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On the solution of a certain class of spatial problems in the theory
of plastic flow

I. Foundations

M. WOZNIAK (WARSZAWA)

In THIS paper, a method is proposed for solution of certain spatial problems of the theory of
rigid ideal plastic bodies. The method is based on certain restrictions imposed on the three-
dimensional stress and velocity fields. In the first part of the paper, by virtue of the integral
principles, the three-dimensional boundary value problem of the theory of plastic flow is reduced
to the one-parameter family of two-dimensional boundary value problems. The solutions of
these problems must also satisfy certain extra physical criteria of applicability. Applications of
the general approach given here will be developed in the second part of the paper.

W pracy zaproponowano metodg rozwigzywania pewnych przestrzennych zagadnief teorii
ciat sztywno idealnie plastycznych. Podstawa metody sa pewne ograniczenia nalozone na tr6j-
wymiarowe pola naprezenia i predkosci. W pierwszej czesci pracy, korzystajac z zasad catkowych,
zredukowano trojwymiarowe zagadnienie brzegowe teorii plastycznego plyniecia do jedno-
parametrowej rodziny dwuwymiarowych zagadnien brzegowych. Ponadto rozwigzania powinny
spelnia¢ pewne kryteria fizycznej stosowalnosci przyjetych zalozen. Zastosowania podanej
tu ogolnej metody beda przedstawione w drugiej czesci pracy.

B paGoTe npeanoyen METOL PeLLIeHHA HEKOTOPBIX NPOCTPAHCTBEHHBIX [IPODIIEM TEODHH HECTHO=
umeanbHO TuiacTuueckux ten. OcHOBoit MeToja ABJIAIOTCA HEKOTOPBIE OrPaHHUEHHA, HAJIO-
JKeHHBbIE Ha TPeXMepHbIe N0JIA HANPXKEeHUH H cKopocTeil. B nepBoit yacti paboTel, HCTIONB3YA
HMHTErpajibHble IPHHIMIIBI, TPEXMEPHAA KpaeBas 3a7aua TeOPHH IIaCTHYECKOTO TEeUEHMA CBe=
[eHa K OIHOMAapamMeTPHYECKOMY CeMeiiCTBY MBYXMeDHBIX KpaeBbIX 3agau. Kpome atoro pe-
LIEHUA JOJDKHBI YAOBJIETBOPSTE HEKOTOPLIM (DH3HUECKMM KPHTEPHAM NMPHMEHAEMOCTH MpH-
HATBIX npeanonoxenuii. IIpumenenusa, npusegeHHoro agecs obiero noaxoma, dyayr npena-
CTaBjieHbl BO BTOpPOil uacTi paboThl.

Introduction

THE KNOWN solutions in the theory of plastic flow are usually obtained as solutions of
boundary value problems on the plane for the hyperbolic system of partial differential
equations. Such two-dimensional boundary value problems are formulated by applying
the semi-inverse method (cf. [6] pp. 152, 240) to the limit analysis of plane or axially-sym-
metric states of plastic flow. An extensive bibliography referring to these problems can
be found in [13]. The spatial — i.e. three-dimensional-problems of plastic flow, however,
have not so far, apart from certain special cases (cf. [3] pp. 222-224), been investigated.

The aim of the present paper is to perform a limit analysis of a certain class of three-
dimensional problems in the theory of plastic flow. To obtain solutions of the problems
under consideration, procedures analogous to those used for plane problems can be applied.
It is shown that plane strain problems, together with axially-symmetric strain problems
of plastic flow, constitute special cases of the more general approach given in the paper.
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The approach presented concerns only isotropic rigid-ideal plastic materials in which the
generalized Coulomb flow law associated (or not) with the yield condition or the Levy-
Mises yield condition must hold. Moreover, this approach can be applied only to certain
systems of external loads and certain configurations of the plastic regions inside the body.
Suitable criteria of applicability of the proposed limit analysis are given.

In Sect. 1, the postulates constituting the foundations of the analysis are listed. The
conception of the approach, formulated in Sect. 3, is based on certain hypothesis concern-
ing state of stress and the distribution of velocities. The governing equations are obtained
in Sect. 4, and the criteria under which the limit analysis has physical meaning are intro-
duced in Sect. 5. The plane strain problem and the axially-symmetric problem are in Sect. 6,
derived as special cases of the general spatial approach. In Sect. 7 are given examples of
application of the proposed analysis. Here we confine ourselves to analytical solutions of
simple three-dimensional problems only; more complex spatial problems can be treated
by applying known numerical methcds to the equations given in the paper.

Notation

All basic relations of the paper are carried out in a certain orthogonal curvilinear coordi-
nate system {z*} defined in the region V of the physical space('). The system {z*} is te-
lated to the fixed Carthesian orthogonal system {x'} in the physical space:

(0.1) xi= Xi(z!, 22, 29),

where the functions on the right-hand sides of the Eq. (0.1) are assumed to be defined and
differentiable in ¥ and where det[dx'/dz*] # 0. The region V represents the plastic zone
of the body under consideration, and an explicit form of Eq. (0.1) will be given in Sect. 3.
The indices i, j, together with «, 8, ¥, é run over the sequence 1, 2, 3; the indices K, L run
over the sequence 1, 2. The summation convention holds(?). Partial derivatives are denoted
by a comma:

_ 3t ah) _ Og(x!, x%, x%)
0.2) fa= Sar A ¢ -~ etc.

