the 

following way: e; can only fai! if e 1, ... ,e;_1 are in the operating state; as long as this condition is 

fulfilled the time-to-fai Iure of e; has the distribution function F;. In consequence, an element cannot 



fai I if it is disconnected from e0. This conveys the idea that only components being "under load" are 

failure prane as is the case in many real-life systems. Thus, it can be said that e; functions 

independently of e 1, ••• ,e;_1 up to the moment when one of e 1, ••• ,e;_1 fai Is . It must be stressed that e; 

functions independently of e;+ 1, ••• ,e0, moreover, a component's repair time is independent on the 

behavior of other components. 

It is elear that the network's behavior and, consequently, mean connectedness and non­

connectedness limes of components depend on two factors: the number of repair teams assigned to 

the network maintenance, and the repair policy implemented. As to the first factor, the greater the 

number of repair teams, the sho11er the mean non-connectedness times of in di vidual components, 

and vice versa. If there are fewer than n repair teams, a component's repair may not start 

immediately after its failure - the average time of delay decreases with the total number of repair 

teams and is equal to zero if this number reaches n. However, this case should be considered only 

for theoretical purposes, because in practice the number of repair teams is usually considerably 

smaller than the number of system's components. As follows from the above argument, the mean 

non-connectedness limes of components in the cases of one and n repair teams are the upper and 

!ower bounds of these mean limes in each remaining case (more than one and less than n repair 

teams). 

Passing to the subject of repair policies, two of them will be considered. According to 

the first policy, the components are chosen for repair in the same order in which they fai!. As only 

the components connected to e0 can fail, the next component selected for repair (by the first 

available team) is the one fa1thest from e0. This means that the queue of components waiting to be 

repaired is of the FIFO type. The second policy consists in prioritizing the components which are 

least distant from e0, i.e. the next component selected for repair is the one nearest to e0. Thus the 

order in which failed components are chosen for repair is reverse to the order in which they fai!. 

This means that the queue of components waiting to be repaired is of the LIFO type. 
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Obviously, choosing between multiple maintenance policies makes sense only if there 

are less then n repair teams. Otherwise the only feasible policy to follow is "repair a component 

upon its failure", as there is always at least one team available when a component fails . 

2. Definitions and notation 

Throughout the paper the following notation will be used: 

L; - time-to-fai Iure for e;, provided that e 1, ... ,e;_ 1 remain in operational state up to the failure of e; 

R; - time-to-repair for e; 

F;, G; - distribution functions of L; and G; respectively; 

cp/> - time of the j-th disconnection of e; from e0, j :::-: l; 

p/> - time of the j-th reconnection of e; to e0, j :::-: 1; it is assumed that p0(i) = O; 

x/> - length of time from PH (il to cp/>, j :::-: 1, i .e. x:/> = cp/J - Pj-1 (il is the length of the j-th period 

during which e; remains connected to e0 

111/J- length of time from cp/> to p/>, j :::-: I, i.e . ,v<;> = p/> - cp/> is the length of the j-th period during 

which e; remains disconnected from eo 

1t1 - the "first failed, first selected" policy; 

1t2 - the "last fai led, first selected" policy; 

Cj(i,n,r,s), Dj(i,n,r,s) - the expected values of x/> and IJI/>, provided that the system is composed of 

n components, the number of repair teams equals r, and the repair policy n, is applied, s = 1, 2; 

C(i,n,r,s), D(i,n,r,s) - the expected values of limiting means of x/> and IJI/J, provided the li miting 

means exist. 
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We thus have: 

C;(i,n,r,s) = E(xt) 

D ;(i, n, r, s) = E(ljlj'l) 

" 
C(i, n, r,s) = E[lim Ix;Ci, n, r,s)] 

n--too j=I 

D(i, n, r,s) = E[lim I~' ;(i, n, r,s)] ,,_,_ 
j=l 

3. Analytical computation of C(i,n,r,s) and D(i,n,r,s) for a two-component system 

In this chapter the two basie reliability parameters, i.e. C(i,n,r,s) and D(i,n,r,s) will be 

computed analytically for a two-component system. The additional assumption, making the 

computations possible, is that L1, L2, R 1, R2 are exponentially distributed, i.e. 

