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Plane plastic flow of granular model material
Experimental setup and results (*)

M. BECKER (WUPPERTAL) and H. LIPPMANN (MUNCHEN)

THE CONVENTIONAL tests in soil mechanics do not allow for a rotation of the principal axes of
the state of stress. Either a homogeneous stress distribution appears, as for instance in the truly
triaxial machine [1, 2], or there results a fracture zone in which the behaviour of the material
cannot experimentally be examined, as for instance in the simple shear test [3]. In this inves-
tigation large plastic deformations of a granular model material under inhomogeneous stress
distribution are studied. Therefore we developed a setup which is sketched in Fig. 1. Using
many tests series we examined different yield laws and checked whether the calculated stress
values agreed with the measured quantities or not. The experiments show a fairly good agreement,
provided that the Coulomb yield criterion in connection with the flow rule of Brown-Gudehus,
are employed as constitutive equations.

Doswiadczenia konwencjonalne w mechanice oSrodkéw sypkich nie dopuszczajg obrotu gltow-
nych osi stanu napre¢zenia. Otrzymuje si¢ badZ jednorodny stan naprezenia, jak na przykiad
w prawdziwie trojosiowych aparatach [1, 2], lub powstaje strefa zniszczenia, w ktorej zachowanie
si¢ materialu nie jest trudne do zbadania doswiadczalnego, jak na przyklad w probach na czyste
$cinanie [3]. W niniejszej pracy badane sa duze odksztalcenia plastyczne modelowego materiatu
ziarnistego, wywolane niejednorodnym rozkladem stanu naprezenia. W tym celu zbudowali$my
stanowisko doswiadczalne, ktore pokazane jest schematycznie na rys. 1. Wykonujac wiele serii
doswiadczen zbadali$my rozne prawa plynigcia i sprawdziliémy czy policzone wartoéci naprezefi
sa zgodne z mierzonymi wielkosciami czy nie. Wyniki doéwiadczen wykazuja zupelnie dobra
zgodnos¢ pod warunkiem, Ze jako réwnania konstytutywne przyjmie si¢ warunek plastycznoéci
Coulomba wraz z prawem plynigcia Browna-Gudehusa.

KoHBeHIMOHHBIE SKCTIEPHMEHTHI B MEXAHHKE CBITYUYMX CPe[l He JIONYCKAI0T BPALLEHHUA TTIaBHBIX
ocell HanpsyeHHoro coctofsHuA. Ilonyuaercsi WIM OQHOPOMHOE HANDPSDHKEHHOE COCTOAHHE,
KaK HanpuMep B JeHCTBHTEJIBHO TPEXCOHBIX anmapartax [1, 2], HIH BO3HHKAaeT 30HA paspylue-
HHUsI, B KOTOPOil MOBeleHHe MaTepHasa He TPYOHO HCC/Ie[OBaTh 3KCIIEPHMEHTJIBHO, KAaK Ha-
NpUMep B MCTIBITAHHAX Ha YMCTHIN caBur [3]. B nacrosmeii paGore mccnemyrorcss Gonblume
actiyeckue aeopMaliMiH MOAETBHOrO 3€PHHCTOrO MaTepHasla BbI3BaHHbIE HEOMHODOIHBLIM
pacnpe/ieJIeHHeM HANpPAXEeHHOro cocTosHuA. C 2TOoil Lenbio MOCTPOEHA MCCIIeN0BaTeNbCKas
YCTaHOBKaA, KOTOPaA MOKAa3aHa CXeMaTHUYeCKH Ha puc. 1. IIpoBoas MHOro cepmil SKCIEPHMEHTOB
HCCIIeIOBaHB]l pasHble 3aKOHBI TeUeHHA H INPOBEPEHO, COBMAfAlOT HJIH HET, PaCUMTAHHBIE
3HAYEHHA HANPSDKEHHH C H3MEPEHHBIMH BeJIHYHHAMH. Pe3yJIbTaThl 9KCIIEPHMEHTOB MOKAa3bl-
BalOT COBCEM XOpolllee COBMaJieHME IIOJl YCJIOBHEM, YTO ONPENENAIONIHe YPABHEHHA MPHHH-

MalOTCA B BHMJE YCIOBHA IUIACTHYHOCTH KyJioHa, COBMECTHO C 3aKOHOM TeuenHsa Bpoyma-
T'ynersioca.