Components of the metric tensor in the system {z*} are denoted by g,z and are given by
(0.3) ga‘g = x‘_ux{.séu,
where é;; is the Kronecker symbol. The elements of the matrix inverse to [g.s] are denoted

by g*. Covariant derivatives in the system {z*} of vector or tensor fields are denoted by
a vertical line:

Vel = 0, iy }v
alfp = Ya,p— ¥
(0.4) i

T = TP+ {:?} T%+ {gy} T  etc.,

(!) In some special cases the system {z*} can also be assumed as a Carthesian coordinate system.
(*) No summation is carried out if the same index is repeated more then twice or if it is repeated on
the same level.
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o
where the Cristoffel symbols i 6y} can be calculated from (0.1) by means of the known

formulas:
0.5 ja R L. a
( . ) lé}' =Z ;X Joy s

the matrix [z* ;] is an inverse of the matrix [x’ .]. We also introduce the unit vectors e, , e,, e;,
the Carthesian components o1 which are equal to

i
(0.6) eﬂ-[ = z 2 ]

Y 8aa

where gun = X' o X’ 4 8;; (cf. Eq. (0.3)). We also denote by €*; the component of the matrix
inverse to the matrix [e,’]. Since the matrix [2* ] is an inverse of the matrix [x ,], we obtain:

0.7) & =21V 8u -

Using the Egs. (0.6), (0.7) we define the physical components of vector and tensor fields
by means of the known transformation formulas:

(0.8) o = & ix X 5T = | guugpy T,
dys = e“te!qu?_iza.jg‘y = E“ﬂ-:; etc.,
V 2uass

where T, £, are components of tensors in the coordinate system {z*}, and 07, dys are
physical components of these tensors, respectively, related to this system. Other basic
denotations used throughout the paper are listed below:

?

part of the physical space occupied by the material in the limit state (the plas-
tic zone),

S boundary of the region V,

V region V with its boundary,

p* components of the vector of external surface loads acting on ¥V across S,

§% part of S, where the surface load component p* is known,

va components of the velocity vector,

Sz part of S, on which the velocity component vy is known,

f® components of density of external loads,

f2p* components of internal body forces and internal surface tractions, respective-
ly,
T*8  components of the stress tensor,
o*# physical components of the stress tensor,
0,, 02,03 principal normal stresses,
&5 components of the strain rate tensor,
physical components of the strain rate tensor,
d,, d,,dy principal values of the matrix [dug].
Z,, Zy surface inside ¥ across which the fields ve, T%8 suffer discontinuities, respective-
lyl
D power of the plastic deformation (dissipation).

6 Arch. Mech. Stos. nr 1/78
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1. Fundamentals of the theory

In this Section we shall give those basic relations of the theory of plastic flow which
will be used throughout the paper. Let ¥ be a regular region of the physical space, occupied
by the material in the limit state, and let S be its boundary. We assume that the material
of the body is isotropic and rigid-ideal plastic. This means that at each point of ¥, the
yield condition holds in the form:

(1.1) F(G'l’az’o':!) =0,

where g, are principal stresses and F is a symmetrical function of all arguments. At the same
time, the remaining part of the body is assumed to be rigid. Denoting by G(o,, g,, 03)
the plastic potential of an isotropic material, we postulate the equation of plastic flow in
the known form:

0G(o,, 04, 03) aG

(1.2) b= A=, by = Ay

ar«’
where A > 0 is a certain skalar factor which must be determinated in each problem, and d,
are principal values of the strain rate tensor &,;. The special forms of functions F and G
with which we have to deal will be specified in Sect. 3.

We denote by Z, a smooth surface, oriented by the unit normal vector n;, across which
the flow velocity vector field o, suffers discontinuity. The jump of the velocity field across
Z, will be denoted by [v.] = vd —vz, where vf, v7 are the limit values of the field

FiG. 1.

9, (2%, 22, z°) on both sides of X, (cf. Fig. 1). Apart from the special situations (see for

example [10] pp. 70-71) we assume that [v,]n* = 0 — i.e. we assume that the projection of

the velocity vector in the direction normal to X, is continuous across Z,. Analogously,

by 27 we denote the smooth surface across which the stress tensor suffers discontinuities.
We denote by S, the part of the boundary S on which the flow velocity component v,

is known:

(1.3) Upg =D ON Sy

‘Analogously, by S* we denote the part of S on which the component p* of the surface

traction is prescribed(®):

(1.4) pP=p* on S,

Moreover, for any fixed a, the surfaces S, and S* have no common points, and S S%=8

We assume that the functions p* are continuous almost everywhere on S%, f* are continuous

(®) Usually, it is assumed that S, = S, = S5 (cf. [6] p. 304) and S* = §2 = S2. In this paper, the
surfaces Sy (as also 5%, @ = 1, 2, 3) can be different for different «.
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almost everywhere in ¥, T* are continuous with their first derivatives in V-2, and
[T*]n; = 0 on Zy. Moreover, we assume that v, are continuous with their first derivatives
in V— Z,, and &, are continuous in V—Z,.

The approach applied in what follows will be based on certain restrictions given a priori,
imposed on the stress tensor field T%(z!, z2, z*) and the flow velocity field v,(z%, 22, z3)
in the region V. The exact form of these restrictions will be specified in Sect. 3. If such
restrictions are postulated, then the integral principles of continuum mechanics must be
used instead of the known differential equilibrium equations T%|;+/* = 0, the boundary
conditions 7% ng = p*, and the kinematical equations & = 9y (*). Before we formulate
these integral principles, we bear in mind the known concepts of the virtual increments
of the fields defined above.

An arbitrary field ,(2", 22, z%) is said to be the virtual increment of the velocity field
v4(2!, 22, 2%) if the field v, +9, satisfies regularity conditions, boundary conditions and
restrictions imposed on the velocity field v,, provided that such conditions and restrictions
are linear.