(I) f;(t)=l-exp(-A;f), G,(t)=l-exp(-,Lt/), i=l,2 

The definitions given in chapter 2 imply thai every period of time during which both e1 and e2 

remain connected to e0 falls within the limits of one of the intervals [Pi-i'2>, <p/2>), j?:l, while every 

period of time when e1 or e2 remains disconnected from e0 falls within the limits of one of the 

intervals [<p/2l, p/2>), j?:I. As the lifetime distributions of e1 and e2 are exponential, the system's 

behavior is stochastically identical on each interval [pj_1<2>, p/2\ j?:l. Thus, by the end of this 

chapter, let time be measured from any moment p/2l, j?:0, i.e. from the moment O or any other 

moment when e2 is reconnected to eo. 

It is very easy to compute Cj(i,n,r,s). lndeed, for any j?:l the components e 1, ... ,e; are all 

operational at the instant Pi-I Ci>, and the time from Pi-/il to the fai Iure of ek is exponentially 

distributed, k=l, ... ,i (the "Jack of memory" property of the exponential distribution). We thus have: 
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(2) P(xj'1 s, t) = P(min(L, , ... , L;) s, t) = 1-exp[-(J, + ... +A;)] 

From (2) it follows that 

(3) C. (i) = C(i) = I j '?. I 
I A, + ... +A; 

The analytical computation of Dj(i,n,r,s) is mare difficult, however it will be presented for 

n=2. It should be noted that for a two-component system both repair policies are equivalent. Indeed, 

if r=l then the queue of components awaiting repair has maximum length 1, if r=2 then the queue 

always has zero length. In both cases no selection decision has to be made. First, the case of one 

repair team will be considered. Let the events A, B, and C be defined as follows : 

A= {L, < L2 ) 

(4) B={L,>L2 , R2 >L,-L2 ) 

C = { L, > L2 , R, < L, - L,) 

Clearly, A, B, and C form a complete system of events. As e1 can be disconnected from eo only in 

case of the event A or B, the expected time-to-reconnection for e1, provided that e1 was 

disconnected from e0, is equal to E(1J1/1J[AuB). The latter symbol denotes the conditional 

expectation of ~,/l, given the event AuB. 

In generał , the conditional expectation of a random variable X, given the event E such that 

P(E)>O, is defined as follows: 

+-

(5) f tdF(XIE ) (t), 
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where 

(6) 
l 

F,xio =--P({X ~t)nE) 
P(E) 

FrxlE) is called the conditional distribution function of X, given the event E. 

Following the above definition, we obtain 

(7) 
E(l/f(l) I A)P(A) + E(l/f'·') I B)P(B) 

E(l/f'·') I A u B) = J J 
1 P(A) + P(B) 

In case of the event A, i.e . when e1 fai Is before e2, the repair of e1 stans immediately after its 

fai Iure, and e2 cannot fai! until the repair of e 1 is completed. The time-to-reconnection for e 1 is thus 

equal to R 1, therefore 

(8) E(l/f(I) I A) = E(R,) = _!_ 
l Jl, 

with 

(9) 
- A 

P(A)= f P(L0 >x)dF,(x)=--' -
o - A1 + A, 

In case of the event B the failure of e2 precedes that of e 1, while the repair of e2, sta11ing 

immediately after its fai Iure, ends after the fai Iure of ei, being followed by the repair of e 1• We thus 

have: 
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(10) E(lf/)'' I B) = E(R~'' I B) + E(R,) 

where R2"' is equal to the residua! repair time of e2, i.e. the time elapsed from the fai Iure of e1 to 

the completion of e2's repair. It is also true that 

<>O_\" 

(li) P({R;'' śt)nB)= ff Pr(x-y < R2 śx-y+t)dF2 (y']<:IF1 (x) 
o o 

and 

( 12) 
-• l l 

P(B)=ffPr(R2 >x-y)dF,(v)dF,(x)= 2 . 1 

. 0 0 - • (l, + li} (l, + 112 ) 

As 

(13) Pr(x- y < R2 ś x - y + t) = exp[-/12 (x- y)][l-exp(-/121)] = G, (t) Pr(R, > x- y), 

the following equality holds: 

(14) P({R;" ś t) I B) = G2 (t) 

meaning that the conditional distribution function of Ri'es, given the event B, is equal to the 

distribution function of R2. In view of (IO) this result yields: 
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(15) 