Notations

r 0 polar coordinates,

oy stress tensor with 0, = ¢,, < 0, 6s = 0pp < 0, and 7 = oyp ,
o, centre of the stress circle (Mohr),

o, radius of the stress circle,

(*) Paper presented at the Euromech Collogium 84 on “Mechanics of Granular Materials”,
Warsaw, July 1976.
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s; deviator stress tensor,
e plastic components of the strain tensor,
g, centre of the strain circle (Mohr),
g, radius of the strain circle,
en  plastic components of deviatoric strain tensor,
2 angular velocity of the inner core,
u radial displacement,
v circumferential displacement,
u coefficient of Coulomb friction between steel and glass,
o relative density (ratio of the solid particle volume, and the total volume)
of the model material,
p. critical density for which deformation occurs without change of volume)
! length of the steel rodlets,
v specific weight of the steel rodlets,
angle between the r-direction and the direction of the first principal stress,
yield function,
angle of internal friction,
internal cohesion,
angle between the flow limit and the o,-axis in the plane of state,
function which indicates the change of volume,
dilatancy function,
angle of dilatancy,
¥, potential function different from the yield function f, ,
AX positive incremental multiplier,
t time,
to initial time,
At,, duration of each individual process of registering,
At,, time interval between two registerings,
4 increment,
h, thickness of the polyurethane plate,
d, diameter of the polyurethane plate,
p: gas pressure in the rubber tube,
d; diameter of the rubber tube,
index i values at the inner boundary,
index e values at the outer boundary.

wUne o BT

1. Introduction

IN soiL mechanics it is usually assumed that:

Al: The state and the motion of material are completely defined by the classical con-
cept of stress, strain, strain rate, and local density.

This assumption is not at all trivial. Nevertheless a physical proof is difficult [4]. Indeed
it is conceivable that the motion of the set of individual grains is not uniquely determined
by the field of average grain displacement. The same is true with respect to the rotations
of the grains and the interaction of both. Therefore, there may exist different states of
stress which are all associated with the same average field of displacement. This case is
excluded by the first assumption. An experimental justification that the grain rotation
may be neglected has not yet been given, because the usual setups do not allow for a rota-
tion of the principal axes of the state of stress or of the strain increments respectively, so



PLANE PLASTIC FLOW OF GRANULAR MODEL MATERIAL 831

that the grain rotation is of minor significance from the very beginning. Our experimental
investigations should allow for such a justification.

A further assumption which is used occasionally in connection with plastic constitutive
equations is the following one:

A2: The stress path should be independent of the velocity with which the strain path is
run.

Since an exact time independence is physically impossible for natural granular material,
a class of ideal material is considered. In fact, the behaviour of dry granular material is
governed by internal contact friction between the grains, which is time-independent within
a very large area of the velocity [5].

2. The setup

2.1. Preliminary considerations

Instead of grains we have — following the example of SCHNEEBEL! [6] — presently
chosen steel rodlets two centimetres in lenght, which stand perpendicular to the plane
of Fig. 1. This model material — a one-phase material — is deformed between the con-
centric boundaries r; and r,. In this way we enforce plane plastic flow. Since very simple

Fig. 1. Schematic diagram of the setup.

preliminary tests show that by a rigid rotation of the inner core only the deformation
concentrates to one shear zone alone (Fig. 2) which may become about ten grains thick
[7], a core r; was designed which can be rotated as well as extended. The outer boundary
r. shall be extensible only. If one rotates the inner core r; and expands it simultaneously,
a deformation is imposed on the material which is inhomogeneous with respect to the
radius r. But it is independent of the angle 0 so that it may be described as being rotation-
ally symmetric rather than axially symmetric.

The construction of these boundaries was the main difficulty of the setup, the more
as no literature seems to exist about a circular loading or measuring equipment which
can change its diameter continuously.

6 Arch. Mech. Stos. 6/77



FiG. 2. The shear zone produced by a rigid rotation of the inner core; A) initial state, B) final state.
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2.2, Construction

After several preliminary tests we tried to use a rubber tube which allows for a unique
relationship between the internal gas pressure p, and the diameter d,, versus the radial
stress o,. For the outer boundary this solution was indeed applied. At the inner boundary
it appeared that the circle became unstable as soon as the pressure distribution between
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FiG. 4. The radial stress o,; as a function of the
diameter d, and the thickness A, of the polyurethane
plate.

