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Interaction of elastic wave with defects of finite volume
and interaction between defects

A. NEIMITZ (KIELCE)

THE PRESENT paper deals with the problems of interaction of structural defects of solid with
mechanical fields and mutual interactions between defects. The method of multipole moments,
developed and elaborated for mechanical fields, was applied. Using Green function for elastic
continuum the energy of interaction of defects, the self energy of defects and the energy of
interaction with elastic wave were evaluated. The mobile and immobile defects were considered.
The cases of point defect and prismatic dislocation loop are examined in detail. Finally the
application of the performed computations to the problem of initiation of the Cottrell’s atmos-
pheres was demonstrated.

Praca po$wigcona jest problemom oddzialywania defektéw strukturalnych ciala stalego z polami
mechanicznymi i wynikajacego stad wzajemnego oddzialywania pomiedzy defektami. Zastoso-
wana zostala metoda momentéw multipolowych, opracowana i rozwini¢ta dla pél mechanicz-
nych. Stosujac funkcj¢ Greena kontinuum sprezystego, obliczono energie wzajemnego oddzialy-
wania defektow, ich energie wlasna oraz energie oddzialywania z fala sprezysta. Rozpatrzono
przypadki zarowno ruchomych jak i nieruchomych defektéw. Szczegélowo rozpatrzono przy-
padki defektu punktowego i pryzmatycznej petli dyslokacyjnej. W koricowej cze$ci pracy po-
kazano zastosowanie uzyskanych obliczeri do problemu powstawania atmosfer Cottrella.

PaGora nocesimiena mnpoGremaM B3aUMONEHCTBHA CTPYKTYPHBIX [edeKTOB TBEPHOro Tela
€ MEXaHHYCCKHMH TOJIAMH M CJIEAYIOUIEro OTTYAa BaaumonelicTBuA mexkay Aedexramu. Ilpn-
MEHEH METOJ MYJIBTHIONBHBIX MOMEHTOB paspaGoTaHHBIN M PasBHTBIA JUIA MEXaHHYECKHX
noneii. Ilpumennan ¢ymrapno I'prHa ynpyroro KOHTHHYYMa BBIYMC/IEHA SHEPrHA B3aumofeii-
cTBHA OedeKTOB, MX COOCTBEHHAA JHEPrHA H SHEPIrHs B3aHMOJCHCTBHA C YOpPYToi BOJIHOM.
Paccmorpens! cnyyan Tak NOABIDKHBIX, KAK H HENOABIKHBIX fedexros. [Togpobuo paccmor-
PeHBI CIyyail ToueyHOro AedieKTa M NMPH3MATHYECKOM AMC/IOKALMOHHON meTym. B sawmoun-
TeJIbHOM YacTH paGoThl MOKA3aHO MPHMEHEHHE MOMYYEHHBIX PACYETOB JUIA MPoG/eMbl BOSHHK~
HoBeruAa atMochep Korpenna.

IN THE PRESENT paper, an attempt is made, using a volume-force model for defects in a
continuous medium, to explain certain phenomena concerning the interaction and motion
of crystal structure defects. The intention was to compare the effects examined with the
experimental results obtained in papers [, 2, 3, 4, 5]. These papers investigated the effects
associated with a change of mechanical properties of metals examined under action of an
elastic wave. In the experiments described, specimens made of aluminium were sub-
jected to heat treatment to ensure a uniform dislocation structure. The dislocation structure
obtained was composed mainly of prismatic dislocation loops. The specimens so prepared
were then subjected to the action of an elastic wave of different intensity, their dislocation
structure being subsequently examined by means of an electronic microscope and the
plastic yield limit, the strength of the material and its ability to creep were estimated with
a strength testing machine.
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The results of the experiment made it seem worth while to compute the interaction
energy of immobile defects, the interaction energy of mobile defects, the proper energy
of the mobile and immobile defects and the energy of defects in a field of elastic wave.
The computations were performed on the basis of the force-volume model of defects
developed in [6, 7, 8, 9]. In view of the simplicity of computations, only the defects with
symmetry centers were analyzed (the volume-force model may be applied with success
also to other defects, but the computations become much more complex). The expressions
derived in the paper [9], describing the interaction energy of mobile and immobile disloca-
tions of arbitrary type were used here.