Summing up, we obtain the following formula: 

(16) 
l l -12 

D( 1,2,IJ= D/1,2,I)=-+-·--~­
J.t, p 1 -11 + -12 + J.1 2 

Based on a similar argument as in the case of e 1, the expected time-to-reconnection for 

e2, provided that e2 was disconnected from eo, is equal to E(~1/2)1AuBuC) - each of the events A, 

B, and C results in disconnecting e2 from e0. Using the total probability law, we obtain: 

(17) E(lflt , A us u c) = E(l/fr) , A)P(A) + E(lflt , B)P(B) + E(lfl t , c)P(C) 

In case of the event A, the time-to-reconnection for e2 is equal to that of e 1• We thus have: 

(18) E(l/f(}) I A) = E(l/f(') I A)=__!__ 
J J J.~ 

In case of the event B, the time-to-reconnection for e2 is equal to R2 + R 1, therefore 

(19) E(l/f)1) I B) = E(R,) + E(R,) = __!_ + ___!_ 
J.I, µ, 

In case of the event C, the repair of e2 starts and finishes before the fai Iure of e 1, hence 
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(20) E(l//;1) I C) = E(R,) = J__ 
µ, 

with 

(21) 
-f ·f' ,l, 11, P(C) = Pr(R, < x- y)dF, (y)dF; (x) = - · -
O O - . - (,li + ,lJ (,li + µ 2) 

Finally the following result is obtained: 

(22) 

Now the case of two repair teams will be considered. As e 1 fai Is independently of the 

state of e2, and one repair team is always available for el, the fai Iure and repair process of e 1 is an 

alternating renewal process independent of the state of ez. The mean time-to-reconnection for e 1 is 

thus given by E(R 1), i.e: 

(23) 
l 

D(l,2,2) = D (1,2,2) = -
J µI 

Lei {Y(t), t~0 }denote the failure and repair process of e 1, where Y(t)=l if e1 is 

operational at the time I, otherwise (e 1 is under repair) Y(t)=0. Lei Z(t) denote the time elapsing 

from t to the next state change of e 1. Obviously, {Z(t), t>0} is also a stochastic process. As L 1 and 

R1 are exponentially distributed, for the process Z we have: 
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Pr(Z(t):::: s I Y(t) = l) = 1-exp(-/41s) 

(24) 

Pr(Z(t):::; s I Y(t) =O)= 1-exp(-,u,s) 

and for the process Y: 

(25) 

Pr(Y(r+s) = 1/ Y(r) =I)=_µ_, -+-A_, -exp[-(/41 + ,u,)s] 
,i, + µ, ,i, + µ, 

/4 
Pr(Y(t + s) = O I Y(t) = l) = --' -[! -exp[-(/41 + µ, )sJ] 

,i,+ 11, 

The latter are the formulas for the transition probabilities of Y which is a Markov process (see [6]). 

Let the events A, B and C be defined in the following way: 

A= {Z(O) < L2 ) 

(26) B={Z(O)>L,, Y(L2 +R2 )=0) 

C = {Z(O) > L2 , Y(L, + R,) = 1) 

Clearly, A, B, and C form a complete system of events. As e2 is disconnected from eo in case of the 

event A, B or C, the expected time-to-reconnection for e2, provided thai e2 has been disconnected 

from eo, is equal to E(ljl/2llAvBvC). Using the total probability law, we obtain: 

(27) D(2,2,2) = DJ (2,2,2) = E(l/f? / A)P(A) + E(l/f? I B)P(B) + E(l/ł;') I C)P(C) 

In the case of A, the time-to-reconnection for e2 is equal to thai of e 1• We thus have: 

(28) 
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with 

(29) 
- .,J, 

P(A) = f P(L, > x)dF; (x) = --' -
o - .,J,, + .,J,2 

In case of the event B the repair of e 1, staiting before the fai Iure of e2, continues for some 

time after the repair of e2 has been completed. We thus have: 

(30) E(l/f)2J I B) = E(R2 ) + E(R,''' I B) 

where R 1'es is equal to the residua! repair time of e 1 , i.e. the time elapsed from the completion of 

e 1 's repair to the completion of e2's repair. Using (24) we obtain: 