The field £,(z", 22, 2°) defined by &5 = %(5@3-{-?}3;3) in V=2, will be called the
virtual increment of the strain rate tensor field.
An arbitrary field J."“ﬁ(z‘, z2, 2%), T = i“s“, is said to be the increment of the stress

tensor field T*(z', z2, z%) if T*+ 7 satisfies the regularity conditions, boundary condi-
tions and restrictions imposed on the stress tensor field 7%, provided that such conditions
and restrictions are linear. .

The field p*(z", z2, z°), defined almost everywhere on S, and the field f*(z, 22, z%),

defined in ¥ by means of the formulas p* = T.“"nﬁ, f L= —T‘“-"Iﬁ, will be called respec-
tively the virtual increment of surface tractions and the virtual increment of external loads.

Now, we can formulate two integral principles of continuum mechanics, which con-
stitute the basis for further considerations.

Principle of the virtual work. If the fields p®, f* determine the external loads on S and

in ¥ respectively, and the field 7°° characterizes the state of stress in ¥, then the following
relation

(1.5) § pbuds+ [fobadv = [ T9E0av+ [ Tm,b0dE
&) [ 4 Vv B .

*
must hold for any virtual increments 53, Eup

Principle of the complementary virtual work. If the fields v,, £,5 determine the velocity
of the flow and the strain rate in the body, respectively, then the following relation

(1.6) Sf P oudS+ Vf fEv,dv = J’ Tk, ,dV+ zf T ng loa)dE

must hold for any virtual increments 7%, }*, /=,

(*) It can be proved (see Sects. 5 and 7) that the restrictions imposed on the fields vy, T are not in
general consistent with the differential equilibrium equations, the boundary conditions and the kinematical
equations in their classical form given above.

6*
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Moreover, the stress field 7% and the strain rate field £,; must satisfy in V-2, —Zt
the inequality:
1.7 D = Ty = 0*d; 2 0,

which represents the known dissipation condition (cf. [10] p. 41). The suitable dissipation
condition must also be satisfied on the surface Z, (cf. [10] p. 66 and Sect. 5 of this paper).

2. Geometry of the plastic zone

Hitherto, the form of the plastic zone ¥ and the curvilinear coordinate system {z*}
contained in it have been quite arbitrary. In the present paper, we shall deal only with
special forms of the plastic zone parametrized by special systems of coordinatesin V. A typ-

FiG. 2. FigG. 3.

ical example of V is given in Fig. 2, where L is a smooth curve situated on the horizontal
plane x? = 0 belonging to the Carthesian orthogonal coordinate system Ox'x?x3. Let s
be the length parameter on the arc L, of L. Moreover, let

@1 xt = ¢l(s), x* =’

be a parametric equation of L,p. To specify the system of the curvilinear coordinates
z!, 22, z% in ¥, we denote by P’ an arbitrary point of ¥ situated on the plane x* = 0. Let
P" be an orthogonal projection of P’ on L. Two unit vectors, one of them being tangent
and the other normal to L, we denote by t and n, respectively. Let z> = s = const. be a plane
normal to L,z and passing by an arbitrary point P, and let z! be the distance P’ P" be-
tween the point P’ and the curve L, provided that P’ is situated on the right-hand side
on the arc L,p oriented by a unit normal n. It follows that the Carthesian orthogonal
coordinates x!, x* of the point P’ on the plane x2 = 0 are related to the coordinates z*, z*
on this plane by the relations (cf. Fig. 3)

x} = @*(2?)+n3 (232!,
2.2
x' = ¢'(2®) +n'(2%)z".
At the same time we have n® = t!, n' = —¢3 and 13 = dp®/dz3, t' = d¢'/dz®. Now let P
be an arbitrary point of the region V. The curvilinear coordinates z*, z?, z* of the point P
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will be related to the rectilinear Carthesian coordinates x', x2, x* by means of the
formulas:

do3(z3
pe)- 2 4,
@3 =,
P @)+ d?’dz(zs)

The Egs. (2.3) represent a special case of Egs. (0.1),. We assume that the region V is
uniquely parametrized by the coordinates z*', z2, z*. From the formulas (2.3) and Egs. (0.5),
we obtain the following form of Christoffel symbols:

AT

3 3 ,,
{1 3}= 317 T 1=z'%’

where x is a curvature of L given by

(2.4)

dt!
(2.5) x=tl‘%—f—t3v
The Christoffel symbols not mentioned in (2.4) are equal to zero. From Egs. (2.3) and (0.3),
we obtain the components g, of the metric tensor of the system {z*}:

1 0 0
(2.6) [gg]l = |0 1 0 , l1=z'%>0.
0 0 (1-z'%)?

Using Eq. (2.6), we obtain from Egs. (0.8) the physical components ¢**, d,; of the stress
and strain rate, respectively, in the form:

[ T11 T12 (l_zlx)Tls
[oaﬂ] — T21 T22 (l—z‘x)T” ;
|(1-2'%) T3 (1-2'%)T3? (1—z'%)*T33
[ ¢ ¢ el |
@.7) A - 1—z'x
&
[da,a] = £21 22 1 _2;1,‘
£3s £32 &33
| 1—z'% 1—z'% (1—-z'%)* |

From now on, all vector and tensor fields used throughout this paper will be related to
a coordinate system {z°} given in ¥ by Egs. (2.3), where Egs. (2.1) represent an arbitrary
smooth curve L, situated on a horizontal plane (i.e. the plane x2 = 0 in the Carthesian
coordinate system Ox!x2x3).
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3. Basic hypothesis and formulation of the problem

An approach to the problem will be based on the limiting analysis of the three-dimen-
sional problems of plastic flow in ¥ (all fields are, in general, dependent on the three
variables z', z2, z*) by means of certain restrictions, given a priori, imposed on the state
of stress 7% and the velocity of flow v, in V. These restrictions enable us to solve a certain
class of three-dimensional problems of the theory of rigid-ideal plastic bodies.