The interaction energy of finite volume and arbitrary type immobile defects has the
form [9]:

1
)  Ea=- PR Z CIPE Wy, o VouVa, . VoG,
n=0 =0

The functional of the action describing the interaction of finite volume and arbitrary type
mobile defects is:

1 1 ret
( WIZ - _J dIZ __Plpl «Pn ﬂl ¥ vpn fd 2( )’ .{42.} l: gy vanlk(rs f+T),

L n=0 —oo =0

where P, . ,, and Py, ., are the multipole moments which may be written in a form:

3 PO = [X()ep, - 0mdV, a=1,2.
V

Here G (r) is the static Green function for an infinite isotropic elastic medium [4, 7, 8],

r&;(r, t) is the dynamic Green function for an infinite isotropic elastic medium, [10],
r denotes the distance vector between points lying inside the volume of the two defects
with respect to which the general expression was expanded in Taylor series, X;(r) denotes
the force in the volume of defect, and g,,, g,, is the arm of action of the force with
respect to the point r distinguished in the volume.

Moutual interaction of immobile defects

Assuming for analysis the defects with a centre of symmetry, and utilizing the prop-
erties of the multipole moments, simple expressions for the energy of interaction of sym-
metric defects may be obtained:

@ Eiz = POPR Gt 0+ 5 PLPE Gt pua®) + 5 P PF G O .

Modeling the point defects (vacancy, inclusion atom) in the form of the centre of com-
pression or expansion, the dipole moments may be written in the form:

®) PR =P9%,, a=1,2.
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But taking into account the shape and size of defects of the type of a prismatic dislocation
loop [11], the dipole moments will assume the form:

(6) P = P985,63,, a=1,2

The octupole moment may be modelled in the form:

() PO = P{Dyy Axpue+ P{022(01p O+ 845 8 + 65 05), a=1,2,
where

p {0, where k#s#t#n,
k5t =11 where k=s=1t=n.

The quantities P, P{?,,, P{?,,, are respectively the dipole and octupole moments,
which characterize a given defect. The manner of evaluation of these moments is presented
in [12]. Substituting the relations (5), (6), (7) into the Eq. (4), using the properties of the
Green function, and assuming that the distances between defects are not smaller than the
diameter of the loop, the following final expressions for the interaction energy of defects
are obtained:

a) point defect-dislocation loop:
® E» = POP®[Bru(1—v)]~'r=3(1-2) (353~ 1),
where x4 and v are the material constants, r = |r| is the absolute value of the distance
vector, by = r;3/r is the direction cosine of the angle lying between the radius vector and
the axis x, which passes through the centre of the loop and is perpendicular to its plane,
and PM, P are the dipole moments of the loop and point defect, respectively. In a further
part of this paper the upper index indicates whether the point defect (number 2) or the loop
(number 1) is analyzed;

b) point defect-point defect:

T
©) EYY = 2ln(A+2u)] PO(P - 3P(R),)r

where all quantities are determined in the formulae (7), (8);
c) two arbitrarily oriented loops:
(10)  Ef3) = (PM)?[167u(l —»)]~r~3 {[1563 — 663(1 +2v) +4v— 1] (b§%)?

+ [1563(1—53)— 2] (B5%)2 +3b, b5 BB [1062 — (29 + 1))},
where b§%, b§” are the direction cosines betwzen the two normals to the loops. The re-
maining notations are the same as in the Eqs. (7), (8). From analysis of the expressions (8),
(9), (10), the following conclusions result: Around the prismatic dislocation loop there are

regions in which the other loops or point defects ate attracted; there also exist repulsion

regions. In the case of the loop-point defect system, the geometry of the interaction
is as follows:

[P >0, PD >0,
|PD <0, P <o,
PMH <0, PP >0,

>0, P®<,

’ E(®» >0, when
(a) b.a > '-?' then

E{3» <0, when {

5
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PD >0, P>,
P <0, PP <0,
PM <0, P?>0,
PM >0, PP <0,

: E{® <0, when {
(b) by < —— then

/3

E{3¥ >0, when :

(0) bg = '715" thanlz = 0;
in the case of the “loop-loop” interaction, the geometry of interaction has the same
character, although it is highly significantly complex (a detailed analysis is given in [13]);
two point defects interact without change of the sign of interaction in dependence of

the mutual positions;

interaction of the loop with the point defect and the loop with the loop decreases as

r-3;

interaction of the point defects decreases as r=>.