FiG. 3. Sectional view of the inner loading and

measuring equipment; a) polyurethane plate, b) piston

plate, c¢) former pin, d) shaft, e) torsional shaft,

f) abutment plate, g) back-end piloting, h) ball

bearing, k) delivery connection, 1) bore for hydraulic
oil, m) pressure chamber.

the model material and the rubber tube underwent any perturbation like, for example
deviation from the rotational symmetry. Therefore we chose the following different solu-
tion (Fig. 3): A polyurethane plate is compressed between two hydraulic head-on-acting
cylinders, so that the diameter is increased. The pressure o,; between the plate and the
granular material are determined by calibration tests, to depend on the actual diameter 4,
and the thickness 4, of the plate (Fig. 4). The change of thickness is measured with the
aid of linear variable differential transformers, the diameter by a self-made strain trans-
former. The shear stress 7; at the inner boundary is transferred by means of friction from

6*
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the polyurethane plate to the cylinders, and can now be measured as a torque acting onto
the torsional shaft which simultaneously transfers the rotation to the inner core.

At the outer boundary r, (Fig. 5), sheet segments transfer the shear stress 7, by means
of former pins to a rigid steel ring inside which the rubber tube is placed. The ring is
supported by four flexural levers on which bonded strain gages are fixed for the purpose of
displaying the value of the transferred moment. The radial normal stress g,, can be won by

Fra. 5. The outer loading and measuring equipment; A) top view without the cover plate (e), B) sectional
view; a) rubber tube, b) sheet segments, c) former pins, d) rigid steel ring, e) circular ring slab, f) flexural
members, g) strain gages.

interpolating the surface of Fig. 6 if the actual diameter d, of the rubber tube and the
internal gas pressure p, are known. Figure 7 shows a photograph of the setup.

It is possible to prescribe one of the kinematic quantities only, e.g. the radial extension
u;, as the angular velocity of the inner core Q = 0.006 r.p.m. is enforced by the invariable
speed of the electromotor in combination with the transmission ratio, while the outer
boundary can not be rotated. In order to control the extension u; we use the rotation 2
as the reference input ratio. Regarding the stresses, only the radial pressure o,, can be
prescribed independently, i.e. by means of a blow-off valve within certain tolerances. An
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FiG. 6. The radial normal stress o, as a function of the diameter d, and the internal gas pressure p, of the
rubber tube.

Fic. 7. Photograph of the setup.
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upper limit of ¢,, is imposed by the load-carrying capacity of the torsional shalft because
the shear stress 7; increases if the normal stress o,, augments, while the same kinematic
boundary conditions remain unchanged.

2.3. Registering of the measured values

The measurement of the different values is controlled by a pulse generator (Fig. 8)
which simultaneously releases the camera and gives a binary signal to the Sample and
Hold Storage so that the actual measured quantities are kept. Besides, the scanner is
caused by the printer to record the successive data via a digital voltmeter. After a fixed

carrier Sample
frequency & Hold scanner
amplifier

Flexural ' 1

- i .
outer | Moment measuring point
boundary _
L digital printer
- forsional voltmeter
moment . . |M'°} 20000 e
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FiG. 8. Block diagram for the registering process.

time interval At, — as early as possible after the printing process is finished — the pulse
generator orders the Sample and Hold Storage to sample the measured quantities, and
releases the camera for the second time. After another fixed time interval At, this cycle
starts again, until the maximal or minimal attainable diameter d, of the polyurethane plate
is reached. The interval between two successive measurements is At = At,,+ 4t,,.

3. Evaluation

The plastic components of the strain increments Adej are determined in the whole
area starting from the measured increments of the displacements Au and Av along a radius
vector r by means of two photographs (Fig. 9) in a stereoscopic way. In fact, stereoscopic
measurements usually presume two photographs of the object in question, taken from



PLANE PLASTIC FLOW OF GRANULAR MODEL MATERIAL 837

different positions. Then it is possible to reconstruct the object three-dimensionally by
relating corresponding points of the photographs. In our case we do not use two different
positions, but the model material is moving. If one looks stereoscopically at two photo-
graphs taken after a short interval, the displacements look like pseudo differences in
altitude. These can be analysed as a profile along the radius vector r. Besides, the two
threads are reference lines of zero displacement. The scale for the evaluation is determined

il T 7 o

FiG. 9. Photograph used for determining the incremental displacements Au and Av.

by the aid of known displacements, for instance Adu; and Av;. If elastic deformations are
neglected one has approximately, using polar coordinates,

3.1 Aggy = )

_ 1 [d(dv) Aﬂ)
Aorg = - ("?r— )
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In order to obtain the derivatives d(4u)/dr and d(4v)/dr as exactly as possible, we approx-
imate the measured values of Au or dv respectively, by means of smooth functions
(Fig. 10) in analytical terms, and differentiate these in a closed form.

