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Coupling of dissipative mechanisms of viscoplastic flow(*)

P. PERZYNA (WARSZAWA)

THE MAIN objective of the paper is to describe coupling effects between dissipative mechanisms
of an elastic-viscoplastic material. The other aim is to construct a reasonable and physically
justified theory of viscoplasticity within the framework of a material structure with internal
state variables. In particular the internal friction, the thermally activated and the high velocity
dislocation damping mechanisms are considered. A discussion of coupling of dissipative effects
for these mechanisms is given. Two groups of internal state variables are introduced. It has
been shown that the group of internal state variables describing dissipative effects of the internal
friction mechanism can be eliminated. In this case, of course, the evolution equations for a plastic
flow mechanism are modified in such a way that the influence of internal friction effects are taken
into account. The evolution equations for internal state variables describing the main mechanism
take the form of integral or integro-differential equations. One dimensional examples are consider-
ed. Experimental results for titanium, aluminium and copper are used to choose functions
involved in the description. The method is developed to generalize to three-dimensional case
the procedure proposed.

Glownym celem pracy jest opis efektow sprzezen mechanizméw dysypacyjnych materialu spre-
zysto-lepkoplastycznego. Celem nastgpnym jest opracowanie fizykalnie uzasadnionej teorii lep-
koplastycznosci w ramach struktury materialnej z parametrami wewnetrznymi. W szczegdlnosci
rozwazono mechanizm tarcia wewnetrznego, mechanizm termicznie aktywowany oraz mechanizm
ttumienia ruchu dyslokacji. Przeprowadzono dyskusje sprzezen efektéw dysypacyjnych dla tych
mechanizméw. Wprowadzono dwie grupy parametréw wewnetrznych. Wykazano, Ze grupa
parametréw wewnetrznych opisujaca efekty dysypacyjne wynikajace z mechanizmu tarcia we-
wnetrznego moze by¢ wyeliminowana z rozwazan. W tym przypadku, oczywiscie, rownania
ewolucji dla mechanizmu plastycznego plyniecia zostaja zmodyfikowane w taki sposob, ze
wplyw efektow tarcia wewnetrznego jest uwzgledniony. Réwnania ewolucji dla parametrow
wewngtrznych opisujacych gtéwny mechanizm dysypacyjny przyjmuja posta¢ réwnan catkowych
lub catkowo-rézniczkowych. Rozwazono przyktady jednowymiarowe. Postuzono sig rezultatami
do$wiadczalnymi dla tytanu, aluminium i miedzi w celu okreélenia funkcji materialowych wpro-
wadzonych do opisu. Pokazano metode uogélnienia opracowanego formalizmu na przypadki
tréjwymiarowe.

I'naBHoit uensio paGoThl ABNAETCs omucanue 3deKTOB CONpsYKEHHI MMCCHIIATHBHBLIX Me-
XaHH3MOB YNPYro-BA3SKOMJIACTHYECKOr0 Mmarepwana. Janbureii uensio ABNAeTcA paspaborka
(usuyecKrH OGOCHOBAHHON TEOPHM BASKOMIACTHYHOCTH B PaMKaX MaTepHMaIbHON CTPYKTYpPbI
C BHYTPEHHHMH INapameTpaMH. B WaCTHOCTM pacCMOTDEH MeXaHH3IM BHYTPEHHEro TPEHMS,
MEXaHM3M TepMHYecKOH aKTHBAlMH, 3 TAK)Ke MEXAHH3M 3aTYXaHHA JBHMKEHHA JIHMCIIOKALMIA.
ITpoBeneno ofcy:xaeHue COMPsYKEHMH AMCCHNATHBHBIX 9((EKTOB ISl STHX MEXaHH3MOB.
Beemenb! ABe rpynnb! BHYTPEHHUX NapameTpoB. IIokasaHo, YTO rpynna BHYTPEHHMX Iapa-
METPOB, ONHCHIBAIOIIAA QUCCHIIATHEHEIE 3(heKTh], BEITEKAIONUIHE H3 MEXaHU3Ma BHYTPEHHETO
TPEHHA, MOMKET OBLITH HCHJIIOUEHA M3 paccy)kaeHuil. B sTOM ciryuae, KOHEUHO, YpPaBHEHMS
3BOJIIOLMHA [JIA MEXaHHU3MA IIIACTHYECKOro TeueHus 6yayT MoanduunupoBasb! Takum obpasom,
uTO BiHAHKE 3 (DEKTOB BHYTPEHHErO TPEHUA YUHTHIBACTCA. Y DABHEHNS 9BOJIOLMH 1A BHYT-
PEHHHX MapaMeTpPOB, ONMMCHIBAIOLIMX IJIABHBIH NUCCHIIATHBHEINA MEXaHW3M, NMPHHAMAIOT BH
HHTErpajIbHBIX MM HHTeTrpo-AuddepeHIHaNsHEIX ypaBHeHMil. PaccMOTPEHBI OfHOMEpPHEIE
npumepkl. ITOCAY)»KHBAIOTCA SKCIIEPHMEHTAIBHBLIMM PpEe3yNbTATAMH U1 THTaHAa, AJIOMHHHA
H MO C LEJBIO ONpeesIeHHsl MaTepHalbHBIX (YyHKIMI BBeAeHHBIX B onucanue. IToxasan
mero oboburenna paspaboranHort gopmanusma Ha TpexmepHbIe Cyuau.

