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On the solution of a certain class of spatial problems in the theory 
of plastic flow 

I. Foundations 

M. WOZNIAK (WARSZAWA) 

IN THIS paper, a method is proposed for solution of certain spatial problems of the theory of 
rigid ideal plastic bodies. The method is based on certain restrictions imposed on the three­
dimensional stress and velocity fields. In the first part of the paper, by virtue of the integral 
principles, the three-dimensional boundary value problem of the theory of plastic flow is reduced 
to the one-parameter family of two-dimensional boundary value problems. The solutions of 
these problems must also satisfy certain extra physical criteria of applicability. Applications of 
the general approach given here will be developed in the second part of the paper. 

W pracy zaproponowano metode( rozwi(lzywania pewnych przestrzennych zagadnien teorii 
cial sztywno idealnie plastycznych. Podstawq metody s(l pewne ograniczenia nalozone na tr6j­
wymiarowe pola napre(i:enia i pre(dko5ci. W pierwszej cze(Sci pracy, korzystajqc z zasad calkowych, 
zredukowano tr6jwymiarowe zagadnienie brzegowe teorii plastycznego plynie(Cia do jedno­
parametrowej rodziny dwuwymia:rowych zagadnien brzegowych. Ponadto rozwi(lzania powinny 
spelniac pewne kryteria fizycznej stosowalnosci przyje(tych zaloi:en. Zastosowania podanej 
tu og6lnej metody be(dq przedstawione w drugiej cze(sci pracy. 

B pa6oTe rrpe;:pio>I<eH MeTO.D; pernemn1 Hei<OTOpbiX rrpocrpaHCTBeHHbiX rrpo6neM TeopHH mecri<o­
H.n;eaJihHO fiJiaCTHlleCI<HX TeJI. 0CHOBOH MeTo,n;a HBJIHIOTCH Hei<OTOpbie orpaHHlleHHH, HaJIO­
>KeHHbie Ha TpeXMepHbie rroJIR HarrpRmemrii :u ci<opocreii:. B rrepaoii: qacr:u pa60Thi, :ucrroJih3YH 
HHTerpaJibHbie rrpHHIUfllhi, TpeXMepnaH I<paeaaH 3a.n;a11a TeopHH rrnacr:uqeci<oro TelleHHH cae­
.n;eHa I< o.n;HorrapaMeTpHlleci<oMy ceMeiicray .D;BYXMepHbiX I<paeBbiX 3a.n;a11. KpoMe 3Toro pe­
rneHHH ,D;OJI>i<Hbl Y.D;OBJieTBOpHTh Hei<OTOpbiM <PH3HlleCI<HM I<pHTepHHM rrpHMeHHeMOCTH rrpH­
HHTbiX rrpe.n;rronomeHHii . IlpHMeHeHHR, rrp:uae.n;eHHoro 3.n;ech o6mero rro.n;xo.n;a, 6y.n;yT npe.n;­
craaneHbi so aTopoii: qacr:u pa6oThi. 

Introduction 

THE KNOWN solutions in the theory of plastic flow are usually obtained as solutions of 
boundary value problems on the plane for the hyperbolic system of partial differential 
equations. Such two-dimensional boundary value problems ~re formulated by applying 
the semi-inverse method (cf. [6] pp. 152, 240) to the limit analysis of plane or axially-sym­
metric states of plastic flow. An extensive bibliography referring to these problems can 
be found in [13]. The spatial- i.e. three-dimensional-problems of plastic flow, however, 
have not so far, apart from certain special cases (cf. [3] pp. 222-224), been investigated. 

The aim of the present paper is to perform a limit analysis of a certain class of three­
dimensional problems in the theory of plastic flow. To obtain solutions of the problems 
under consideration, procedures analogous to those used for plane problems can be applied. 
It is shown that plane strain problems, together with axially-symmetric strain problems 
of plastic flow, constitute special cases of the more general approach given in the paper. 
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80 M. WoiNIAK 

The approach presented concerns only isotropic rigid-ideal plastic materials in which the 
generalized Coulomb flow law associated (or not) with the yield condition or the Levy­
Mises yield condition must hold. Moreover, this approach can be applied only to certain 
systems of external loads and certain configurations of the plastic regions inside the body. 
Suitable criteria of applicability of the proposed limit analysis are given. 

