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On the solution of a certain class of spatial problems in the theory 
of plastic flow 

11. Applications 

M. WOZNIAK (WARSZAWA) 

MAKING use of the general approach which was given in the first part of the paper (Arch. 
Mt:ch., 1(78) Sects. 1-5), solutions are given for certain of some spatial problems of the theory 
of three-dimensional plastic flow. The known plane strain and axially-symmetric problems are 
also derived from the general analysis. 

Korzystajqc z og6lnej metody przedstawionej w pierwszej cz~sci pracy (Arch. Mech., 1 (78) 
punkty 1-5), podano kilka przyklad6w rozwiqzan zagadnien przestrzennych teorii plastycznego 
plyni~cia. Znane zagadnienia plaskie i osiowo-symetryczne otrzymano r6wniei: jako przypadki 
szczeg6lne. 

lfcnonb3YH o6~HH no~o~ npe~craaneHHbiH B nepaoH ~aCTH pa6oTbi (ApXHB npHKna~HOH 
MexaHm<H, 1(78), rnaBhi 1-5), ~aeTcH HecKonbKO npHMepoa perneHHH npocrpaHCTBeHHbiX 
3a~a~ TeopHH nnacrWJ:ecKoro Te~eHHH. lf3BeCTHbie nnocKHe H ocecHMMeTpW!Hhie 3a~a~H 
nonyt.IeHbi Tome H3 o6~ero noroco~a KaK ~aCTHbie ~aH. 

6. Special cases: the plane strain and axially-symmetric problems 

LET us ASSUME, that the plastic zone V is situated along a straight line - i.e., x = 0. 
The coordinate system z1 , z2 , z3 is in this case rectilinear a (Carthesian system). Suppose 
all functions which describe the problem are independent of z3 - i.e., that c, y, e, pK, v K 
are functions of z1

, z2 only. The functions u, q;, obtained as the solutions of the static 
boundary value problem for the system (5.9) (in which w = 0), depend now exclusively on 

zt, z2
• In viev of x = 0, we obtain from (5.10) the equality f 3 = 0. Putting n3 = 0 in 

(5.11), we also have p3 = 0. Analogously, if the kinematic boundary conditions (5.22) 
are independent of z3 , then the solution v1 , v 2 of the boundary value problem for the 

system (5.19) is independent of z3 • Thus from (5.21) it follows that d13 = 0, d23 = 0. 
This is the well known special case in which the three-dimensional problem of plastic 
flow reduces to a plane strain problem. 

Now, let us assume that the plastic zone V is situated along a circular line - i.e., 
x = const. =/: 0, and let on the boundary of the region V satisfies the condition n3 = 0. 
The coordinate system z1

, z2 , z3 -is in this case the cylindrical coordinate system. Moreover, 
let all known functions in formulation of the boundary value problem be independent 
of z3

• Then, tpe solution u, q; of the boundary value problem for the Eqs. (5.9) is also 

independent of z3
• From the Eq. (5.10), we obtainf3 ~ 0 and from the Eq. (5.11) it follows 
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100 M. Wo.tNIAK 

that p3 = 0. Since the kinematic boundary conditions have also to be independent of z3
, 

then solution v1 , v2 of the boundary value problem for the system (5.19) also depends on 

z1
, z2 only. From the Eq. (5.21), we obtain {{,_ 3 = 0, [4 3 = 0. Putting r; = 0 or r; = 1 

(the case of complete plasticity is taken into account), we arrive at the second well known 
special case of plastic flow in which the three-dimensional problem of plastic flow reduces 
to an axially-symmetric problem. 

For the plane strain problem as well as for the axially-symmetric problem, we have 
arrived at the· conditions: 

(6.1) 

From Eqs. (6.1) and from the foregoing analysis (cf. the end of Sect. 5), it follows that 
in both special cases under consideration, the hypotheses (3.1) and (3.2) do not restrict 
the three-dimensional problem of plastic flow. This means that the solutions of this problem 
obtained by means of the Eqs. (3.1), (3.2) satisfy also the known equilibrium conditions 
TaP/p+P' = 0 in V, the boundary conditions TaPnp = p« on sa., and the kinematic equa
tions ~aP = v<«lfJ> in V. 