(*) The paper has been presented at the 14-th IUTAM Congress, Delft, 30 August—4 September
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1. Introduction

RECENT experimental investigations have shown that the viscoplastic flow in single crystals
of metals and in polycrystalline metals is governed by several dissipative mechanisms(*).
Physical analysis based on the dynamics of dislocations suggested that two mechanisms,
namely the thermally activated process and the phonon damping effects are most important
for explaining of the strain rate and temperature sensitivity of metals.

It has been observed that coupling phenomena between the main mechanisms of plastic
flow and the internal friction mechanism have a great influence on the response of metals
to some processes of deformation and temperature changes.

The main objective of this paper is to develop the procedure of description of coupling
of the dissipative effects observed.

It has been shown that this formalism can be achieved within the framework of the
material structure with internal state variables. Two groups of internal state variables
are introduced and thermodynamic requirements are fulfilled. It has been proved that the
group of internal state variables describing the dissipative effects of the internal friction
mechanism can be eliminated. As a result of this procedure the evolution equations for
plastic flow mechanisms are modified in such a way that the influence of internal friction
effects on plastic flow are taken into consideration. The evolution equations for the internal
state variables describing the main mechanism take the form of integro-differential equa-
tions (or integral equations).

Based on one-dimensional physical analysis and available experimental data a set of
rules of interpretation for internal state variables introduced is given. Two approximate
descriptions of rate sensitive plastic flow are proposed and examples of coupling
phenomena are considered. Experimental results for titanium, aluminium and copper are
used to choose the material functions involved in the description.

The method is shown to generalize the formalism proposed to three-dimensional case.

2. The material structure with internal state variables

In the previous paper [21] the author developed a general thermodynamic theory of
dissipative materials. In this theory an important role plays notion of the intrinsic state(?)
in a particle X of a body #. The intrinsic state o of a particle X is defined as a pair—the
local deformation-temperature configuration P(t) = (C(¢), (z), V&(1)) of a particle X
and its method of preparation A(?), i.e.

2.1 o = (P(1), At)).
A method of preparation A(f) of the deformation-temperature configuration of a particle
X represents the way of inserting the additional information required to define uniquely

(') The analysis of dissipative mechanisms has been given for mild steel by A. R. ROSENFIELD and
G. T. HAHN [24] and J. D. CampBeLL and W. G. FERGUSON [1] and for aluminium by C. K. H. DHARAN
and F. E. HAuserR [4]. Cf. also the discussion of this subject presented by the author [18, 19 and 20].

(*) The precise definition of the intrinsic state for a pure mechanical process was first given by P. PE-
RZYNA and W. KosiNskr [22].
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the intrinsic state of a particle X and is needed to describe the internal dissipation of a ma-
terial.

By particular realization of a method of preparation an internal state variable material
structure can be constructed. It is postulated that A(z) is an element of a finite dimensional
vector space ¥ .

The principle of determinism for the material structure with internal state variables
is expressed by the constitutive equations

(2.2) Z(t) = S(P(1), A(1)),

and can be stated as follows: A unique value of the response Z(t) of a material at X, i.e.
unique values of the free energy (), the entropy #(¢), the Piola-Kirchhoff stress tensor
T(t), and the heat flux vector g(¢), corresponds to every intrinsic state o.

The mapping $ is called the response function and represents the free energy response
function ‘P‘ the entropy response function N the stress response function T and the heat
response function Q,i.e.

(2.3) S={¥NT Q).

The evolution for this material structure is given by the initial-value problem for an
internal state variable A(f):

2.4 2 A0 = APO,AD),  AO) =

It is assumed that the initial-value problem (2.4) has a unique solution in the form

(2.5) A@) = F(Pro.i35 Ao)-
The dissipation principle requires that the results
dono¥(-) =0, T(t) = 2, 5cm‘£’(' ), () = =8P (),
(2.6)
— oan ¥ () A - G(G) Vi) >

are satisfied for every time ¢ € [0, dp).
The internal dissipation function is defined by the expression

2.7) i0) = — 7%)_ anny (- A(0).