P((R('':5:t)nB)={Z(O)>L2 , Y(L 2 +R2 )=0, Z(L2 +R2 ):C:,t)= 

= J P(Z(x + y) :5: t , Y(x + y) = O, Z(O) > x)dG 2 (y)dF2 (x) = 

(31) 
= JP(Z(x+y):5:tjY(x+y)=O)x 

o 

x P(Y(x + y) = O, Z(O) > x)dG2 (y)clF2 (x) = 

= exp(-,u,t) J P(Y(x + y) = O, Z(O) > x)clG2 (y)dF2 (x) = 

= exp(-11,t)P(B) 

white (25) yields: 
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P(B) = f P(Y(x + y) = O I Z(O) > x)P(Z(O) > x)dG2 (y)dF2 (x) = 
o 

= f P(Y(x + y) = O I Y(x) = l)P(Z(O) > x)dG2 (y)dF2 (x) = 
o 

(32) 

From (31) it follows that: 

meaning that the conditional distribution function of Ri"', given the event B, is equal to the 

distribution function of R 1• In view of (30) this result yields: 

(34) 

In case of the event C, e 1 is operational when the repair of e2 ends, thus the time-to-

reconnection for e2 is equal to R2, which means that 

(35) E(ł/1')2> I C) = E(R2 ) = __!_ 
µ2 

where, using (25), P(C) is computed as follows: 
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.. 

P(C) = J P(Y(x + y) = l I Z(O) > x)P(Z(O) > x)dG 2 (y)dF2 (x) = 
o 

= J P(Y(x + y) = l I Y(x) = l)P(Z(O) > x)dG2 (y)dF2 (x) = 
o 

(36) 

Finally the following result is obtained: 

l A, 
D(2,2,2) = D/2,2,2) =-·--+ 

µ, A, + A.z 

(37) 

In conclusion, one remark should be made. For the system under consideration, the 

analytical method seems to be of minor practical significance, mainly due to the assumption that 

random variables desc1ibing components' behavior are exponentially distributed, but also because 

of enormously complex formulas that would be derived for n>2. It should be underscored that 

analytical computation of D(i,n ,r,s) for large n is an open problem that can possibly be solved using 

some recursive method. Nevertheless, the results obtained for n=2 can be helpful in testing the 

co11"ectness and accuracy of the simulation method presented in the next chapter. 
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4. Computing C(i,n,r,s) and D(i,n,r,s) by means of Monte Carlo Simulation 

In this chapter algorithms for estimating C(i,n,r,s) and D(i,n,r,s), based on Monte Carlo 

simu lation are presented. When estimating the parameters of a stochastic process one often 

encounters the following problem: whether statistical data may come from one sample path 

(rea lization) of the process or should they be collected from multiple sample paths? Clearly, one 

sample path is sufficient in the case of a recutTent process, i.e. a process X={X(t), t2'.0} with the 

following properties: 

- the state of X at t = O is fixed, i.e. X(O) has the one-point distribution, 

- with probability one X retums to the state X(O) after finite time, measured from O, 

- if Y(t)=X(-r1+t), where , 1 is the (random) time of the first return of X to its initial state, then 

Y={ Y(t), CO} and X are stochastically identical processes (X begins anew at t = , 1). 

Sometimes the second prope1ty is replaced with the stronger one, i.e. E(,1)<oo. For details see [5]. 

Lemma I 

If the components' lifetimes (the random variables L1, ... ,Li,) are exponentially distributed, 

and the repair policy n 1 is applied, then the vector valued process K={IX1(t), .. . ,X0 (t)], t2'.0), where 

X;(t) denotes the state of e; at time t, is recu1Tent. 

Proof 

Note that K(O)=l and K begins anew at any moment t when K(t)=l, due to the "Jack of 

memory" property of the exponential distribution. Moreover, 

(38) -r, = p,'"> = X,'"> + lf/,'"> :.,; min(L,, ... .L,,) + R, + ... + R,,, 

The above inequality becomes equality only in the "worst" case, i.e. r=l, en is the first failed 
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component, and e;_ 1 fai Is before e; has been repaired, 2 :'Si :'Sn. Otherwise we have strong inequality 

in (38), provided that Pr(R;>0)=l, l :'Si :'Sn. From (38) it follows that 

(39) 

thus the stronger version of the second property is fulfilled if E(R;)<oo, l :'S i :'S n. For the weaker 

version it is sufficient that Pr(R;<oo)=l. 