’§ a measured value Au
Souf approximating curve of Au
QL - o measured value Av
3020 ———— approximating curve of Av
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Fic. 10. Increments of the radial and circumferential displacements Au and dv.

Since preliminary tests show that the friction between the rodlets and the bottom plate
cannot be neglected, we take account of that friction as if it would act like volume forces
in the conditions of equilibrium:

do, 1 ) Au

- (09— 0.)+pelysin (arc tg 3?) 3
(3.2)

LA cos(ar t ﬁ)

ar ~ T ey ‘70 )

Though the boundary values o,;, 7;, 0., and 7, are being picked up during the experiments
it is impossible to integrate the differential conditions of equilibrium (3.2) uniquely as
any information about oy is still missing. Therefore we assume:

A3: The principal axes of stress and the increments of strain are coaxial.

The good agreement of this assumption with reality has been shown by RoscoE [8].
The angle « between the r-direction and the first principal axis of stress is given by

2T

(3.3) tg2o— P

For the strain increments, it holds accordingly that

d(dv) Av

MS,& _ dr _T
Ae,,—Aegy — d(Au) Au”
T

(3.4) tg2a =
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Eliminating (o3 — o,) from the conditions of equilibrium (3.2), yields

do, 2 T . Au
G = 7 anza Helysin (a""g T )
G.5)
dr 2 Au
? = — T f+f‘-9’y cos (arc tg m) 5

in which equations tg2a have to be substituted from Eq. (3.4). In order to find out the
distribution of density, the negative copy of the photograph (Fig. 9) is put into an enlarger
and the area to be analysed is scanned by a photomultiplier which reproduces exactly the
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Fi. 12. Calculated stress distribution in comparison with the measured boundary values.

variation of brightness (Fig. 11). Since the negative copies do not show all the same black-
white contrast, the scale has to be determined by enumerating the rodlets at least in two
areas of each photograph.

Using all these informations it is now possible to integrate the differential conditions
of equilibrium (3.5) with the stress boundary values o,; and 7; given. The boundary values
a,. and 7, serve as control data for the calculation. Then, a maximum deviation of four
per cent between the measured and the calculated values of o,, and 7, is obtained (Fig. 12).
We believe this to be a fairly good agreement.
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4. Results

4.1. Derivations of the constitutive equations

The abscissa of the centre o, and the radius o, of Mohr's stress circle are calculated
using the determined stresses according to

1
Op = 'i' (0r+ 0'8) ’
4.1)
1
0y = = I(0,— 00)* +4772,
and these quantities are plotted as stiess points in the plane of state. Besides, the corre-

sponding quantities taken from Mohr’s circle of the strain increments

Aep = % (Asrr'l'/]s!]ﬂ);
“4.2)
Asq = ';_ !(Asr—_dsw)z'l'd"ﬁlsfﬂ'”z

are plotted as a free vector in the corresponding stress point. Now the stress points mutually
with the vectors (*) of the strain increments are consecutively arranged according to the
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FiG. 13. Stress states on the yield limit and corresponding strain increments in the plane of state for
o = 0.73.

values of the density p for all test series. Then, well-interpretable diagrams are obtained
(Figs. 13 and 14). In this way a slight dependence of the yield criterion and a much larger
dependence of the strain increments both on the density g could be found. Furthermore,
it is seen that the yield limit may be described by means of the Coulomb criterion:

=2 % gnd——C cosd =0, o # 0
o ol |ol

“.3) fo

(*) Reduced to equal lengths, as only their direction is important.



PLANE PLASTIC FLOW OF GRANULAR MODEL MATERIAL 841

~ |

@
| LT M I TR

ra
T 1 1 1 T

1 TN [ TN SN TN TN NN T N S N IS S |
0 -2 -4 -6 -8 -10 -12 -4 -16 -18 -20
Gp fN/Cm?}u Ag, ()

Fi1c. 14. Same as Fig. 13, for p = 0.82.

in which the internal cohesion ¢ can be neglected at least for our model material. The
relation between the angle of internal friction @ and the angle y in Figs. 13 and 14 is
given by the equation

sin® = tgy.