The expression (2.7) which defines the value of the internal dissipation at the intrinsic
state o shows that full information given in the method of preparation, i.e. the set of internal
state variables A(f) and the evolution equation for these variables A(r) = A(0), essentially
determines the internal dissipation for this intrinsic state o.

3. Coupling of dissipative mechanisms
In the case of an inelastic material there are two main reasons for internal dissipation.

First, the pure viscous effects and second the visco-plastic flow.
To make our reasoning clear let us consider two main physical mechanisms responsible
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for inelastic effects, namely the internal friction mechanism and the thermo-activated
mechanism (or the damping mechanism).

To describe both inelastic effects simultaneously two groups of internal state variables
are introduced(®) i.e.

(ERY) A@t) = (a(), w())
for which the following initial value problem
a(t) = A(o) = AP, a(r),w(?)), a(0) = &,

(3.2) .
a(t) = Q) = QP(), a®),w(t)), w(0) = w,,

is postulated.

It is assumed that the first group of internal state variables a(r) describes the dissipation
effects of the internal friction mechanism, and the second w(7) the effects of the thermo-
activated mechanism (or the damping mechanism).

It is noteworthy that two groups of internal state variables e(f) and w(¢) introduced
by Egs. (3.1) and (3.2) can describe coupling between dissipative mechanisms.

4. Particular example of coupling effects

In many cases of practical interest we can find a formalism in which the internal state
variables describing effects of the first mechanism are eventually eliminated. We can
achieve this in a rather simple manner if the first mechanism is described by the linear
evolution equations(*).

If we consider again the internal friction mechanism and the thermo-activated mech-
anism (or the damping mechanism) as two main dissipative mechanisms, then we can
show a very good example of such a procedure.

It is a very well-known fact that the internal friction mechanism leads to visco-elastic
effects and is described by the linear evolution equations. On the other hand the thermo-
activated mechanism (or the damping mechanism) is responsible for elastic-viscoplastic
effects. The internal state variables introduced to describe these effects are governed by
the nonlinear evolution equations.

Let us assume that the evolution equations (3.2) have the form

a(r) = A [a()]— ALz (P(1), @ (2)),
@(1) = 2,(P(1), w())+R, (P(1), (1)) [a(®)],
where U, is a constant matrix, UW,, £, and £, may depend in an arbitrary manner on
P(t) and w (7).
Equation (4.1), possesses the formal solution

4.1)

@2 a(t) = exp(U; )eto— [ exp[ Ay (t— D)W (P(x), (1))dx
0

(*) This idea was first introduced by the author in the paper [17].
(*) For statistical justification of this procedure see R. ZwanziG [27] and H. HAKEN [7].
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which may be transformed by partial integration into

(4.3)  a(t) = AT A, (P(r), (1) )+exp (A, )]t — A7 * A, (P(0), 2(0))]
= fexp[‘)Il(t— DIUA7{ ey Wz (P(2), (7)) * P(2) + Ousiny W2 (P(7), 0 (7)) - @d(7)} 7.

Inserting the result (4.3) into Eq. (4.1), yields the desired evolution equation
44) (@) =2, (P(t)s W(‘))'l‘nz (P(t); w(t))QIIIQIZ (P(f), w(1))

— [ 2,(P(®), 0(®))exp [U; (1 — DU {0p W (P(), (1)) - P(2)
(1]

+ am(r)mz(P(r)’ w(r)) iz “.’(t)}““r'r
+82, (P(1), (1) )exp(U; #)[eto — Az A, (P(0), 2(0))].

The internal state variables of the first group enter into the integro-differential
equation (4.4) only through their initial values a,.

We can obtain an equivalent result by inserting the formal solution (4.2) directly into
the evolution equation (4.1),. The result is as follows.

4.5) () =, (P@1), w(t))+2;(P(1), w(r) ) {exp (A, ey

— [ exp[,(t— D)W, (P(2), @(D))d7},  ©2(0) = .
0

The initial value problem (4.5) is equivalent to the Volterra integral equation

(4.6) () = wo+ [ 2,(P(2), 0(D))dr+ [ R, (P(), (&) {exp (U, Ha,
0 0

&
— [ exp[U, (¢ — DU, (P(x), (v) )dr} dE.
0

The result in the form of the integro-differential equation (4.4) has more direct inter-
pretation than the evolution equation (4.5) or than the Volterra integral equation (4.6).