If the policy n2 is applied, then the question whether X is recu1Tent remains open, even for 

exponentially distributed L 1, ... ,Li,. Most likely, some additional assumptions regarding the 

distribution functions G 1, ... ,G,, should be made to ensure thai X has this property. 

It follows from Lemma l thai Xi, xz, ... are independent identically distributed random 

variables (IIDRV). However, IJII, 1J12, ... may not be IIDRV, e.g. if R,, ... ,R0 are not exponentially 

dist,ibuted and e; is reconnected to e0 more than once while e„ remains disconnected from eo (in 

case of n 1 this may only happen for (::2). In consequence, defining D(i,n,r,s) as the average time 

during which e; remains disconnected from eo, one musi remember that the successive periods of 

disconnection may not have one distribution function, therefore in this context "average" cannot be 

mistaken for "expected value of'. The proper meaning of thus defined D(i,n,r,s) is given by the 

following lemma. 

Lemma 2 

Lei J/l be the number of reconnections between e; and eo during the interval (<p/"l, p/'l], 

and Jet 0/l be the total time in [<p/11 >, p/1>) during which e; remains disconnected from e0, k2'.l. If the 

assumptions of Lemma l are fulfilled, and O< rmin :'SR; :'S r111,x < oo for i= l, ... ,n, then 
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(40) 
1 "' . E(0<0 ) 

lim- 2)/'' • - - 1-
111 -400 111 )=I J µrob E(J? )) 

where • p,ob denotes convergence in probability. 

Proof 

Obviously, J/il and e/l are UDRY for k~ l. By virtue of (38), 

(41) E(f//t ' ):S:,E(R, + ... +R,,):S:,11-r,,.., 

i.e. E(ljlt"'l) is finite, thus we have: 

oo oo Jrm,n 

E(f//t') = J (1 - H (t)]dt = L f [I - H (t)]dt 2'. 
O J=I (j- l ) r,mn 

(42) 

- -
> · '-(1-H( ·. )]= · '-p ( <n >> ·. • ) - I min ~ J rmin I min ~ f lf/ I - } I min 

}= I }= I 

where His the distribution function of ~,,<nJ_ It is also true that: 

- - -
(43) E(Ji0 ) = :Z::J·Pr(Ji0 = j) = :Z::Pr(Ji'' 2'. j) :5:, :Z::Pr(f//?'J 2'. .i·r,,,,") 

J=l }= I J=I 

where the last inequality is a consequence of the following implication: if J,<iJ;::j , then at least j 

repairs are performed from cp/1> to p,<nJ_ From (42) and (43) we obtain: 

(44) 
E(Ji;,) :5:, Il. r,m, 

rmin 

16 



Let K(i,m), m2:0, be an integer valued random variable equal tok if the interval (<pm(il, Pm(i)) 

is included in the interval ((J)k<•>, p/">i, i.e. K(i,m)=k if J/i>+ ... +h_1<il < m :'.Ó J 1<i>+ ... +J/>, where 

10<il=O. In consequence of (41) 

(45) lim K(i,111) = 00 

111--+oo 

holds. Form such that J/il + ... + h(i.m)-l(i) >Owe have: 

(46) 

(47) 

(48) 

0U) + + eu> I "' eu> + + 0") 
I · · · K(i,111)-l < _ ~ (i) < I ·'' K(i,111) 

- L.,1//1 - Ul U) 
J,'0 + • • • + Jf!, .m) m j=l J, + · · · + J KU.m)-1 

0,U) +''' + 0f/i.m)-l 
J,(i) + ... +Jf~i.111) 

0,'i) + ... + ef/,.,,,i 
j l(i) + · · · + j fi1,111)-I 

0,U) + • • • + 0f/i,m) 
jl(i) + ... + j~:i.m) 

From (45) - (48) it follows that: 

(49) 
. I "' ui . 0,u> + ... + 0f/,.mi 0<•> + + e<il k 
hm-Il//1 =hm . . =lim 1 ... ' --.----

JJl--+"°1111=1 m--+oojl(l)+ ... +J~:i,m) J.:--+oo k ]](1) + ... +Jfi) 