Mutual interaction of mobile defects

To compute the interaction energy of the mobile dislocation loop with the point defect,

the functional (2) and the procedure given in [10] for expansion of E:,‘ on the instantaneous
potentials was applied.

Analysis of the relation (2) from the point of view of the multipole moments for symmet-
ric defects yields the following form of the functional:

P 2 ret
(12) Wy = [ atPPV, [ dePP ()G e, 1=7).
Iy -0

After expansion on the instantaneous potentials, utilizing the Egs. (5) and (6) and
making certain algebraic transformations, the final form the functional action was
obtained:

(13) wiz= f dt <-W-ll—:'—)—r"(l—3b§)(2v— 1)

* _161139_ {% POP®[(c7*~c3*) (1=-b3)3r~ + (c7* +3¢34)r—>(363 ~ 1))

% %P“’P"‘v’ﬁr*(i&b%-— D(er*+3c;9+ -;—v,(P“’P'”’—};("P"’) [(cr*
—¢3%)3r=3[r (363 — 1)—2r3 83]— (c1* —3¢5*)3r=3[r(Sb3— 1) - 2r; 63r]]}>°

Substituting the Lagrangian from the Eq. (13) into the equation of motion, it was
possible to determine the momentum of defects in a field of action of the other defect,
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and then the energy of the mobile defect in a field of action of the other mobile or
immobile defect [13]:

(19)  HE{? = —{8rp(1-9)]"'r 3363~ 1) (1-29) PO PP
+3(16mg) ! PO PD92(363 — 1)r=3(c7* +3¢3%),

where v is a relative velocity of defects and ¢, and c, are the velocities of the longitudinal
and transverse waves, respectively.

Energy of defects in a field of action of elastic waves

The functional of the action of the elastic wave on the defect may be written in the
form:

(15) W =~ [ "t [X: (), 1)u (x), 1) dv,
I v

where u{”(r(), ¢) is the displacement in a volume of defect in time #, generated by elastic
wave.

Let us now expand the function u{’(r(¢), t) appearing in the Eq. (15) into Taylor
series with respect to the point determining, according to the assumed model, the position
of the defect. The functional of action may now be written in the form:

(16) W = — fdr{Pi(r)u}f’l(a(t), 1)+ Py () ViutP(a(), 1)+ % PunmViVmt" (a(t), 1) +.. }

Instead of u{"(a(¢),t), the displacement vector of the arbitrary elastic wave may be.intro-
duced. For simplicity of computations, the simple plane harmonic wave is assumed:
€y

(17) u, = Ae,sinw(r—f'l).

The fact that in the analysis the symmetric defects were assumed, together with P; and
Py, equal zero, significantly simplifies the Eq. (16):

L fa
(18) W = — [ dPy()Veu(a@)) = — [ diLO(a(0), 1),

where w is the frequency of the wave, 4 is the wave amplitude, ¢ denotes the velocity of
the propagation of the signal, and the remaining quantities have been determined earlier.
Replacing in the Eq. (18) Py by Pdy, and performing the necessary computations, the
Lagrangian of defect in a field of elastic wave is obtained in the form:

(19) LD(a(), t) = —P(t)ci cosw(t— j—‘)
1 1

The total Lagrangian of the point defect, taking into account the self-action, becomes:

(20) LN = [y L@
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The equation of motion
d oL@hH LN

d ov da
assumes the form:

4o o _
@n & o oa "V

The Hamiltonian of the defect on which the wave falls has the form:
(22) H®H = E@ = pp— (™9 =

+[“__2};£’(—0(7 &5t % '7)+%M]92+P(l)——Acosw(r— __)

In the Egs. (20), (21), (22), the form of the Lagrangian describing self-action of the point
defect, derived in [9] and corrected [13], is used:

' p2
L =£’22_g(‘)[_3c;’+w2(-2c1 +§ )+v‘(——2£CI9+—l-?-cE°):|+—l-Mv2.