Making use of the curvilinear coordinate system {z*}, we postulate that the following
two restrictions must hold in V:

1. The shear stresses in the planes z* = const. can be disregarded:

(3.1) T3 =0, T3 =0.

From this assumption, it follows that one of the principal directions of the stress is normal
to the planes z® = const. '

2. The component of the flow velocity vector normal to an arbitrary plane z* = const.
can be disregarded:

(3.2) ?)3 = 0'

The Eq. (2.5) states that the flow velocity vectors in ¥ are situated in the planes z*> = const.
normal to the curve L.

The assumptions (2.4), (2.5) are approximatively fulfilled only for a special class
of three-dimensional problems of plastic flow. The scope of application of an approach
based on the restrictions (3.1), (3.2) will be analysed in Sect. 5. We shall show that the
restrictions (3.1), (3.2) enable us to reduce the three-dimensional boundary value problem
of plastic flow to a single parameter family (with coordinate z* as the parameter) of two-
dimensional boundary value problems of the hyperbolic type in the variables z!, z2.
However, such reduction is possible only for certain kinds of ideal plastic materials.

In the present paper, the plastic potential G(o,, 0,, o) will be assumed in the form
G = 0,—0;—(0;+0))sing—ccosy; the relation G =const. is defined for any i,j = 1,2, 3;
i # j, and represents a certain convex surface in the space of the principal stresses oy, 5, 0.
The form of the plastic potential given above was introduced by D. Radencovic (cf. [8]

and [10] p. 43) in problems of solid mechanics, where ¢ is a coefficient of cohesion and
T
2z
The surfaces G(oy, 03, 03) = const. are not smooth and are defined by means of six
different analytical relations. To make further calculations more concise, we shall extend
the domain of the definition of the plastic potential by introducing extra parameters u, »
where 0 < g <1, =0 or v = 1, putting

is a known constant such that 0 < ¢ < ¢ < =, where g is the angle of internal friction.

3.3) G = G(oy, 02, O3} 1, 7) = (l—siné)(l—v+pr)a,,
+ (1 +sin@)(ur — p—v) 65+ (1 — u)(2v— 1 —sinB) 03— 2ccosp.

The function G(o,, 03, 03; 42 v) represents a new analytical form of the plastic potential,
and has the same physical -meaning as the latter if the domain of the function
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Table 1

/ | r=0 =1 ‘/
po= G = (1—sind)o, — (1 +sind) o, G = —(14sind) o, + (1 —sing) o p=0
0y > 0 —2ccosg —2ccosp 03 < 02

0<pu<1l G=(-sing)o,—(1+sing)us, G = —(1+sing)o,+(1—sing)uoy, 0 < pu<1
;= 03 — (1 +sing)(1 — p) o3 —2ccosp —(1—sing)(1—p)o3—2ccosp 0y = O3
=1 G = [(1—sing)o, — (1 +sind) o, G = [—(1+sing)oz + (1—sind) o, p=1
o, > 0y —2ccospl(203+28) —2ccosgl(203+28) "0, > 02

p=1, L=¢ §=0, o03=05(0+0)
£ =0.5-0; if Eq.(3.3)holds,

if Eq. (4.16) holds

5(0. , 03, O3; s ¥) is Testricted to the value given in Table 1. Using (1.2) and (3.3), we
obtain:

dy = A(1—v+u)(1—sing),
(3.4) dy = Ap—p—r)(1+sing),

dy = A(1—p)2v—1)[1—2v—1)sing].

The yield condition of the materials under consideration will be assumed in the form which
corresponds to that given in [8]:

3.5) (A =sing)(1—v+p)o, + (1 +sing)(uv—pu—v)o, + (1 +u)(2v—1—sing) o,

—2¢ccosp = 0,
where the parameters yx, v have the same meaning as before.
In what follows, we shall assume that ¢, > o5 > 0,. Introducting the function 9y =
= (03—0,)/(03—0,), we have:

(3.6) o3 = (1-n)oz+no,, 0<7<1.

For the time being, % is an unknown function.

In Sect. 4 we shall prove that in certain special cases Eqs. (3.3), (3.4) and (3.5) hold
also for materials in which the plastic potential has the well known form G = (o; —0,)*+
+ (02— 03)*+(03—0,)*—6¢?, and in which the yield condition is given by G = 0.

Now we shall list the basic relations of an approach used in this paper. The problem
under consideration will be governed by the following relations which have to be satis-
fied in V:

1. The yield condition (3.5).

2. The flow law (3.4).

3. The restrictions (3.2), (1.3) imposed on kinematical fields.

4. The restrictions (3.1), (1.4) imposed on the kinetic fields.
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5. The principle of the virtual work (1.5).
6. The principle of the complementary virtual work (1.6).
7. The dissipation conditions (1.7) in ¥ and the dissipation conditions on Z,.

However, the part of the body which is situated outside ¥ is assumed to be rigid. The
basic unknown fields — namely, the velocity of plastic flow v,(z!, z2, z3), the strain rate
&.5(2", 2%, 2°) and the stress T*(2', 2%, z®) — must be sufficiently smooth, and satisfy all
the relations listed above. Due to the hypothesis assumed a priori (3.1), (3.2), the solutions
of special problems must be verified. This will be done by means of certain criteria, which
will be formulated in Sect. 5.