Let us also consider some special cases of plastic materials. Putting e = f!, we obtain 
the associated flow law. For the Coulomb medium, we have f! > 0, h = cctge > 0. 
For the cohesive medium, we have to put c > 0, (! = 0, and for the non-cohesive media
c = 0, (! > 0. 

In the foregoing analysis, we have taken into account a rigid plastic material represented 
by the plastic potential (3.3) and by the yield condition (3.5). Such materials can also repre
sent the model of the subsoil which was introduced in [8]. This model can be used here 
only if x ¥= 0 and for r; = 0 or r; = 1, and it includes more specials models of subsoil 
which are used in soil mechanics. 

7. Examples of solutions 

7.1. Limiting states of subsoil along curvilinear retaining walls 

Let us find the limit value of the load acting at the subsoil in the vicinity of the 
vertical curved retaining wall. The scheme of the problem is reprenseted in Fig. 4. We 
assume that the inner surface of the wall is the vertical cylindrical surface determined by the 
smooth curve L lying on the horizontal plane. We denote, as usually, by V the plastic 
zone of the subsoil, and we assume that the region V can be parametrized by the curvi
linear coordinate system { z«}, 0 < - z1 < a(z3), 0 < z 2 < h(z3

), 0 < z3 < I. The 
inner surface of the wall coincides with the parametric surface z1 = 0, and the plane z2 = 0 
coincides with the upper boundary of the subsoil, Fig. 4. The cross section of the region V 
by the parametric planes z3 = const. are triangles, that shape depending on z3

• The forces 
acting on V across the horizontal plane z2 = 0, and across the cylindrical surface z 1 = 0 
will be assumed as normal to the corresponding boundaries. Thus we shall carry on the 

limit analysis only if for each z3 = const. there appears either qy = 0 or qy = ; -i.e., 
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ON THE SOLUTION OF A CERTAIN CLASS OF SPATIAL PROBLEMS ... PART 11 101 

if the forces of friction between the subsoil and the retaining wall can be disregarded. 

As a model of the subsoil, we shall take the homogeneous Coulomb medium, e = e > c, 
c > 0. To simplify calculations, we also disregard the influence of the weight of the subsoil 

FIG. 4. 

on the value of the limit load. We shall analyse separately two cases: the case in which 

either ffJ = 0, 17 = I or q; = ; , 17 = 0 --and the case in which either q; = 0, 17 = 0 or 

7'l 
q;=T·1J=I. 

n 
I. The special case: q; = 0, 1} = I or q; = -2-, 1} = 0(1). 

Denoting by h the height of the plastic zqne V, we obtain for the width of the plastic 
zone, measured on the plane z2 = 0, the formula: 

(7.1) a= htg [ -:- +(2'1- I) ~]. 
The values of h and a can depend on z3 • 

From the Eqs. (5.9), we obtain er ,1 = 0, er ,2 = 0. This means that er = a(z3
), where a 

is an arbitrary differentiable function. The value of the state of stress can be calculated 
from the Eqs. (5.6), (5.8): 

cr
11 = a(z3)+(21]-I)a(z3)sine-cctge, 

cr22 = a(z3)-(21]-1)a(z3)sine-cctge, 
(7.2) 

cr12 = 0, 

cr
33 = a(z3

)- cctge + (21]- 1) a(z3
) sine. 

From the Eq. (3.1), we also have cr13 = 0 and a 23 = 0. We have assumed hitherto 
that the boundary horizontal plane z2 = 0 is loaded by vertical forces - i.e., p1 = 0, 

(1) We analyse here the passive as well as the active earth pressure, respectively, on the retaining wall, 
cf. [11] pp. 64-65. 
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102 M. WOZNIAK 

p 2 = p(z3
}, p 3 = 0. On the vertical surface z1 = 0 are given the kinematical boundary 

conditions. From the conditions on z2 = 0- i.e., from - G 22 = p(z3), G12 = O, (]13 = 0, 
we obtain: 

(7.3} ( 3) _ cctge-p(z3
) 

ex z - 1-(21]-l}sine · 

Substituting the right-hand sides of the Eq. (7.3) into the Eqs. (7.2), we obtain the state 
of stress in the plastic zone V. On the retaining wall - i.e. for z1 = 0 - by virtue of (5.5} 
we have: p1 = G

11
, p2 = G

32 = 0, p3 = G
31 = 0. It follows that 

(7.4) -1 [ ( 3)] 1 + (21]- 1) sine 
p = cctge-pz 

1 
(2 I). -cctge. 