4 P’(r)
2mp

23)
14 24 6 2

A’ is assumed as a quantity of order A¢~3, where At is the time necessary for the signal
to pass through the region occupied by the defect [9, 13], and v and M respectively denote
the velocity and mass of the defect (M = fgdv). The Eq. (22) describes the growth of the
energy of the defect on which the elastic wave falls. The elastic wave causes no change
in either the velocity or the direction of motion. The motion which may appear if there
are no other interactions will be chaotic. The incident elastic wave will facilate the motion
of the defect only by lowering the energy barriers impeding it.

Summing up the above considerations, it may be concluded that the total energy of
the ‘point defect on which act the defect of loop type and the elastic wave, is presented
for immobile defects by the Eq. (24) and for mobile defects by the expression (25):

(24) Ej=Pl‘}iP"’[Bup(l-v)]“r"(l—Zv)(3b§-~l)+P‘”3A‘(2:xgcf)“

+wc;‘Acosw(t— %)},
1

P(l) 2 A7 (1)2
25 E‘(t)-—-( Zn)gA 3¢ ;’+[(P2n)gA (7 ;- ?i ;’)+—1—M]v2

PMOp@)

Sy G-

+P(1)— Acosw(r a)+

-Tgi—gmhpmw(sbg- Dr3(ci*=3c3%).
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Generation of Cottrell’s atmospheres in the light of derived relations

The relations derived in this paper may constitute the basis for describing and explain-
ing the ageing mechanism of metal and the influence of an elastic wave on its magnitude.
The defects of the given shape and size are analyzed. The relation obtained cannot be
generalized to the whole range of defects appearing in reality. But the character of the
particular phenomena observed will be more or less similar to more general cases. The
relations derived can be applied immediately, if in the metal under consideration prismatic
loops prevail — as is sufficiently frequent in real structures [l, 2, 3, 4, 11]. The phenom-
enon of spontaneous change of mechanical properties of metals subjected to plastic working
is well known in practice. In metallurgy, this phenomenon is known as the ageing of metal.

Cottrell was the first to explain this phenomenon. According to the theory, disloca-
tions accumulate around the point defects (atom of inclusions, vacancies) which block the
motion of dislocations. The concentrations of point defects around the dislocations are
called Cottrell’s atmospheres.

As the experiments [1, 4, 14, 15, 16] shows, the velocity of the diffusion of the point
defects, and thus the intensity of formation of the atmospheres, increases with increase in
temperature or when a small intensity elastic wave acts on the metal.

Let us now perform the analysis of the phenomenon discussed, in the light of the re-
lations derived:

at each point defect lying in the vicinity of the loop, there acts an attraction or repulsion
force, the magnitude of which may be found from the formula
dE,,

or ’
where E,, may be evaluated from the Eq. (8) or the Eq. (14), and r is a mutual distance
between the symmetry centers of the point defect and prismatic dislocation loop. In the
vicinty of the loop there exists repulsion and the attraction of defects. The defects will
mutually attract if E,, < 0, or mutually repel when E;, > 0. The condition under which
the defects will mutually attract or repel have been determined by the relations (11a),
(11b), (11¢);

the fact of the appearance of the forces which attract or repel the point defects from the
loops is not always sufficient to set them in motion. It should be borne in mind that defects
are situated in the crystal lattice and the forces resulting from the periodicity of the
structure of the lattice act against the motion of defects. In other words the defects to be
set in motion must overcome a certain energy barier;

in addition to the interaction energy with the loop, the point defect has its own energy
determined by the Eq. (22) (its two terms);

summing up the earlier remarks, it may be a certained that around the dislocation loop
in certain strictly determined regions the atoms of inclusion or vacancies accumulate,
and make its motion more difficult. Due to the effective diffusion force resulting from the
mutual attraction with the loop, the point defects travel to the vicinity of the loop. Only
these defects will diffuse toward the region of the loop, the total energy of which is greater
then the energy barier acting against the motion:

E12+Ew > Ep;

F =
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around the loop in the region of attraction there are defects whose concentration is
described by the Eq. (26)