4. Field equations

By the field equations we shall mean here the system of equations which can be deduced
from the two integral principles (1.5), (1.6). To obtain these equations, we shall transform

the integral relation (1.5), using the divergence theorem. Taking into account that 5‘,3 =
= Dap» T = TP, [T*)n; = 0 on Xy, we obtain from (1.5) the following relation (%):

[ T08GpadV = [ T8, sav = [ (T%8)),dV— [ T|3.av
V V v

v

= { T9%unpdS— [ T [dngdZ—~ [ T%|,8.av.
5 Zp | 4
Combining the Eq. (1.5) and the relation given above, we arrive at:

@1 [ (fe+12P)8.av+ § (p*—T*np)t.ds = 0.
v 5

The foregoing relation must hold for any virtual increments 9, of the velocity field v,.

According to Eq. (3.2) and the Egs. (1.3), we have 9; = 0 in ¥ and ©x = 0 on Sk Thus,
the relation (4.1) reduces to the form:

(4.2) [ (F2+ T2 cav+ § (p5—T*ny)beds = 0
v S

and must be satisfied for any continuous vector field 9x. In particular Eq. (4.2) must be

satisfied for the vector field 9x such that x|s = 0. It follows that Eq. (4.2) is satisfied if
and only if the relation

(4.3) [ (f5+T™p)oxav = 0,

(*) The divergence theorem is used here in the form:
S walaav = $ wangds— [ WInadz,
v 5 z

where V is a regular region in R® with a boundary S, X is a smooth oriented surface across which w* suffers
discontinuity, and w*e C}(V/-X),
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holds for any continuous functions 9 in ¥, equal to zero on § and Zy. Because 9x € C1(V),
okls = 0 and fX+T*|; € C(V), from the du Bois-Reymonde Lemma(®) we obtain:

(4.4 T®,+fX =0 in V.

By virtue of Egs. (0.4), and (2.4), assuming that ! = /3 = 0, f? = y, where y is the
known volume density of external loads, we rewrite the Eq. (4.4) in the form:

T
Tllsl +T12,2+X(I —ZIZ)T‘H— ﬁ = 0’
4.5) -
T3, 4T3~ 5 +y =0.

—ZX

Because of 93 = 0, it does not follow from Eq. (4.1) that T3#|;+£3 is equal to zero in V.
Denoting 3 = —T'%|, in ¥, and because of T3, = T33,; (see Eqgs. (0.4) and (2.4)) we
shall write:

(4'6) T33’3 +j3 =0.

The vector with components (0, 0, /) will be referred to as a density of internal body

forces. The existence of this new force is strictly connected with the condition 95 = 0,
which follows from the assumption (3.2) and the definition of virtual increments given
in Sect. 1,

On the part Sk of the boundary S are prescribed the kinematical boundary conditions
(1.3). Since in the Eq. (4.1) the first integral is equal to zero, and since 95 = 0 on Sk and
SX = S—Sg, we have:

2
D J (P~ np)seds = o,

k=1gkK

for any continuous vx. Thus the relation given above must also hold for any 9x being
equal to zero in S¥—S’, where S’ can be treated as a region on the plane. It follows that

4.7 [ (P*~T*Pnp)8ds = 0,
3

for any 9 vanishing on the boundary of the region S'. Applying the du Bois-Reymond
Lemma to Eq. (4.7) and bearing in mind that S’ may be choosen arbitrarily, we obtain
finally:

(4.8) T®n, = pX on S~

From Eq. (3.2), by virtue of the continuity of the function v, in ¥, we obtain 93 = 0
on S. Thus, from Eq. (4.1) it does not follow that T%n;—p? is equal to zero on S.

(°) Let @ € C(£2), where 2 is a regular region in R, If f @wd2 = 0 holds for any pe C* () such
2
that |0 = 0 and valz = 0, then @ = 0 in £, where 82 is a boundary of 2 and @ = 2 LIQ.
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Denoting p* = T*n;—p?, and assuming that the boundary loads are acting exclus-
ively in the parametic planes z*® = const. —i.e. that p* = 0 — we obtain:

4.9 T3y =p* on$S?® andfor 0<zd <l
At the same time, we shall write:
(4.10) pX=TKn, on Sk,

assuming that p® = 0 on Sx. The functions p* defined on S, are unknown boundary
reaction forces connected with the conditions (1.3) in which o5 = 0, by virtue of (3.2).

Let us transform Egs. (1.6), using p* = f’“ﬁnﬁ and f ® —f""iﬁ to obtain:

(4.11) § Tngv,dS— [ T¥0,av = [ T Epav+ [ T9n5l0,1dz.
§ 1% v Ty

We assume that X, consists of the surface 2, inside the region ¥ and a surface Sk on the
boundary of the plastic zone. Let on Sk the jump of the flow velocity vector be equal to
¥x— Vg, Where g is a boundary value and 9 is the known function which is assumed to be

given on Sk. Taking into account the divergence theorem, by virtue of [f‘za]nﬁ =0 on
Zt, we arrive at:

(4.12) [ Eup—valp) T#av = 0.
v

*
The relation given above must be satisfied by any virtual increment field T — Té=,

Since from (3.1) we i ave TX° = 0, then

.13 [ Er—vxl)TEeav + [ (E33—0s13) T30V = 0.
vV V

The Eq. (4.13) must hold for any 7%t e C!(F), 733 e C*(¥). Since the integrands in (4.13)
are continuous in ¥'— 2, therefore from du Bois-Reymonde Lemma we obtain:
Sk = Vklry, 33 = vsls

at all points of the region, ¥— 2, . Making use of (0.4) and (2.4), we shall rewrite the fore-
going equations in the form:

= 9 s
(4' l4) §KL (KiL}
§33 = —n(l—z'%)v,.
Since 7% = 0, form (4.12) it does not follow that £x;—wv|s) is equal to zero. Defin-
ing &x3 = Exs—v(k|s), and using Egs. (0.4), (2.4), we shall write:
1 =

Ei3 = '2—'01.34"513,
(4.15) 1

§23 = 5‘”2,34‘5_23-
The functions EI 3, £,5 are unknown. Their existence results from the hypothesis (3.1)
imposed on the state of stress.
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To conclude this section, we shall prove that if » = 0 then Eqgs. (3.3), (3.4), (3.5),
after substituting = 0.5, u = 1, 0 = ¢ = 0, hold for materials with plastic potential
(4.16) G = (0,—0,)* +(0,—03)*+ (03— 0,)*—6c2.

Because of (4.14),, for » = 0, we have £33 = 0 —i.e., d; = 0. Writing Eq. (1.2) in the
form d; = 40G/do;, we arrive at d; = A[o;—0.5(¢;, +0,+0;)]. Bearing in mind that
dy =0, it follows that o3 = 0.5 (¢;+0,) and Eq. (3.6) holds for = 0.5. Thus, the
Huber-Mises yield condition leads to o,—a¢,—2¢ = 0, o, > o, which is equivalent to
(3.5), when 0 = 1, ¢ = 0. The flow law associated with the Huber-Mises yield condition
gives d; = 0.5 1 (0,—0,) = Ac, d; = 0.5A(o,—0,) = — Ac, d3 = 0, which is equivalent
to Eq. (3.4) for# = 1, = 0, A = Ac which completes the proof. It follows that all further
investigations are valid not only for the media with plastic potential (3.3) but also for
plastic potential (4.16); the latter holds only if » = 0 and 5 = 0.5, p = 1, 5 =g=0,
The values of the potential G are listed in Table 1, in which both cases are included.

5. Formulation of the boundary value problems and their physical meaning

It can easily be observed that in the equilibrium equations (4.5), in the kinematical
equation (4.14) and in the boundary conditions (1.3), (1.4), the independent variable z3
plays the role of the parameter — i.e., we do not deal with the derivatives with respect
to z3. Since the Eqgs. (3.4), (3.5) are algebraic equations, then for any fixed z* we can for-
mulate the two-dimensional boundary value problem — i.e., the boundary problem in the
independent variables z!, z2 only. Thus we conclude that the approach proposed in the
paper, based on the hypothesis (3.1), (3.2) reduces the general three-dimensional boundary
value problems of the theory of plastic flow, to a system of two-dimensional boundary
value problems for z* = const. independently.

The approach developped in the paper, can be modified by introducing a new hypothe-
sis in place of these given by the Egs. (3.1), (3.2). In particular, we can assume that in each
plane normal to an arbitrary spatial curve there exists the same state of stress. In this way,
we shall arrive at the another class of spatial problems, which were analysed in [5] p. 28.

Taking into account the equations obtained in the preceding section of the paper,
we shall formulate now all basic relations of Sect. 4 in the orthonormal local coordinate
systems. Let us define the functions:

#(z%)

1-z'%G%) *
Symbol o represents a curvature of the cylindrical surface z' = const. for a fixed z3.
The equilibrium equations (4.5) with the denotation (5.1) have the form:

o', +0'?,—woll +we?? = 0,
(52) 21 22 12 =
o, +0??,,—wo't+y = 0.
Analogous, from Eq. (4.6) we obtain:

g33 -
3) (ﬁ) e el

¢.1)., o = w(z', 2?) =
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In view of 0®? = 0, the boundary conditions (4.8) can now be written in the form:
(5.4) o*tn, =p¥ on SK,

The Egs. (5.2) must be satisfied almost everywhere in V, and the conditions (5.4) must
hold on the smooth parts of the surfaces S*. On the surfaces Si, where the kinematic
boundary conditions vx = ©x are known, we obtain:

(5.5) O'KLHL = EK on SK.

Let us transform Egs. (5.2) by means of the following formulas, which constitute the
modified version of the known Levy formulas:

o'! = g+ (osinp+c)cos2p+h,
(5.6) 022 = o—(osing+¢)cos2@+h,
o'2 = (osing+¢)sin2gp;
the functions A, ¢ are here defined by:
0> 0: = —cctgg, ¢=0;
e=0: h= —yz2 ¢

i

c.

By virtue of (3.6), and from the well known relations

o oll 4 g22 11_ 22\2 12 4 21,2
(5.7 a‘}= 3 il/ (%) +(°__*2“’_) .
2

we obtain:

(5.8) ® = o+h+(2n—1)(osinp+¢).
The right-hand sides of (5.7) and (5.8) fullfil the yield condition (3.5) for © = 1. From
Egs. (5.6), we conclude that o = o(z!, 2%, 23), ¢ = @(2, 23, z®) are equal to

O'“ +o.22

o= -—h,

12
@ = -E- al'ctg mz %

Note that the functions o, @ depend not only on z!, z2 (such a situation occurs in plane
and axially-symmetric problems) but also on z3, because the three-dimensional problem
of plastic flow is analysed here. Substituting the right-hand sides of Egs. (5.6) and (5.8)
into (5.2), we obtain