All terms, except the first, on the right hand side in the integro-differential equation
(4.4) reflect influences of the first mechanism on the evolution of the internal state variables
of the second group. The second term describes an instantaneous interaction, the integral
describes a general retarded interaction and the last term may be interpreted as a fluctua-
tion interaction. All these terms represent the coupling effects between the two dissipative
mechanisms considered.

The result obtained in this section is of great importance to us. To describe interactions
of both mechanisms it is sufficient to introduce only one group of the internal state variables,
namely w, and to use the modified evolution equation (4.4) or Eq. (4.6). So, in what
follows we can assume that the intrinsic state is given by

4.7) o* = (P(1), w(?)).
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5. Physical foundations

The effects of temperature and strain rate on the plastic flow behaviour of metals
have been successfully rationalized in terms of the dynamics of dislocations.

To make our reasoning clear let us consider the movement of a dislocation through
the rows of barriers. The moving dislocation is dissipated energy mainly due to .wo sources.
The first is connected with the overcoming of obstacles which involves a thermally activated
process and the second with the interactions of dislocation with lattice thermal vibrations
(phonon drag) or with electrons (electron viscosity) or are based on relaxation effects
in the dislocation core (glide-plane viscosity).

For that reason the theoretical mechanisms governing the velocity of dislocation in
relatively pure materials can be divided into two groups, i.e., mechanisms which do and
do not involve a thermal activation process.

According to that explanation it is convenient to divide the strain rate sensitivity
behaviour of metals into two regions(®) (cf. Fig. 1):

a) the thermally activated region (Region II in Fig. 1) and

b) the phonon damping region (Region 1V in Fig. 1).

FiG. 1. Two dissipative regions Il and IV for stress
- versus strain rate curve at constant strain and tem-
Ep perature.

The flow stress T can be represented by the equation
(5.1) T=T+T*+Tp,

where T, is the athermal component of stress, T* is the thermally-activated component
of stress, and T} is the stress attributed to phonon damping.

If a dislocation is moving through the rows of barriers, then its velocity can be de-
termined by the expression(®)

(5.2) v =L (t;+1p)

where &/L-! is the average distance of dislocation movement after each thermal activa-
tion, ¢ is the time a dislocation spent at the obstacle and 7 is the time of travelling between
the barriers.

(*) We use here the denotation of the dissipative regions as proposed by A. R. RoSENFIELD and G. T.
HAHN [24]. They have shown that in the temperature-strain rate spectrum of plain carbon steel four regions
can be considered which reflect different mechanisms of plastic deformations.

(°) See a theoretical analysis presented by A. KUMAR and R. G. KumMBLE[11] and also a very recent
paper by C. Teoposiu and F. SIDOROFF [26].
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The plastic strain rate £, is given by the Orowan relation

(5.3) E, = oubo,
where p,, is the mobile dislocation density, and b denotes the Burger’s vector and v is
the average dislocation velocity.

The average velocity of a dislocation, damped by the phonons between thermally
activated events which are computed by the relation (5.2), takes the form of the expression

(5.4) v =L v exp(U/k#)+ L BL™ " |(T—Tg)b]™?,

where » is the vibration frequency of the dislocation segment, U(T*) is the activation
energy, k¢ is the Boltzmann constant times the absolute temperature, B denotes the dis-
location drag coefficient, and T} is attributed to the stress needed to overcome the forest
dislocation barriers to the dislocation motion (cf. Fig. 1).

After inserting the result (5.4) into Eq. (5.3) we obtain the desired equation for the
plastic strain rate

(5.5) E, = oubal L~ [y~ exp (U(T*)/k&)+ A BL~' [(T— T)b]~".

Equation (5.5) is the evolution equation for the plastic strain E, in the case of simulta-
neous interaction of the thermally-activated mechanism and the phonon damping mech-
anism.

It will be useful to consider two limit cases as follows.

a) If the time #; taken by the dislocation to travel between the barriers in a viscous
phonon medium is negligible when compared with the time #; spent at the obstacle, then
we can focus our attention on the analysis of the thermally-activated process(”) (Region II
in Fig. 1). The dislocation velocity, Eq. (5.2), can be approximated by the expression

_AL!

(5.6) v = -

The evolution equation for the plastic strain E, takes now the form
(5.7 E, = (om/L) #wexp[—U(T*)/k9].
Since the flow stress T for this case is given by the relation
(5.8) T=Tu+T*
the activation energy U can be assumed as the nonlinear function of the overstress —— —1

ie.

(5.9) U(T*) = o.'pl»::(i = l)] 5
T
where g is constant.

If we additionally introduce the denotation
(5.10) Y1 = (oem/L)bst,

(?) The mechanism for overcoming the dislocation forest which may appear in crystals of different
metals in various temperature ranges has been developed theoretically by A. SEEGER [25].