In Sect. 1, the postulates constituting the foundations of the analysis are listed. The 
conception o~ the approach, formulated in Sect. 3, is based on certain hypothesis concern­
ing state of stress and the distribution of velocities. The governing equations are obtained 
in Sect. 4, and the criteria under which the limit analysis has physical meaning are intro­
duced in Sect. 5. The plane strain problem and the axially-symmetric problem are in Sect. 6, 
derived as special cases of the general spatial approach. In Sect. 7 are given examples of 
application of the proposed analysis. Here we confine ourselves to analytical solutions of 
simple three-dimensional problems only; more complex spatial problems can be treated 
by applying known numerical methods to the equations given in the paper. 

Notation 

All basic relations of the paper are carried out in a certain orthogonal curvilinear coordi­
nate system { za.} defined in the region V of the physical space(!). The system { za.} is -re­
lated to the fixed Carthesian orthogonal system {x1

} in the physical space: 

(0.1) 

where the functions on the right-hand sides of the Eq. (0.1) are assumed to be de~ned and 
differentiable in V and where det[8x1jaza.] ¥= 0. The region V represents the plastic zone 
of the body under consideration, and an explicit form of Eq. (0.1) will be given in Sect. 3. 
The indices i, j, together with ex, {3, y, ~ run over the sequence 1, 2, 3; the indices K, L run 
over the sequence 1 , '1. The summation convention holds(2). Partial derivatives are denoted 
by a comma: 

(0.2) etc. 

Compon~nts of the metric tensor in the system {za.} are denoted by Ka.p and are given by 

(0.3) Ka.p = x1,a.xl,p~ii' 

where ~ii is the Kronecker symbol. The elements of the matrix inverse to [ga.p] are denoted 
by ga.fJ. Covariant derivatives in the system { za.} of vector or tensor fields are denoted by 
a vertical line : 

v.lp = v •. p- {~p}v,, 

T"PI~ = r:.,+ l:l'}r'P+ ~~}T"' etc., 

(0.4) 

(1) In some special cases the system { za.} can also be assumed as a Carthesian coordinate system. 
(Z) No summation is carried out if the same index is repeated more then twice or if it is repeated on 

the same level. · 
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ON THE SOLUTION OF A CERTAIN CLASS OF SPATIAL PROBLEMS ... PART I 81 

where the Cristoffel symbols {:y} can be calculated from (0.1) by means of the known 

formulas: 

(0.5) 

the matrix [ziX.tl is an inverse of the matrix [xi,exl· We also introduce the unit vectors e1 , e2 , e3 , 

the Carthesian components 01 which are equal to 

(0.6) 

where gexa. = xi,exxJ,ex ~ii (cf. Eq. (0.3)). We also denote by eex; the component of the matrix 
inverse to the matrix [e,/]. Since the matrix [zex,;] is an inverse of the matrix [xi,ex], we obtain: 

(0.7) 

Using the Eqs. (0.6), (0.7) we define the physical components of vector and tensor fields 
by means of the known transformation formulas: 

(0.8) 

d _ i J y cl l: _ ~rx{J 
exfJ - eex efJ z ,;z ,jr;;ya - y gcxcxgpp-- etc., 

where yexf1, ~rx.fJ are components of tensors in the coordinate system {zee}, and aextJ, dexp are 
physical components of these tensors, respectively, related to this system. Other basic 
denotations used throughout the paper are listed below: 

V part of the physical space occupied by the material in the limit state (the plas­
tic zone), 

S boundary of the region V, 

V region V with its boundary, 
pex components of the vector of external surface loads acting on V across S, 
see part of S, where the surface load component pa. is known, 
vee components of the velocity vector, 
Sex part of S, on which the velocity component vee is known, 
/ex components of density of external loads, 

fa.,JP components of internal body forces and internal surface tractions, respective­
ly, 

TeeB components of the stress tensor, 
a<XfJ physical components of the stress tensor, 

0' It 0' 2, 0' 3 principal normal stresses, 
ea{J components of the strain rate tensor, 
dap physical components of the strain rate tensor, 

d1 , d2, d3 principal values of the matrix [deep]. 
Iv, ET surface inside V across which the fields vex, TexfJ suffer discontinuities, respective­

ly, 
D power of the plastic deformation (dissipation). 
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1. Fundamentals of the theory 