(1+singcos2¢)o,, —2sin2¢(osinp+¢)g,; +sinpsin2po,;
59) +2cos2¢p(osing+¢) @, , +w(asinp+¢)(2n—1—cos2¢) = 0,
singsin2¢o,, +2cos2¢(osing+¢)@,; + (1—singcos2¢)a,,

+2sin2¢p(osing+¢)@,, —wsin2¢(asing+¢)+h,,+y = 0.
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This is a quasi-linear hyperbolic system of partial differential equations. At the same time,
the following relations along the characteristic lines hold (cf. [13] p. 186):

2 _ 1 :i_._g...
dz = tg(?’is)dz L] &€= 4 2 E

(5.9) do+2(otgo+c)dp = (h,+y)(dz? £tgodz?)
+w(otgo+¢){cospdz’ + (2v— 1)[1 + (2v— 1)sing]dz?}.
Analogously, by substituting (4.8) into (4.3), we arrive at:

a+k+(2n—l)(crsine+2)) -

( a-znp ), 70

Let us also substitute the right-hand sides of Egs. (5.6), (5.8) into Eqgs. (5.4), (5.5) and
into the condition:

(5.1 631, =p*> on S; andfor 0<z*<l/.

(5.10)

Thus we have arrived at the complete system of static boundary conditions related to the
field equations (5.9) and (5.10). As the unknown functions (for fixed #) we take the func-

tions o, @, 2 defined in ¥, the functions p* defined on Sk, and 7 defined on S; (and for

0 < z* < I when nj # 0). It can be observed that f3, p® are uniquely determined by
(5.10), (5.11) and by (5.8) for a fixed 7. The occurrence of the unknown functions p*
on Sk is due to the kinematic boundary conditions (1.3). In what follows, two special
kinds of problems will be considered.

1. The plastic zone V is situated along the curved line — i.e., » # 0. In this case, the
plastic potential will be assumed in the form (3.3) and the yield condition in the form
(3.5). To obtain a solution of the boundary value problems for the system (5.9), we may
introduce the condition of complete plasticity, putting n = 0 or y = 1(7), (cf. [6] p. 278).
After obtaining the functions o, ¢ (they may depend on z3, because in the general case w,

¢, 0, v, PX also depend on z%), we calculate £ from (5.10) and p° from (5.11) and (5.8).

2. The plastic zone V is situated along the straight line — i.e., x = 0. In this case, the
plastic potential will be assumed in the form (4.16), in whichn = 0.5, p = 1, p = p* =
(taking the plastic potential in the form (3.3) we shall obtain the undetermined value of
0?3, cf. [10] p. 50) .The functions o, @ are obtained now as solutions of the boundary value
problem for the system of Egs. (5.9). The foregoing function depend on z3, when the
boundary conditions and .the weight by volume of the subsoil depend on z3. From the
Eq. (5.10), we obtain /> and from Egs. (5.11), (5.8), we can calculate the function p°.

Now we pass to kinematical analysis of the problem under consideration. To this end,
we shall rewrite Egs. (1.2) into the following form:

< G do, 36,
(1) d =1 2 55 = 2k -

[

(") The condition of complete plasticity 7 = 0, or 5 = 1 cannot be applied if the plastic potential
has the form (4.16), because the components of the plastic flow v,, vz, vz = 0 cannot be determined from
kinematic equations (we are dealing with two functions v, »; in three equations, cf. [4] p. 320). The Egs.
(4.16) will be used only when x = 0.
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Making use of (5.8) and denoting 4 = (¢*! — 0?2)+ (62 +02')?, we transform Eq. (5.12)
to the slightly changed form:

_ di+d, 4 d,—d, o' —g??

dll 2 2 ';’Z 3 diS = 0!
_ d1+d3 dl—d2 011_0'22 i
(5.13) dyy =3 PR g 0
sy 12 21
d12 = _d! dz g +-—a ’ d33 =0

Let ¢, be the angle between the first of the proper vectors of the matrix [dg.] and the plane
z? = const. Making use of (5.13), we obtain:

. _ Zdlg 2012 _
(5.14) tg2p, = Tmdn " A tg2p.

The foregoing equation represents the coaxiality of the proper vectors of matrixes [d,z]
and [¢*] in isotropic plastic materials. The Eq. (5.14) for ¢ = ¢, yields:

(5.15) (dll'“dzz)sinw”‘”zdlzcosq) = 0.
This is the first kinematic equation. The second equation will be obtained from (3.4)
by multiplying Egs. (3.4), by (1—sing), Eq. (3.4), by (1 +sing), Eq. (3.4); by [1+ (2v—1)]

sing. After summing up termwise the relations obtained, we observe that the sum of
their right-hand sides is equal to zero, and we arrive at:

(5.16) dy+dy+ds+ [d; —d, + (2v—1)d;]sing = 0.

At the same time, we have d,+d,+ds; = d;;+d,;+ds3, and from Egs. (5.13), (5.14)
it follows that

!l —g?2 d,—d,
1/(011_622)2+ (0.12+62x)2 - ]/l—thZ(;J

Thus we can write the Eq. (5.16) in the form:

dy\—dy; = (di—d)) = (dy—d;)cos2¢p.

(5.1?) (d.ll +d22+d33)00529’)+ (dll —dzz)sin.g'l' (21'— 1)d33sinéc032q3 =0.