Now (40) is obtained by applying the Khinchin law of large numbers to (49). 
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Let us now pass to the details of our estimation method. It is based on simulating one 

sample path of the process X,(i) describing the system's behavior, defined in the sequel. Clearly, the 

component e; can be disconnected from or reconnected to e0 only at the limes Tk, k2: l, which are the 

consecutive moments when any component changes its operational state, i.e. either the component 

fails or its repair is finished. Thus, the estimation method consists of the following tasks: 

l) generating the sequence {Tk, k 2: l ), and the states of all components at the instants Tk, 

2) selecting from {Tk, k 2: l) these moments when e; is disconnected from or reconnected to eo, 

i.e. the moments q>? and p/l, j 2: l, 

3) estimating C{i,n,r,s) and D(i ,n,r,s) as the sample means computed from x/l and ljl/l, l :S j :S L, 

where L is the number of samples. 

Task l is implemented by Procedure l , outlined below. 

Variables used by Procedure 1: 

Xk Ol: the state of e; at Tk; it is assumed that: 

Xk Ol= -q if e; is the q-th component in the queue of components awaiting re pair, 

Xk <O= O if e; is under repair, 

x/l = l if e; is operable and connected to e0, 

X/il= 2 if e; is operable and disconnected from eo, 

i*: index of the failed component, located nearest eo, 

s/l: the sojourn time of e; in the state X/;l, counted from Tk, with the assumption that all other 

components do not change their states before e; does , 

q_len : the number of components awaiting repair (queue length), 

avl_rt : the number of available repair teams, 

sim{l,i), sim{O,i): the functions simulating time-to-failure and time-to-repair for e;; the simulation 

is of Monte Carlo type, therefore it is based on random numbers generation. 
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Procedure 1 

T0 = O; avl_rt = r; q_ len = O; i*= n+ I; 

repeat for i = I , ... ,n { 

Xo(il = l; So(i ) = sim(l,i);} 

repeat for k 2'. I 

Tk= min(Sk_/i l : I :":'. i :":'. n, Xk- J (il należy do { O, I}); 

##If at Tk- J a component was failed and awaiting repair 

## or it was operable and disconnected from eo 

## then the component is in-elevant in determining Tk 

## adding failed components to the queue (repair policy n 1) 

repeat for i= i*- 1, ... ,1 

if (Xk- l(i) = l AND sk- l(i) =Tk) then { 

Xk (il = -q_len - l; q_len = q_ len + l; } 

## releasing repair teams 

repeat for i = 1, ... , n 

if (Xk- l(i ) = o AND sk- l(i) = Tk) then { 

X/il= I ; avl_11 = avl_rt + I; } 
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## taking at most avl_rt components for repair 

x = avl_rt; 

repeat for i= 1, ... , n { 

if (-x :S X/l < 0) then { 

Xk (il= O; avl_rt = avl_rt - l; q_len = q_len - l; } 

if (X/l < -x)then X/i)= xk(i) + x; 

##updating i* and the states of operable components 

i*= n+ l; 

repeat for i = l, ... ,n { 

i f (X/il :S O) the n i*= i; break; } 

repeat for i = 1, ... , n { 

if (Xk(i) = l AND i>i*) then xk(i)=2; 

if (Xk(i) = 2 AND i<i*) then x/i)=l;} 

##simulating the residua! sojom11 times of components in their states after Tk 

repeat for i= 1, .. . , n { 

if (Xk<i) < O OR Xk(i) =2) then continue; 

if ex/>= o AND xk- l(i) 'FO) then s/i) = sim(O,i); 

if (X/i)= o AND Xk-l(i) = O) then sk(i) = sk- l(i) - [Tk -Tk_iJ; 

if ex/>= l AND xk-l(i) # 1) then sk(i) = sim(l,i); 

if ex/>= l AND Xk-l(i) = 1) then s/i) = sk- l(i) - [Tk -Tk_iJ; ) 

) ## end of "repeat for k c:: l" 
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Remarks: 

I. The time s/> is simulated only if ei changes its state to O or l at the instant Tk. Obviously, if ei 

remains in the state O or 1, the residua! sojourn times for ei at Tk-l and Tk differ by the length of 

time elapsed from Tk-l to Tk. If e; changes its state to 2 or a negative value, or remains in one of 

those states, it is i1Televant in dete1mining Tk+I, as neither failure nor repair completion is possible 

for a component whose state is not O or 1. 