- 1]- sme 

From the Eq. (7.4), we conclude that the interaction between the retaining wall and 
the subsoil is uniformly distributed along the height of the wall. Substituting the right
-hand side of (7.2) into (5.3), we arrive at the formula: 

(7.5) --3 ( cctge p(z3)-cctge 1+(21]-l)sine) 
f = [1-z1"(z3)] 2 + [1-z1"(z3}]2 1- (21] -1}sine ,3 • 

Provided that the external load p(z3} and the curvature "(z3
) of the inner surface of the 

retaining wall are known, from the foregoing formula we obtain the value .f3 of the internal 
force (cf. also the Eq. (4.6)). 

Note that we disregard here the influence of the weight y of the subsoil on the state 
of stress, assuming that it is sufficiently small with respect to the influence of external 
loads p(z3

). This means that in the equations of equilibrium (5.2), we omit the terms 
(volume forces) of order y. Thus, as the criterion of applicability of the solutions obtained 

(7.2)-(7.4) we can take ,the inequality 1131 ~ y. This inequality enables us to take into 
account only such loading p(z3) of the plane z2 = 0, and only such curvatures "(z3

) 

of the inner surface of the retaining wall, for which the modulus of the expression on the 
right-hand sides of (7.5) does not exceed the weight by volume y of the subsoil. For " 

and p, which are independent of z3 , we obtain[l = 0, and the Eqs. (7.2)-(7.4) reduce 
to the form given in [11] pp. 62-66 (in [11] the volumme density y was also taken into 

account in the limit analysis). The equality [ 3 = 0 also occurs when the loading p is 
independent of z3 and equal to 

(7.6) p = c ctge {1-tg2 
[;- (2,-1) ~ ]}= cctge( 1- ~:). 

In this case, the plane curve L, which determines the vertical cylindrical surface z1 = 0, 
is an arbitrary smooth curve. For the loading independent on z3 from the condition 

1131 ~ y, and from (7.5) we obtain: 

(7.7) I 
". 3 I yl 1+(2rJ-1)sine\-

1 

(1-a")3 ~ 2a cctge+(p-cctge) 1-(2rJ-1)sinel 

The Eq. (7.7) characterizes the admissible form of the curve L, provided that the loadingp 
acting on the plane z2 = 0 is independent of z3

• 
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The kinematics of the problem is trivial, since in the plastic zone V the relations d11 = 
= d12 = d22 = 0 hold. The kinematical boundary conditions on the surface z1 = 0 -
i.e., the conditions between the subsoil and the retaining wall- have the form v 1 = v1 (z3), 
v 2 = v2 (z3). The rigid motion of any cross section z3 = const. of the plastic zone V can 
be determined in the manner detailed in [10] p. 173. By virtue of (5.17) we have: 

(7.8) 

If the kinematical boundary conditions do not depend on z3, then ~ 3 = 0, d23 = 0; 
such a situation occurs in axially-symmetric problems. 

2) The special cases: gJ = 0, 'YJ = 0 and (/) = ; , 'YJ = I . 

As before denoting, by h the height of the plastic zone measured on the cylindrical 
surface z1 = 0, we obtain: 

(7.9) a = h tg [ T -(2'1- I) ~ ]. 
where a is a length of the plastic zone measured on the horizontal surface z2 = 0. From 
Eqs. (5.9), we obtain now a, 2 = 0 and [1- (2'Y}-l)sine]a, 1 +2(2'Y}-l)wsinea = 0. 
It follows that a = a(z1

, z3) where a is, for the time being, an arbitrary function satisfying 
the latter equation. 