614 P. PERZYNA

then the evolution equation (5.7) takes the very well-known form

(5.11) E, = ylexp{—tp[a(% —j)]fkﬂ}.

In the description proposed we have three parameters E,, y, and T, which can be
treated as the internal state variables (cf. here the results of the paper by PERzyNA and
Woio [23)).

b) With increasing dislocation velocities, the ratio #4/t, increases and at a high enough
stress or in a perfect crystal the velocity is only governed by the phonon damping
mechanism(®) (cf. Region IV in Fig. 1). At very high strain rates the applied stress is high
enough to overcome instantaneously the dislocation barriers without any aid from thermal
fluctuations. This is true for the flow stress T > Ty, where T is attributed to the stress
needed to overcome the forest dislocation barriers to the dislocation motion and is
called the back stress.

In this region the dislocation velocity, Eq. (5.2), can be approximated by the expression

-1
(5.12) = i
Ip
and the evolution equation for the plastic strain takes the form(®)
; 2
(5.13) E, = 9"}:’ e A
The flow stress T consists of two terms
(5.14) T=Tg+Tp, where Tgz= T, +To*.
If we introduce the denotation
_ Om bz?_}_
(5’15) Y2 = B

then the evolution equation (5.13) has a simpler form
. T

In the description discussed here we have, as in the previous case, three parameters,
namely E,, y, and T which can be treated as the internal state variables.

When a crystal is set into vibration, the vibrations decay even if there is no loss of
energy from the crystal to its surroundings. The cause of the decay is called internal fric-
tion. Internal friction may arise by a number of mechanisms(!?). In the linear approxima-

(®) The phonon viscosity theory has been developed by W. P. Mason [14]. For a through theoretical
discussion of damping mechanisms see F. R. N. NaBARRO [15] and J. A. GorMAN, D. S. Woob and T. VREE-
LAND [6].

(°) The dislocation drag coefficient B can be interpreted as a generalized damping constant for phonon
viscosity and phonon scattering mechanisms, i.e., B = Bj,+ B,;, cf. Ref. [20]. The ratio Bjoy can be
obtained from the slope of the linear portion of the stress against the strain rate curve, and from this ratio
the value of B can be calculated if a value of gy is assumed.

(*°) Comprehensive review of the internal friction mechanisms can be found in the treatise by F. R. N.
NABARRO [15].
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tion the theory of each of these mechanisms leads to the known Boltzmann constitutive
equations of viscoelasticity(*?).

As it has been suggested by F.R.N. NABARRO [15] the presence of dislocations in the
crystal may increase the internal friction in three general ways. Firstly, the dislocations
act as sources of internal stresses and contribute to the thermoelastic damping. Secondly,
the dislocations may move under the action of an applied stress, thereby producing a mo-
dulus defect. If the motion of the dislocations is resisted by one of the mechanisms discus ed
in this Section their displacement is not in phase with the applied stress, and the modulus
defect has an imaginary component which corresponds to an internal friction. Thirdly,
the motion of the dislocations may be hindered by localized obstacles. A dislocation
acquires energy in order to overcome an obstacle, and this energy is dissipated when the
obstacle has been passed by a mechanism which contribute to the mechanisms of disloca-
tion damping.

6. One-dimensional examples of coupling phenomena

It will be useful for future applications to consider approximations of the description
previously presented.

a) For some metals (e.g. iron, mild steel and titanium) for medium strain rates the
thermally-activated mechanism becomes dominant. In this particular case we can extend
Region II to be valid for the entire range of strain rate and temperature changes, Fig. 2.

Th
@

{v:wmr

Ep=const

FiG. 2. Approximation by the thermally activated =

mechanism in the entire range of strain rate i
(Region II). { Ep

Basing on the results obtained in the previous section we introduce the internal state
variables as follows:
(6.1) w(t) = [Ex(0), y(1), x(1)],
where for the one-dimensional case E,(t) is a scalar value interpreted as the inelastic strain,
y(t) is the viscosity parameter defined by Eq. (5.10), and x(¢) is interpreted as the athermal
stress T,(2).

For the internal state variables introduced we postulate the evolution equations in
the form

: ()
E(t)=y)®|—-—-1],

»(0) = 7(0) [xm ]

7(t) = (6 E,(1),
R #(t) = K(0*)E, (1),

(**) Statistical mechanics of viscoelasticity based on the internal friction mechanisms has been develop-
ed by G. P. DE VAULT and J. A. MCLENNAN [3, 4] and by H. J. Maris [13].