(26) C=20C, exp[— %],

where C, is the average concentration of defects in a crystal and its magnitude may be
computed on the basis of knowledge of the enthalpy of the formation of point defects
(the enthalpy of the formation of point defects in general is computed and tabulated);
k is the Botzmann constant; T' denotes the temperature and Q is the enthalpy of the
activation of diffusion; Q = AH,+AH,, for diffusion occurring by means of vacancies
or natural interlattice atoms; Q = AH,, in the case of motion of foreign atoms; AH,, is
the enthalpy activating the motion of the atom; and AH; is the enthalpy of the vacancy
formation. Assuming that at the instant of analysis, the new defects are not creating
AH; = 0, and using the relation

AH, = AU—pdV,

where U is the activation energy of motion, ¥ is the body volume and p is the pressure,
for constant number of the point defects and constant temperature 4V = 0, the Eq. (28)
will take the form:

27 C = Cgcxp[—i—g].

The Egs. (26) and (27) hold for defects on which act neither external forces nor forces
coming from the other defects. If the effective diffusion forces (i.e. electric and magnetic
forces or the forces resulting from the stresses appearing in the crystal) act on the defects
in a solid, then the Eq. (27) may be written in a slightly different form:

_ AU AU,
(28) C= Coexp[mﬁ]exp[—-—k?-].

Let us write:

U= E,—E w
where E, is the energy barier of the motion of defect, and E¥ is the self energy (Eq. (22))
and

A UG = EIZ "

where E, is the interaction energy of defects.
Let us rewrite the Eq. (28) in terms of the new quantities in the form:

This equation means that with the increase of the interaction energy, depending on its
sign, the concentration of defects around the loops increases or decreases (all terms in
the Eq. (29) may be calculated from the formulas derived in this. paper or found in the
tables).
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From known experimental facts it results that when the elastic wave acts on a medium
with defects, the intensity of motion increases [1, 2, 3]. For elastic waves of small intensity,
the process of diffusion of the defects in the direction of dislocation loops is accelerated.
The action of a large intensity elastic wave on the medium causes separation of the loops
from the conglomeration of the point defects. Due to operation of the elastic wave on the
medium, the energy of defects as also the energy of the whole body increase, the temper-
ature of the medium increases, a large number of point defects and dislocations appear,
condensation of vacancies takes place, and a series of other effects occur.

Using such a simple model of the medium and defects as that applied in this paper,
it is impossible to describe the phenomena indicated above by simple formulae of the
type (29). But by restricting ourselves to analysis of the phenomenon due to the action
of a small intensity elastic wave, it will be possible, without involving essential errors,
to assume the additional factors as negligible, and, to take into account in the analysis
only the increase in the energy of the defect under the action of an elastic wave. In this
case, the Eq. (29) assume the form:

—EW_ES

and explain the effect of accelerated diffusion of defects to the surroudings of the dislo-
cation loop. If the effective diffusion force start to act on the point defect, then the chaotic
motion of the defect will become directional motion towards the source or in the opposite
direction. The frequency of jump in the direction of the action of the force, or in the op-
posite direction, may be expressed by the formula:

E,— E®—Ef E
@31 I, = voexp[— -‘—’—;ﬁ—J{exp[- k;ﬁ]}

where v, is the frequency of thermal vibrations (circa 10'3 s—1), k is the Boltzmann con-
stant (1.38 x 10~23 J°K~*), and T denotes the °K temperature. The speed of drift of the
point defect in the direction of action of the effective diffusion force may be written as:

e o Ep“Em_Ef E,, E,
32) v _aﬂoexp[ ki,:—-——]{exp[—W —exp| —% b.

This expression results from the difference of the probability of a jump in a direction
consistent with the action of the force, and in the opposite direction, muitiplied by the
path of the jump b on which such jump occurs.

Expanding the terms in braketes into series with respect to the energy E,,, we obtain
the final expression for the velocity of drift of the point defect (expansion terms in which
E,, enters in a power higher than one are disregarded):

.EP_EW—E“f E13
kT ]2"’ kT *

(33) 0= —zroexp[—

From this equation, the strong dependence of the velocity on the temperature and the
energy of interaction is observed. For example the velocity of the vacancies at a distance
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of 800A from the vacancy loop of diameter 150A in aluminium, without action of the
wave, is 0,05A /S. The interaction energy for this example at this position is 0.22x 10-3 eV.
PN and P assumed for computations, and found in [12], are:

- N
PN = 0,003-10 ERET’

P® = 0.04- 10-NA.
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