After taking into account Eq. (5.1), we arrive at the following differential equation: 

2(2'Y}-1)sine ~ 
<7·10) 0',1 + 1-: (2'Y}-1)sine · 1-z1~ a = 0 ' 

which can also be written in the form: 

(7.11) x~ 
(11 + -1--1- (1 = 0, . -z ~ 

_ 2(2'Y}-1)sine 
X= 1- (2'Y}-1)sine · 

The general solution of the Eq. (7.11) is given by: 

(7.12) a= {3(z3):(1-~z1)X, 

where {3(z3) is an arbitrary differentiable function. Making use of (5.6) and (5.8), we have: 

a 11 = {3(z3)[1-z1~(z3)]X [1- (2'Y}-1)sine]- cctge, 

a22 = f3(z3) [1-z1~(z3)]X [1+(2'Y}-1)sine]-cctge, 
(7.13) 

(112 = 0, 

a33 = {3(z3)[1-z1 ~(z3)]x [1 + (2'Y}-1)sine]- cctge. 

By virtue of Eq. (3.1), in each of the problems under consideration we have a13 = 
= (123 = 0(2). 

The boundary conditions on the retaining wall are kinematic: vK = vK for z1 = 0. 
Suppose that the wall from the outer side is subjected to horizontal load, the density 
of which is the function of z3 only. On the inner surface of the wall, by means of Eqs. 

(2) Note that the latter relations hold in the special coordinate system { z«} used throughout this paper. 
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(5.5) the static boundary conditions have the form 0'11 = pl, 0'12 = p2 , where pl, p2 are 
unknown reactions of the wall. Applying the semi-inverse method, we assume that the 
external loading acting on the wall from the outer side is uniformely distributed as the 
reaction of the wall on the subsoil. This means that in Eq. (5.5) we may put p1 = p(z3) 

and p2 = 0, where p(z3
) is the known function. The forces of friction between the wall 

and the subsoil have been disregarded here. For z1 = 0 we have 0'11 = p(z3), and by 
virtue of the Eqs. (7 .13) we obtain: 

(7.14) 

Substituting the right-hand side of (7.14) into (7.13), we obtain the formulas determining 
the state of stress in the subsoil. Taking into account Eqs. (7 .13), we can calculate the 
loading q of the subsoil acting on the horizontal plane z 2 == 0, which is necessary to main· 
tain the limit state of the part V of the subsoil: 

(7.15) o 1 + (2?J-1)sine 
q = -0'22 = cctge-(p+cctge)(l-z1x(z3)]X • • 

1- (2?J-1)sme 

Substituting (7 .13) into ( 5.3), we also obtain: 

(7.16) 

Thus for the reaction forces p(z3
) postulated a priori, of the wall on the subsoil, and for 

the known curvature x of the inner cylindrical surface of the wall, we can calculate from 

(7.16) the value of the density of the internal forcef3 • Using the same procedure as before, 

we shall take the condition lf3
1 ~ y as the necessary condition of applicability of the 

solutions obtained. For x and p independent of z3, we obtain from Eq. (7.16) the equa-

lity f 3 = 0. In this case, the problem under consideration· reduces to an axially-symmetric 
problem, and Eqs. (7.13)-(7.15) take the form which is given in [13] pp. 66-69. 

The kinematic analysis of the problem is analogous to that which was studied before. 
If for both the cases detailed above we have lax I ~ I (i.e., if the length a of the plastic 

zone, Fig. 4, is small as compared with the radius of curvature lxl- 1 of the cylindrical 
surface of the retaining wall), then, disregarding the value laxl as sufficiently small with 

respect to 1, we obtain f 3 = 0, provided that the loading p of the horizontal plane z2 = 0 
is independent of z3

• In this case, the curvature x in Eqs. (7.13) will be absent. It follows 
that the solutions here obtained for an arbitrary x, are sufficiently good approximations, 
provided that la"! is sufficiently small with respect to l. 