(6.2)

8 Arch. Mech. Stos. nr 477
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where ® is a new dimensionless function of the overstress, f‘(o‘*) and la(a*) are functions
of the intrinsic state

(6.3) o* = (E(1), 9(1), w(1)).

It is intended that all these functions may be chosen to represent the results of tests on the
dynamic behaviour of metals.

To be more precise we shall consider the example of experimental data for pure ti-
tanium. J. E. LAwsoN and T. NicHOLAs [12] have performed series of experiments on pure
titanium in which they obtained the linear dependence of shear flow stress on log (strain
rate) for a very large range of strain rate changes (from 10~* to 10* s~!). These data are
shown in Figs. 3 and 4.

To represent these experimental data we assume the evolution equation for the internal
state variable E, to be as follows

@)
6.4 E,(0) = 9(E,0),
(6.4) »(1) = P(E,(0), (‘))i [f( E,(1), 8(1)) ] }

a0l 5000sec™"

2030 —oo—23"
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FI1G. 3. Shear stress-strain curves at constant strain rate for commercially pure titanium (After J. E. LAWSON
and T. NicHOLAS [12]).
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FIG. 4. Stress versus log (strain rate) at 10 per cent strain for commercially pure titanium (After J. E. LAWsON
and T. NIcHOLAS [12]).
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in which ®(+) = exp(-)—1 and the internal state variables y(r) and %(¢) are postulated
in the form

(1) = P(Ep (1), B(),
(1) = F(E,(0), 9(1)),
where the function f' represents a description of the static curve for titanium. For an iso-
thermal case this function can be taken as the approximation of the curve obtained for
& = const and E,(f) = const = 10~* s~* (cf. Fig. 4).

Basing on similar data for nonisothermal tests and for different plastic strains E,(f)
we can determine the function .

Let us describe now the coupling effects between the internal friction and thermally-
activated mechanisms for the one-dimensional case.

To do this we assume evolution equations for the internal state variables of the second
group, i.e. for w(t) = [E,(t), ¥(¢), %(t)] in the following form:
(6.6) w(t) = ,(c*)+R,(c*) [a(?)]

with the initial value w(0) = w,, where

6.5)

T(‘) i A
91 Y= ? i ] y L]
6.7) () ?’(0‘1’( 1)[1 i'(0*), R(0%)]

Q,(0*) = [h(d*), in(0*), 0].

The functions I;(a*) and m(o*) describe the influences of the internal friction mechanism
on the changes of the inelastic strain E, and of the viscosity parameter y. It is postulated
that there is no influence of the internal friction mechanism on the athermal stress x = T,.
The evolution equations for the first group of the internal state variables (i.e. for a
= [ay, ..., %), n is finite) are postulated in the form of Eq. (4.1).
After eliminating the internal state variables of the first group we obtain the Volterra
integral equation (cf. with the result (4.6)):

[ t
68) () =wo+ [ R,(0*(1))dr+ [ R(c*(®)){exp (U, Hoto
1] 0

¢
- fexp[ﬂl; (&= )], (o*(7))dr} dE.
1]

If we use the experimental data of J. L. LAwsoN and T. NicHoLAs for titanium again
then the material functions £, and £, in the integral equation (6.8) take the form

. () _
(69) Sulieglpia ﬁ(’)){exp[f(E,(r),«?(r)) 1] 1}‘
Q,(c*) = h(cr*).

The functions left to be determined are the influence functions ,(o*) and f;(o*).
b) Some recent investigations on metals have shown that at very high strain rates
the phonon damping mechanism becomes most influential. For some metals (e.g. alu-

B*
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minium and copper) this mechanism can approximate the plastic flow phenomena in the
entire range of strain rates changes. The situation is schematically shown in Fig. 5. This
approximation has been suggested for aluminium single crystals by W. G. FERGUSON,
A. KuMaRr and J. E. DorN [5], A. KUMAR, F. E. HAUSER and J. E. Dorn [10] and J. A.
GorMAN, D. S. Woop and T. VREELAND [6], for polycrystalline aluminium by F. E. HAu-
SER, J. A. SiMMONs and J. E. Dorn [8], C. H. KARNES and E. A. RiPPERGER [9] and A. Ku-
MAR, F. E. Hauser and J. E. DorN [10] and for copper by A. KumMar and R. G. KumsLE [11].

L |

,_o_or ';f Fic. 5. Approximation by the phonon damping
= = mechanism in the entire range of strain rate
o Ep (Region 1V).