In this Section we shall give those basic relations of the theory of plastic flow which 
will be used throughout the paper. Let V be a regular region of the physical space, occupied 
by the material in the limit state, and letS be its boundary. We assume that the material 
of the body is isotropic and rigid-ideal plastic. This means that at each point of V, the 
yield condition holds in the form: 

( 1.1) F( a 1 , a 2 , a 3) = 0, 
where a a. are principal stresses and F is a symmetrical function of all arguments. At the same 
time, the remaining part of the body is assumed to be rigid. Denoting by G(a1 , a2 , a 3) 

the plastic potential of an isotropic material, we postulate the equation of plastic flow in 
the known form: 

(1.2) d = AoG(a1,a2,a3 ) ~ A oG 
a. aaa. ' a.{J = ara.tJ ' 

where ·A ~ 0 is a certain skalar factor which must be determinated in each problem, and da. 
are principal values of the strain rate tensor ~a.fJ. The special forms of functions F and G 
with which we have to deal will be specified in Sect. 3. 

We denote by Ev a smooth surface, oriented by the unit normal vector n8 , across which 
the flow velocity vector field va. suffers discontinuity. The jump of the velocity field across 
Ev will be denoted by [vex] = vd," - v;, where vd,", v; are the limit values of the field 

FIG. 1. 

Vex (z1 , z2
, z3) on both sides of Ev (cf. Fig. 1). Apart from the special situations (see for 

example [10] pp. 70-71) we assume that [vex)nex = 0- i.e. we assume that the projection of 
the velocity vector in the direction normal to 'Ev is continuous across Ev. Analogously, 
by ET we denote the smooth surface across which the stress tensor suffers discontinuities. 

We denote by Sex the part of the boundary Son which the flow velocity component va. 
is known: 

(1.3) Vex = Vex on Sex. 

Analogously, by sex we denote the part of S on which the component pex of the surface 
traction is prescribed(3): 

(1.4) pa. = pa. on Sa.. 

Moreover, for any fixed ex, the surfaces Sa. and sa. have no common points, and Sa. n sa = s. 
We assume that the functions pa are continuous almost everywhere on sa, fa. are continuous 

(3) Usually, it is assumed that S1 = S 2 = S3 (cf. [6) p. 304) and S 1 = S 2 = S 3
• In this paper, the 

surfaces Sa. (as also sa., rt = J, 2, 3) can be different for different rt. 
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almost everywhere in V, Ta.fJ are continuous with their first derivatives in V- ET, and 
(Ta.P]np = 0 on ET. Moreover, we assume that va. are continuous with their first derivatives 

in V- Ev, and ;a.fJ are continuous in V- Ev. 
The approach applied in what follows will be based on certain restrictions given a priori, 

imposed on the stress tensor field Ta.P(zl, z2 , z3
) and the flow velocity field va.(z\ z2 , z3 ) 

in the region V. The exact form of these restrictions will be specified in Sect. 3. If such 
restrictions are postulated, then the integral principles of continuum mechanics must be 
used instead of the known differential equilibrium equations Ta.Pjp +fa. = 0, the boundary 
conditions Ta.f1n8 = pa., and the kinematical equations ;a.fJ = v<a.tfJ>(4). Before we formulate 
these integral principles, we bear in mind the known concepts of the virtual increments 
of the fields defined above. 

An arbitrary field ;;a.(z1
, z2 , z3

) is said to be the virtual increment of the velocity field 

va.(z1
, z2

, z3
) if the field V a.+ ~a. satisfies regularity conditions, boundary conditions and 

restrictions imposed on the velocity field V a., provided that such conditions and restrictions 
are linear. 

* * 1 The field ;a.p(z1
, z2

, z3
) defined by ;a.fJ = 2 (va.

1
p + vp

1
a.) in V- Ev, will be called the 

virtual increment of the strain rate tensor field. 

* * * An arbitrary field Ta.P(z\ z2 , z3), Ta.fJ = TPa., is said to be the increment of the stress 

* tensor field Ta.fJ (z1 , z2 , z3 ) if Ta.fJ + Ta.fJ satisfies the regularity conditions, boundary condi-
tions and restrictions imposed on the stress tensor field Ta.fJ, provided that such conditions 
and restrictions are linear. 