7.'1.. Analysis of shapes of spatial slopes 

Now let us consider the problem of the shape of a spatial slope. Let the slope be loaded 
by the vertical load p = r:t.z3 + {3, ex = const., f1 = const, 0 < z3 < /, cf. Fig. 5. Let us 
assume also, that the volume density of the subsoil is constant, and that the material of the 
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slope is homogeneous and perfectly cohesive. Under these conditions, it can be proved 
that the equation of the surface of the slope is given by 

(7.17) 
. (rx 3 n) sm .2{3z +T 

where 0 < z3 < /, 0 < z2 < h{z3
), and 

rx n{3 
(7 .18) z2 = h(z3

) = - - z3 + - , 0 < z3 < I, 
y y 

where z2 = h(z3) for each z3 E (0, /) represents the equation of the asymptote for the curve 
given by Eq. (7.17). The foregoing relations constitute a generalization of the classical 

FIG. 5. 

solutions given by W. Sokolovsky (cf. [10] pp. 128-129), which have been obtained under 
assumptions of plane strain. In the region of the subsoil situated in the vicinity of the plane 
z2 = 0, the state of stress is given by: 

(7.19) 

8 Arch. Mech. Stos. nr 1!78 
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Taking into account Eq. (3.6), and putting 'YJ = 0.5, we can write: 

(7.20) 

It follows that (see Eq. (5.3)) 

(7.21) 

The state of stress in the vicinity of the slope is given by: 

(7.22) 

Thus we obtain: 

(7.23) 13 = -<133,3 = 0. 

M. Woi:NIAK 

In the spatial problem under consideration, we also deal with the component p3 of the 
boundary force on the surface of the slope. In accordance with (5.11), the latter is equal to 

(7.24) 

where (n 1 , n 2 , n3) is the unit vector normal to the surface of the slope. Let us calculate the 
value: 

(7.25) 

Because of (cf. Fig. 6c) 

(7.26) 

we can write: 

(7.27) supp3 = f!_(r!.)__. 
y 

To simplify our calculations, we shall not determine here the value 13 of internal force 
in the region where a12 :F 0. 

Let us assume now that the weight by volume y of the subsoil can be determined with 
approximation which is not greater then ey, where e is the positive number given a priori, 
small with respect to unity: e ~ 1 . Then from (7 .19) we calculate that the stresses a11

, a22 

are determined with approximation which does not exceed eysupz2 = eyhma,. = t:n{J, 
provided that ex~ 0. It follows that the volume forces can be determined here with approx-

imation of order t:y. Thus we conclude that the internal volume forces (0, O,f3
) can be 

treated as sufficiently small if their values are of order ey: 

(7.28) 

Taking into account Eq. (7.21), we see that lex! ~ t:y. Analogously, the internal surface 
forces (0, 0, ]J3) may be disregarded when they are of order en{J, the latter term being the 
approximation of the boundary kinetic conditions on the surface on the slope. Thus 
we have: 

(7.29) supp3 ~ t:n{J. 

Taking into account Eq. (7.27), we obtain lex!~ t:yn. From the two foregoing inequalities, 
it follows that 

(7.30) !ex!~ ey. 
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Thus the solution (7.17) of the spatial problem can be applied only if the condition (7.30) 

holds. For a uniformely distributed load et = 0, the condition (7.30) becomes an identity, 
and we pass to the well known plane problem (cf. [10] p. 127). 

The foregoing analysis is slightly changed if the weight of subsoil can be disregarded. 
Such approximation is valid only if the value yz2 in Eq. (7.20) is sufficiently small. 
From Eq. (7.17), for y--+ 0 we arrive at: 

(7.31) z1 = tg {zf z3
) z2 , z' ;;. 0. 

For 0 :::; z3 :::; I = n{J , the shape of the slope is given in Fig. 6. Similarly as before, we 
et 

have now IJ31 :::; y. The Eq. (7.31) is now valid only if 

(7.32) /et/ :::; y. 

FIG. 6. 

In Eq. (7.20), we can now disregard the term yz2 -i.e., a 33 = ctz3 + fJ; the same term 
has to be disregarded in the formulas determining the boundary forces. Thus we can write: 

(7.33) /p3 /:::; yz 2 , z2 ~ 0. 