The flow stress of aluminium crystals at different strain rates and strains at temperature
10 K, 77 K, 300 K and 500 K obtained by A. KuMAR, F. E. HAUSER and J. E. Dorn [10]
. is shown in Fig. 6. It is apparent that the linear relationship between stress and strain
rate does continue to prevail at high strain rates without any deviation even at a 20 per cent
strain. The linear portion of the stress versus strain rate curve when extrapolated intersects
the stress axis at Tg. This has been defined as a back stress. The results plotted in Fig. 6
clearly show that the back stress T for aluminium single crystals is a function of strain
or dislocation density and is independent of temperature within the accuracy of the measure-
ments.

Data from the paper by F. E. HAauser, J. A. StmMons and J. E. DornN [8] for poly-
crystalline aluminium which were originally plotted on a semilogarithmic scale are shown
in Fig. 7 on a linear scale. Again it is observed that the magnitude of Tj increases with
an increase in strain, Fig. 8. However, for the polycrystalline aluminium the back stress
Ty does depend on temperature, namely 7Tp decreases with an increase in temperature,
Fig. 9. Af slower strain rates the damping term is negligible and the strain rate sensitivity

[}
m_
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1

Strain ratex10"

3 4
Stress x 10‘3ps:'

F1G. 6. The strain rate dependence of the flow stress of aluminium single crystals deformed by (1,1, 1)
{1, 1, 0> slip (After A. KuMAR, F. E. HAUSER and J. E. Dorn [10]).
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FiG. 7. The strain rate dependence of the yield stress for
polycrystalline aluminium. The data of F. E. HAUSER,
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in Eq. (5.1) arises from the thermally-activated component of the stress 7*. At very high
strain rates there is no assistance from the thermal fluctuations, and the strain rate sensitiv-
ity is attributed to the third term in Eq. (5.1) which is a dislocation damping.term T}.

The mechanical behaviour of copper at strain rates from 10~2 to 10° s~* at temperature
300 K, 420 K and 590 K was investigated by A. KumMAr and R. G. KumsLE [l1]. Data
obtained by these authors have been plotted on a linear scale in Figs. 10, 11 and 12. In
these plots it is observed that the strain rate behaviour of copper can be divided into two
regions. Below 10s~! the mobile dislocations are thermally activated over the forest
dislocation barriers and above 10?s~! the dislocation motion is viscous drag limited.

| Annealed Cu, 300°K
_ B0r Strain (%)= 0 2 4 [ Cu, 10% strain
'S, 590K  420°K <
& 2000 [ ¥ 2000 - 300K
] 8
8 500 - o 1800
s -
.S E
é..s 1000 < 1000 -
S
500 - B i b
]
L ol — K 1 e 1
P & 20 5 WM H W -
Stress x107" dynes-cm Stress x10°¢ dynes-cm™2

FiG. 11. The linear dependence of flow stress on  FiG. 12. The linear dependence of the flow stress

strain rate at high strain rates for annealed copper for copper at high strain rates at temperature

at plastic strain 0.2 and 4% and at 300 K (After 590, 420 and 300 K and at 109 plastic strain
A. Kumar and R. G. KuMBLE [11]). (After A. Kumar and R. G. KumsLE [11]).

The flow stress is a linear function of strain rate at high strain rates for all the states at 300,
420 and 590 K and can be represented by Eq. (5.16). The magnitude of T, for copper
and its variation with strain is wholly consistent with the concept that Ty is the stress
needed to overcome the usual barriers to the dislocation motion. The authors of the paper
concluded that in the case of copper these barriers are forest dislocations. The magnitude
of Ty in Fig. 12 decreases with increasing temperature for a strain-hardened state. This
has been attributed to the recovery of the dislocation structure.

The authors observed also that the mobile dislocation density in the viscous phonon
damping region is independent of strain up to 6% and decreases slightly with a further
increase in strain. The mobile dislocation density increases with increasing temperature.

This last observation is of great importance to our phenomenological description based
on internal state variables because it concerns the viscosity parameter y, defined by the
relation (5.15).

A discussion of the experimental data for aluminium single crystals, polycrystalline
aluminium and copper clearly shows that the second approximation proposed is justified.

To describe this simplified case let us introduce the internal state variables as postulated
by Eq. (6.1) and ‘interpret y(¢) = y,(t) and x(t) = Tx(2).
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Basing on the experimental results discussed and the physical propositions given in
Sect. 3b we postulate the evolution equations for the internal state variables as follows:

T()
Ey(1) = (:)[ - ]
(1) = T(e*) E,(1),
(1) = K(*) E, (1),
where T" and K are new functions of the intrinsic state ¢*.