Now it appears reasonable to check flow rules which satisfy the assumption A3, so that
Egs. (3.3) and (3.4) can be derived from the constitutive equations used.
The normality condition (MISES)

@.5) Aey = A2

50}*

does not hold as can easily be seen from the diagram in Fig. 13. BRowN [9] maintained
the normality with regard to the deviatoric quantities e, s;; of strain and stress respectively,
according to

(4.6) Aejk = AJ’-

5,1 0

sp 7“2 Oswm
but has to add an additional relationship for the changes in volume as follows:
4.7 Aty = AAg(Cpm) .

The application of the flow rule, Egs. (4.6) and (4.7) in combination with the approach
suggested by GUDEHUS [10]

439 8om) =~ g, %0

gives a satisfactory agreement (Figs. 15 and 16) (*). D is the dilatancy function which
indicates whether the volume increases (D > 0) or decreases (D < 0). The angle of dilat-

(*) It could not be examined how far Eq. (4.8) would remain correct if mm — 0.
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Fic. 15. Statistical analysis of the value of the dilatancy function D for p = 0.73.
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FiG. 16. Same as Fig. 15, for p = 0.82.

ancy f (Figs. 13 and 14) between the strain increment vector and the direction of deviatoric
deformation is related to D by the equation

(4.9) D = 2tgp.

As the agreement obtained in this way could, using our experiments, hardly be improved,
an additional analysis was omitted which could be based on the more general flow rule
suggested by PooroosHAsB [11], RADENKOVIC [12], et al.:

oY,

(4.10) AEJ'k = Al aajk .

After all values of the density g which appear during the experiments have been analysed,
it becomes evident that the angle of internal friction @ is directly proportional to the
density p (Fig. 17), and that D(g) may be described as a polynomial of the third order
(Fig. 18). As can be seen from Figs. 19 and 20, the density g tends during the deformation
to an asymptotic value for which a volume change does no longer happen. This “critical”
density amounts approximately to g, = 0.76.
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FiG. 20. Change of the density distribution for an initial state close to the critical density o,.
4.2. Another verification of the constitutive equations

In order to check the determined constitutive equations the test conditions have been
changed. Whereas during the previous experiments the radial incremental displacement
at the inner boundary was always positive (du; > 0), i.e. the diameter of the inner core
increasing, now the diameter of the inner core may also decrease (4du; < 0). Here the
set of differential equations comprises not only the conditions of equilibrium (3.2),
but also the compatibility equations (3.1) in which the strain increments have been
eliminated by virtue of the flow rule in Eqgs. (4.6), (4.7) and (4.8):

_d_“"_ — .l_ (05— a,)+ uply sin |arc t ﬁ
Ty [ r) T uoly gé‘f.’ 2
dr———l--+ !csarctﬂ)
g T T rheeycos{ae g, )
(411) D 2 211/2

d{ﬂu) AH 0',.—05+"2"' J(ar_gﬂ) +4T i
dr r B —g)“l(o'n_dr)2+4tz|”2

ddv) Av  Au .. B
e~ rt n

D
Gg— 0, + 5 |(0, — 0g)? +472|/2

The circumferential stress o, has to be substituted using the yield criterion in Eq. (4.3) by
the stresses o, and .

The density distribution ¢ has to be known at least for the initial state, i.e. this dis-
tribution would have to be measured in advance, (Fig. 21), whereas the subsequent values
of p can be determined on the base of the volume change as obtained by the kinematics
measured. With these informations it now becomes possible to integrate the set of differ-
ential equations (4.11) using the boundary values o,;, 7;, Au; and 4v; given. The bound-
ary values o,, and 7, and the increments of the displacement du and Av are used as
control data (Figs. 22 and 23). In spite of the different test conditions, one obtains a fairly
good agreement.
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Fic. 21. Density distribution used for checking the constitutive equations (du; < 0).
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FiG. 23, Calculated increments of the displacements compared with the measured values in the check
(cp. Fig. 21).
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5. Conclusion

It has been shown that the behaviour of our model material may be described by
means of the constitutive equations (4.3), (4.6), (4.7) and (4.8). In addition, neither the
velocity of deformation nor the rotation of grains show a significant feedback to the
stress-displacement behaviour of this model material; thus basic assumptions (Ch. 1)
seem to be justified. Therefore it appears reasonable to advance the design of the setup
in such a way that any arbitrary granular material like sand, for example, can be analysed.
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