Making use cf. (7 .24), we obtain: 

(7.34) fJin 3 / :::; yz2 • 

After some calculations, we arrive at the following formulas for the component n3 of the 
unit vector normal to the slope: 

(7.35) 
etz2 I 

-zp V cos'( 2~ z') + h~ z'( 
0 < z3 <I. 

The condition (7.34) is, by virtue of (7.35), fulfilled for z2 = 0. For z2 > 0, we obtain: 

/et/ 
(7.36) :::; 2y, 0 < z3 <I. V cos'( ;11 z•) + (;p z

2
)' 

The Eqs. (7.32), (7.36) represent the necessary conditions under which the solution (7.31) 
of the spatial problem can be applied. 

8* 
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7 .3. Compression of a thin layer 

Let us analyse the problem of compresion of a thin homogenous isotropic layer, situ
ated between two cylindrical surfaces z1 = ±h(z3

), cf. Fig. 7. The coordinate system 
{ z«} will be assumed here as an orthogonal Carthesian coordinate system, in which the 
coordinate plane z1 = 0 is the plane of symmetry of the layer, -h(z3

) ~ z1 ~ +h(z3
), 

2a is the height of the layer, 0 ~ z2 ~ 2a, and I is the length of the layer, 0 ~ z3 ~ I. 
We assume that h ~ a, h ~ 1- i.e., we assume that the layer is thin. In the problem under 

FIG. 7. 

consideration the curvature " of z1 = 0 is equal to zero, " = 0, and we have to assume that 
the Levy-Mises flow law associated with the Huber-Mises yield condition holds, cf. Sect. 5. 
The influence of the volume forces on the limiting state of the layer in the following analysis 
is disregarded. 

The solution of the equilibrium equations (5.2) for y = 0, w = 0 has the form: 

(7.37) 

The right-hand sides of Eqs. (7 .37) satisfy the Huber-Mises yield condition, provided, 
that 'YJ = 0.5. The components of the. flow velocity vector can be obtained as solutions 

of Eqs. (5.19) for e = 0, w = 0: 

(7.38) 
zl 

vi = -u h(z3) ' 
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where u = u(z3) is an arbitrary differentiable function. From the boundary conditions, 
we calculate that v1 = ±u for z1 = ±h, respectively. The physical components of the 
strain rate tensor can be calculated from Eqs. (5.18): 

u 
dll = -h, d33 = 0, 

(7.39) 
u 

d22 = h' d - _!!_ C · lz1
1 < h, 

12 - h V 1 - ( C)2 , 
c < 1. 

The solution given by Eqs. (7.1)-(7.3) represents a certain generalization of the well 
known Prandtl solution of the compresion of a thin layer of constant thickness, h = const. 
(cf. [6] pp. 214-216). Denoting by q = q(z3

) the intensity of the limiting value of the com
pressive force (measured on the unit length along z3-axis), we can write (cf. [6] p. 216): 

2q{z3
) = -ea(: +n), 

the limiting value of the compresion force being equal to 
I 

p = -c J a( h(:') +n) dz3
• 

0 

To determine the scope of applicability of the solution (7.37)-(7.39) to the spatial prob

lems, we shall determine the maximal values of lf31 IJi31, lti;31. In view of 'YJ = 0.5, 
" = 0 from (5.3) we obtain: 

(7.40) - c ( z2 (C)2 ) 
J3 =- h h+ y1-(C)2 h,3; lzll < h, C <I. 

Let us analyse separately the case in which the surfaces z1 = ±h(z3
) are absolutly rigid, 

and the case in which these surfaces are rigid only in the planes z1 = const. (in the latter they 
can be subjected to bending in the planes z2 = const.). 