The final form of the kinematical equations can be obtained by substituting into Egs.
(5.15), (5.17) the following relations:

dxkL= % (vg,L+9L.x),
(5.18
dy; = —wv,,
which result from Egs. (4.14). Thus the system of kinematical equations will be repre-
sented by:
(1,1—92,2)sin29—(v,, 49, ,;)cos2¢ = 0,

(5.19)  (v4,1 49, ,—0v,)c082¢+S8inp(v,,; —¥,,,)—w(2v—1)singcos2¢v; = 0.
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The foregoing system is hyperbolic. Along the characteristics, we have the relations (cf. [10]
p. 196):

dz? = tg(p+e)dz!, e= —%,

ENES

(5.20)
1+(2v—1)sing de =

sin2(p +¢) 0.

dv, +tg(p +e)dv, —wo,

Bearing in mind that d,5 = d,3 = 0 (cf. (5.13)) and using Eq. (4.15), we conclude that
in spatial problems we have also to deal with the further two kinematical equations:

?1,3 =

2=z T
(5.21)

V2,3 -
—-——2(1_21") +d; = 0.

From the equations given above, we can calculate the values of d5 and v, provided
that the flow velocity field v, is known. The boundary conditions for Egs. (5.19) have
the form:

(5.22) Vg = in?x on Sx.
Now let us determined the value of the function 4. We use Eq. (3.4)
di+d,+d; = —21sinp,

and then from Eq. (5.16) we obtain:

(5.23) A=—[di—d,+(2v—1)ds] for sing # 0.

0| =

If the kinematical fields v,, d,, d, and the function A aire known, we have to calculate
the values of the dissipation function. Taking into account Egs. (1.7), (3.4), we obtain:

D= 0Pdy = Y g,dy = Aoy (1-sin®)(1—+m)
i + 0, (1+sind)(ur—v—p) + 03 (1 — ) (v~ 1 —sing)].
By virtue of the yield condition (3.5) we arrive at:
(5.24) D = A[o,(sing—sing)(1—»+ )+ o,(sing— sing) (v —pu—v)
+03(1—p)(sing—sing) +2ccosg).
From the condition 4 > 0 and from Eq. (3.4), we also have:
(5.25) d >0, dy<0, dy2v—1)=0.

The foregoing inequalities have to be satisfied together with the condition D > 0 at each
point of the plastic zone ¥, which is not situated on the singular surfaces X, and Zr.



96 M. WoiZniax

The condition which has to be satisfied on the lines of intersections of the surface X,
and the parametric planes z*> = const. has the form:

1 Z
(5.26) - (0y—02)Iv] = osinglv] > 0,

and can be found in [10] p.66.

The basic equations and the corresponding boundary conditions which have been
obtained in this section, reduce the spatial problem of the plastic flow to the single para-
meter family of two-dimensional problems given by Egs. (5.9), (5.4), (5.19), (5.22) (for
every z? = const. independently) and to Egs. (5.10), (5.11) (5.5), (5.21). The Egs. (5.9)
and (5.19) have a form analogous to that of the well known equations of plane strain
and axially-symmetric problems. However, all unknown functions which occur in the
equations obtained depend in general not only on the independent variables z!, z2 but
also on the independent variable z3, since the functions w, g, ¢, ¥, p*, ©x can depend also
on z3. The solutions of the problems described by Egs. (5.9) can be obtained for any z3 € (0, /)
as solutions of the well known initial value problems. Familiar methods for solving hyper-
bolic systems of equations (cf. [6] pp. 168—176) can be applied here. On this way, we obtain
first the functions o(z!, 22, z°), ¢(z!, 2%, z%) and the functions o*%(z!, 22, z%) from the
Egs. (5.6), and o33(z!, 22, z*) from Eq. (5.8). Analogously, the boundary value problems
for Egs. (5.19), (5.22) can be solved for any z* € (0,/); thus, we obtain the functions
v (2%, 22, z°). Making use of the numerical approach, we cannot obtain solutions of the
boundary value problems under consideration for every z* = const. belonging to (0, /),
but only for a finite number of values z* taken from this interval. The final results in (0, /)
can be obtained by the interpolation method. Now suppose, that the functions 0*#, v,,

are known; then we can calculate f’ from (5.10) (putting 7 =0 for x =0and =0
or 1 for x # 0), and next obtain 7° from (5.11), (5.8) and d, 3, d,; from (5.21).

The field of the stress tensor T*#(z, z2, z%) and the flow velocity vector field v,(z*, 22, z%)
so obtained (note, that the form of these fields may not be uniquely determined, [6]

pp. 113—114) satisfy all assumptions in Sect. 3. Moreover, if 3 =0, p* =0, d;; = 0,
J;; = 0, then also the relations T*?|s+/* = 0, &3 = VU, in ¥V and T%ny = p* on §°
also hold. In the general case, the fields f2, p?, d, 3, d,3 are not equal to zero. From the
foregoing analysis, it follows that the functions f3, p* represent the forces which maintain

the kinematic restrictions 73 = 0 introduced a priori. Analogously, the fields dis, Gz
are extra rates of deformations which maintain the stress restrictions 7'* = 0, T?* = 0

introduced a priori. Thus we can also interpret the value a = max(|f?|, |p°], |d13l, |d23])
as the measure of the influence of the restrictions referred to on applications of the approach

given in the paper. This means that if the fields /3, p3, d,3, d,5 are sufficiently small,
then the solutions obtained can be treated as a sufficiently good approximation of the
* problem under consideration. The term “sufficiently small” has to be intepreted as “of the
same order of accuracy as the numerical calculations or grapfical methods or any other
approximations” and must be analysed in each particular problem under consideration
(cf. Sect. 7). Moreover, the approach proposed in the paper can be used only in problems
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where assumptions of the rigid plastic body can be applied. However, it is known that the
concept of the rigid plastic body introduces an error which is difficult to estimate (cf.
[6] p. 148].
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