* * The field pa.(z1
, z2

, z3), defined almost everywhere on S, and the field fa.(z 1
, z2

, z3), 

* * * * defined in V by means of the formulas pa. = Ta.Pnp, fa. = - Ta.fJ lp, will be called respec-
tively the virtual increment of surface tractions and the virtual increment of external loads. 

Now, we can formulate two integral principles of continuum mechanics, which con­
stitute the basis for further considerations. 

Principle of the virtual work. If the fields pa., fa. determine the external loads on Sand 
in V respectively, and the field Ta.fJ characterizes the state of stress in V, then the following 
relation 

(1.5) f pa.va.dS+ J fa.~a.dV = J rcxtJ~PdV+ J ra.Pnp[va.]dL' 
S V V :Ev . 

must hold for any virtual increments ~a., la.fJ. 
Principle of the complementary virtual work. If the fields V a., ;a.fJ determine the velocity 

of the flow and the strain rate in the body, respectively, then the following relation 

(1.6) fpa.va.dS+ f p:va.dV = f fa.tJ;a.pdV+ J fa.pnp[va.)dl: 
S V V :Eu 

must hold for any virtual increments fa.P, pa., ja.. 

(
4

) It can be proved (see Sects. 5 and 7) that the restrictions imposed on the fields va., ra.P are not in 
general consistent with the differential equilibrium equations, the boundary conditions and the kinematical 
equations in their classical form given above. 

6* 
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Moreover, the stress field Tr.x.fJ and the strain rate field ~rxfl must satisfy in V -l:v -l:T 
the inequality: 

(1.7) 

which represents the known dissipation condition (cf. [10] p. 41). The suitable dissipation 
condition must also be satisfied on the surface l:v (cf. [10] p. 66 and Sect. 5 of this paper). 

2. Geometry of the plastic zone 

Hitherto, the form of the plastic zone V and the curvilinear coordinate system { zrx} 

contained in.it have been quite arbitrary. In the present paper, we shall deal only with 
special forms of the plastic zone parametrized by special systems of coordinates in V. A typ-

L 

FIG. 2. FIG. 3. 

ical example of V is given in Fig. 2, where L is a smooth curve situated on the horizontal 
plane x 2 = 0 belonging to the Carthesian orthogonal coordinate system Ox1 x 2 x3

• Let s 
be the length parameter on the arc LAB of L. Moreover, let 

(2.1) 

be a parametric equation of LAB. To specify the system of the curvilinear coordinates 
z1, z2, z3 in V, we denote by P' an arbitrary point of V situated on the plane x 2 = 0. Let 
P" be an orthogonal projection of P' on L. Two unit vectors, one of them being tangent 
and the other normal to L, we denote by t and n, respectively. Let z3 = s = const. be a plane 
normal to LAB and passing by an arbitrary point P", and let z1 be the distance P' P" be­
tween the point P' and the curve L, provided that P' is situated on the right-hand side 
on the arc LAB oriented by a unit normal n. It follows that the Carthesian orthogonal 
coordinates x1, x3 of the point P' on the plane x2 = 0 are related to the coordinates z1

, z3 

on this plane by the relations (cf. Fig. 3) 

x3 = <p3(z3)+n3(z3)z1, 
(2.2) 

xt = <pt (z3) + nl (z3) zl. 

At the same time we have n3 = t 1 , n1 = -t 3 and t 3 = d<p3 /dz 3
, t 1 = d<p1 /dz 3

• Now let P 
be an arbitrary point of the region V. The curvilinear coordinates z1

, z2
, z3 of the point P 
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will be related to the rectilinear Carthesian coordinates x 1
, x 2

, x3 by means of the 
formulas: 

(2.3) 

The Eqs. (2.3) represent a special case of Eqs. (0.1)2 • We assume that the region V is 
uniquely parametrized by the coordinates z1

, z2 , z3
• From the formulas (2.3) and Eqs. (0.5), 

we obtain the following form of Christoffel symbols: 

V 
3
} = x(l-z1x), 

(2.4) 

where xis a curvature of L given by 

(2.5) 

The Christoffel symbols not mentioned in (2.4) are equal to zero. From Eqs. (2.3) and (0.3), 
we obtain the components ga.p of the metric tensor of the system {z«}: 

(2.6) 
0 
1 
0 

Using Eq. (2.6), we obtain from Eqs. (0.8) the physical components d'"fl, dap of the stress 
and strain rate, respectively, in the form: 