If the surfaces z1 = ±h(z3) are absolutly rigid, then in view ofu = v1 for z1 = -h(z3
), 

we can assume that u = const. Making use of (5.21) and (7.38), we obtain: 

(7.41) 

It can be observed that the absolute value lf31 = 1- a 33
• 31 is small as compared . with 

la22 ,1 l, where by means of Eq. (7.1) we have: 

2c C 0'22,1 = - . 
T y1-C2 , !Cl< I, 

and where lh,31 is small with respect to I. Analogously, 1~ 3 1 is small with respect to ld11 1, 
and (d231 is small with respect to ld12 l, provided that lh, 3 1 ~ 1. Denoting bye% an admis-
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sible error which arises from the postulates (3.1), (3.2), we have to restrict the form of the 
function h = h(z3) by the condition: 

(7.42) 

The foregoing condition also assures that p3 can be disregarded as sufficiently small with 
respect to 0'33

• Thus Eq. (7.42) represents the condition of applicability of the solution 
of spatial problems under consideration. 

Now suppose that the surfaces z1 = ±h(z3
) are rigid only in the planes z1 = const., 

and that they can be bent in the planes z2 = const. This assumption can be applied if 
a~ I. The scalar u is in this case dependent of z3

• Instead of the Eqs. (7.41), we obtain 
now: 

(7.43) . 

- u (hu, 1 1 ) 
dt3 = - 71 -u-- 2 h,3 C, 

d23 = - h--a h 3- - u 3 -- - ;- - -2 y 1- C2 . - u ( C
2 

1 ) 1 ( n a z
2 

-) 

h v 1- c2 2 · 2 · 2 h h 

Since lh, 3 1 has to be sufficiently small with respect to 1, then 

(7.44) hu 3 1 
-·-~. 

u 

The Eq. (7.44) is a condition imposed on the values of the velocity field v1 = ±u on-the 
surfaces z1 = ±h(z3

), respectively, under which the foregoing solutions of the spatial 
problem are valid. 

7 .4. Cylindrical tube under radial pressure 

Now let us analyse the problem of limit state of a thick walled shell, of variable thick
ness, a fragment of which is given in Fig. 8. The problem we have to investigate is a certain 
generalization of the well known problem of the yield state of a thick walled cylindrical 
shell (cf. [6] pp. 165-166 and 125-127) of constant thickness. Let z1 , z2 , z3 be Carthesian 
orthogonal coordinates, and let as define the cylindrical coordinates r, cp, z, putting 

2 

r = y(z1
) 2 +(z2) 2 , cp = arctg__:1 , z = z3 , (cf. Fig. 8). Assuming that the yield condition 

z 
has the form a 2 -G1 = 2c, and taking into account only axially-symmetric external 
loads p = p(z), we obtain: 

(7.45) a1 =a, =2cln b~z), a2 = a.=2c(l+ln b;z))' 

and 

(7.46) a(z) ~ r ~ b(z). 
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FIG. 8. 

The limit value of external load is equal to 

(7.47) 
b(z) 

p(z) = 2c In a(z) , 

111 

where r = a(z), r = b(z) are equations of the inner and outer surfaces _of the shell, respec
tively (Fig. 8). From the Eq. (7.47) it follows that p(z) = const. when b(z)/a(z) = const. 
From Eqs. (5.5) and (5.11) we obtain: 

[ 3 = - 0'3 3 = 2c d(lnb), 
· dz 

(7.49) 

where the weight of the material has been disregarded. Thus we conclude that we may also 
disregard the internal volume forces, the modulus of which does not exceed y: 

(7.50) 

Moreover, suppose that the coefficient c in the yield condition is determined with approxi
mation ±ec, where e is a positive number, e ~ 1 given a priori. The stress 0'3 for r = a(z) 

is, by virtue of (7.46), then determined with approximation ±ec (I +In :) , and for r = 
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= b(z} it is determined with approximation ±ec. It follows that the values of internal 
surface forces jPI,="' p3 lr=b may be disregarded if their moduli satisfy the condition: 

(7.51) lP' I,~ • .;; ecll + 21n : I, lP' I,=' .;; ec. 

From the inequalities (7.50), (7.51), and from Eqs. (7.49), we obtain the following 
criteria of applicability of Eqs. (7.47) 

(7.52) 
I 

dlnb(z) I _r__ 
dz ~ 2c ' I 

da(zl I 
dz 

~ e, I db(z) I I dz ~e. 

When the outer boundary surface of the shell is cylindrical - i.e. b(z) = const. - then 
the first and the last relations from Eqs. (7.42) become identities. 
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