2. In case of the repair policy 1t2 the newly failed components are placed before those awaiting 

repair, hence the following code fragment is used to add failed components to the queue: 

X= O; 

repeat for i=l, ... ,i*- l 

if (Xk-l(i) = l AND sk-l(i) = Tk) then { 

x = x+l; Xk(il =-x; q_len = q_len + l;) 

repeat for i=i * , ... ,n 

if (Xk_,(i) < O) then x/>=xk-l(i) - x; 

As follows from the specification of Task 3, C(i,n,r,s) and D(i,n,r,s) will be estimated by 

taking sample means from x/> and I.Jl/> over L operating cycles, where a cycle is the time interval 

between two consecutive reconnections of ei to e0, i.e. one of the intervals [Pj-l(i), p/>), j 2'. 1. Thus, 

the estimation procedure is constructed by embedding Tasks 2 and 3 into Procedure 1, yielding 

Procedure 2 outlined below. 
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Variables used by Procedure 2: 

j : the number of the cunent cycle, 

Tl and TO : the sample values of x/> and ,v/> 
El and EO : the sample means computed from XJ? and 'Vh (i ) over h varying from l to j 

yk<i>: the state of connection between e; and eo at Tk, Y /> = l if e; is connected, otherwise yk(i) = O. 

Procedure 2 

Tl = O; TO = O; El = O; EO= O; 

j = l ; 

repeat for k c>: l 
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obtain Tk and x/>, ... ,X/"> using Procedure l; 

compute y/> from xk0 >, ... ,X/1> 

if (Yk- 1 (i) EQ l) then { 

Tl = Tl + (Tk -Tk- 1); 

if (Y/l EQ O)## e; is disconnected from e0 at Tk 

then { 

El = El ·(j - 1)/j +Tlij;## updating El during the cycle j 

Tl =0; } 



if (Y,j1 EQ O)/ 

TO= TO+ (T, -T,- 1); 

if (Y/l EQ 1) ## e; is reconnected to eo at Tk 

then / 

EO= EO·(j - 1)/j + TO/j; ## updating EO at the end of the cycle j 

TO=O; 

j = j+l; 

if (i GT L) then terminale; } 

} ## end of "repeat for k2:l" 

Remarks: 

I. El and EO are updated based on the following formula: 

(50) µ,1+1 = ft 11 ·n/(n+l) + X 11+1/(n+l) 

where 

(51) µ 11 = (x1+ ... +x11)/n 

2. In the step k only the values Xk_1°, X/l, Tk- l, Tk are used to update TO, Tl, and possibly EO, El, 

while the analogous values obtained in the steps 1, ... ,k-2 are iJTelevant. In consequence, it is 

necessary to store only the X's and T's obtained in the cuJTent and the previous step of Procedure 2. 
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5. Some numerical results 

In Tables l and 3 severa! results obtained using Procedure 2 are presented. It is assumed 

that L; and R; are exponentially distributed with A; = O.Ol, µ; = 0.1 , l S i S n. The time unit is one 

hour. The results presented in Table 2 are obtained from (16), (22), (23), and (37). 

Tab. l. Estimated average disconnection periods for a two-component system 

D(i,2,r,s) r=l, s=l r=l, s=2 r=2, s=l r=2, s=2 

i=l 10.84 10.84 10.01 10.01 

i=2 10.46 10.45 10.23 10.24 

Tab. 2. Exact average disconnection periods for a two-component system 

D(i,2,r,s) r=l, s=l r=l, s=2 r=2, s=l r=2, s=2 

i=l 10.8(3) 10.8(3) 10.00 10.00 

i=2 10.(45) 10.(45) 10.2381 10.238 1 

Tab. 3. Estimated average disconnection periods for a ten-component system 

D(i,10,r,s) r=l, s=l r=l, s=2 r=2, s=l r=2, s=2 

i=l 16.60 15.23 10.43 10.35 

i=5 15.20 15.03 11.14 11.12 

i=lO 13.95 14.11 12.10 12.11 

It is interesting to see thai if there is one repair team then D(i,n,r,s) is shorter for i=n than for i=l. 

This observation is confirmed by the exact results for n=2. To explain this fact note that en can fai I 

only if e1, ... ,en-1 are all in operating state. Thus the repair of en begins immediately after its failure, 

while e1 has to wait if another component is under repair at the moment of e1 's fai Iure. 
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