Our description will be simpler and more useful if, basing on the experimental data
discussed, we can determine directly the material functions (cf. Figs. 8 and 9)

y(0) = Y(E,(1), 9(1)),
x(t) = %(E, (1), 3(1)).
If that is the case the phenomenological theory is straightforward and involves only
one internal state variable E,(¢) with the evolution equation in the form
I(t) I'l
XOXI0)

The coupling between the internal friction and the phonon damping mechanisms is

described by the integral equation (6.8) in which the functions 2, and £, are defined as
follows:

(6.10)

(6.11)

(6.12) E(t) = y(Ep(1), ﬂ(r))l #(Ey(),0(0)

T(r) ] —
Q, (o* r[——l 1, I'(e*), K(o%)],
6.13) 1(0%) = y(r) (1, I'(e*), K(o¥)]
Q,(c%) = [h(a*), m(a*), 0],
where h(o0*) and m(c*) are new influence functions.
When 9(f) and »(t) are given by the relations (6.11), the functions &, and £, take
the form

* T()
(6.14) 24(0*) = 7(EW), W))[ %(E@®), 9(t)) 1]’
Q,(0*) = h(a*).

A description of this simple case is reduced to the Volterra integral equation

(6 15) P(r) = Eo f}'(EP(r)’ 'ﬂ(t))[ (EP:(T‘I'.'()T)'I?(I)) l] dr

+ f R(EQ), 9(8), Ep(s)){eXp(%I. £
0

4

— [ expl, (¢ =M1 (E), 9, Ey(0)dr) d,

0
where EJ denotes the initial value of the inelastic strain E,(t), i.e. E,(0) = Ejp.
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The crucial point of the theory describing the influence of the internal friction mechanism
on the phonon damping plastic flow is the determination of the functions %,(0*) and
h(o*). Particular functions ,(¢*) and h(o*) are assumed the influence of the second
integral on the solution of the Volterra integral equation (6.15) is settled.

It is noteworthy that the realistic determination of the functions ,(c*) and A(c*)
is difficult. The reason for that is the lack of experimental tests investigating the influence
discussed.

7. Three-dimensional theory

To generalize the description of the coupling effects between the internal friction and
plastic flow mechanisms for the case of combined states of stress and strain we postulate
the internal state variables as follows:

(7.1) w(r) = [E (1), y(1), 2(1)],
where E,(t) denotes now the inelastic strain tensor, y() is the viscosity parameter and
#(t) is interpreted as the work-hardening parameter.

As it was shown in the previous sections we can approximate the rate sensitive plastic
flow by the thermally-activated mechanism or by the phonon damping mechanism.

In both cases the description is given by the constitutive equations
(7.2) Z(t) = $(o*) = S(P(1),w()), S = {¥,N,T,Q}
with the restrictions (cf. Egs. (2.6))

dwoyP(:) =0, T() = 2000c0¥(-), 1(t)-= —2y¥(-),
(7.3) o i 1
— - ] I -—
w(t) ( ) 00 19'(!‘)

and by the integro-differential equation (4.4) (or by the Volterra integral equation (4.6))
in which the functions £, and £, take the form

91(0‘*) = y(!) <d) (% - l>) [67-(,,f, tr(&;-(,)ff' (0'*)), tr(ar(;)fﬁ(d*))],

Q,(c*) = [H(s*), M(c*), 0],

for thermally-activated plastic flow, and

0y 2 = 7O LG 1) [rf t GrofT@), e @ro K@),
Q,(c*) = [H(s*), M(0*), 0],

for phonon damping plastic flow, respectively.

In this description we took advantage of a notion of the quasi-static yield criterion for
an elastic-viscoplastic material defined as follows(*?):

Q%) - V()= 0, tel0,ds]

(7.4)

(*2?) The existence of the quasi-static yield criterion is one of the fundamental assumptions of visco-
plasticity theory, cf. Refs. [16-20].
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(7.6) F(o*) = %—l,
where
7.7 f@) = f(T(@), E,(1), (1)),

and we introduce the symbol [ ]> according to the definition

0 if  f(@t) < =(1),
< ]>={[1 it £0) > %)

The material functions f, 16, ﬁ, M and I, K, H, M are understood as a simple general-

ization for the three-dimensional case of the functions f, 1&, i:, mandT, K, A, m, respective-
ly, defined and interpreted in the one-dimensional consideration in Sect. 6.

In the case when material under consideration has two very distinct regions of visco-
plastic flow, namely the thermally-activated region (say, from strain rate 10~%s~! to
10> s7') and the phonon damping region (say, from strain rate 10>s~! to 10°s™') we
can apply the idea presented in Refs. [18] and [23] to describe the viscoplastic response
of a material by unified constitutive equations valid in the entire range of strain rate and
temperature changes.

It is also very easy to imagine the generalized description taking into simultaneous
account the coupling effects between internal friction, thermally-activated and phonon
damping mechanisms.
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