[ ru Tu (1-z
1
x)T13 

] 
[d'-11] = . r21 r22 (1- zlx) T23 ' 

(l-z1x)T31 (1- z1x) T 32 (1- zlx)2 T33 

eu ~12 
e13 

(2.7) 1-z1x 

[dap] = e21 e22 
e23 

1-z1x 

e31 e32 e33 
1-z1x 1- z1x (1- z1x)2 _ 

From now on, all vector and tensor fields used throughout this paper will be related to 
a coordinate system {z«} given in V by Eqs. (2.3), where Eqs. (2.1) represent an arbitrary 
smooth curve L, situated on a horizontal plane (i.e. the plane x2 = 0 in the Carthesian 
coordinate system Ox1 x 2x 3). 
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3. Basic hypothesis and formulation of the problem 

An approach to the problem will be based on the limiting analysis of the three-dimen­
sional problems of plastic flow in V (all fields are, in general, dependent on the three 

. variables z1 , z2 , z3) by means of certain restrictions, given a priori, imposed on the state 
of stress rrxP and the velocity of flow Vrx in V. These restrictions enable us to solve a certain 
class of three-dimensional problems of the theory of rigid-ideal plastic bodies. 

Making use of the curvilinear coordinate system {z'X}, we postulate that the following 
two restrictions must hold in V: 

1. The shear stresses in the planes z3 = const. can be disregarded: 

(3.1) 

From this assumption, it follows that one of the principal directions of the stress is normal 
to the planes z3 = const. 

2. The component of the flow velocity vector normal to an arbitrary plane z3 = const. 
can be disregarded: 

(3.2) v 3 = 0. 

The Eq. (2.5) states that the flow velocity vectors in V are situated in the planes z3 = const. 
normal to the curve L. 

The assumptions (2.4), (2.5) are approximatively fulfilled only for a special class 
of three-dimensional problems of plastic flow. The scope of application of an approach 
based on the restrictions (3.1), (3.2) will be analysed in Sect. 5. We shall show that the 
restrictions (3.1), (3.2) enable us to reduce the three-dimensional boundary value problem 
of plastic flow to a single parameter family (with coordinate z3 as the parameter) of two­
dimensional boundary value problems of the hyperbolic type in the variables z1

, z2
• 

However, such reduction is possible only for certain kinds of ideal plastic materials. 
In the present paper, the plastic potential G(a1 , a2 , a3) will be assumed in the form 

G = ai-o)-(ai+ai)sine-ccose; the relation G =const. is defined for any i,j == I, 2, 3; 
i #: j, and represents a certain convex surface in the space of the principal stresses a 1 , a 2 , a 3. 
The form of the plastic potential given above was introduced by D. Radencovic (cf. [8] 

and [10] p. 43) in problems of solid mechanics, where c is a coefficient of cohesion and e 
is a known constant such that 0 < e < !! < ; ' where !! is the angle of internal friction. 

The surfaces G( a 1 , a 2 , a 3) = const. are not smooth and are defined by means of six 
different analytical relations. To make further calculations more concise, we shall extend 
the domain of the definition of the plastic potential by introducing extra parameters p,, v 
where 0 ~ p, ~ 1, v = 0 or v = 1, putting 

(3.3) G = G(a1, a2, a3;p,,v) = (1-sine)(1-v+p,v)a1 

+ (1 +sine){flv- p,-v)a2 + (1-p,)(2v-1-sine)a3- 2ccose. 

The function G{at, a2, a3; p, v) represents a new analytical form of the plastic potential, 
and has the same physical -meaning as the latter if the domain of the function 
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Table 1 

/I v=O V= 1 !/ 
p,=O G = (1-sine)ax- (1 +sine)a3 G = -(l+sine)a2+(1-sii1Q)a3 p,=O 

O't > 0'3 -2ccose -2ccose 0'3 < 0'2 

0<p<1 G = (1-sine)a1- o +sine)pa2 G = -O+sine)a2+<t-sine)pa1 0<p<1 

0'2 = 0'3 - (1 +sine)(l- p)a3 -2ccose - (1- sine)(l- p)0'3- 2CCOSQ 0'1 = 0'3 

p,=1 G = [(1-sine)a~-(l+sii1Q)a2 G = [-(l+sine)a2+(1-sine)ax p, = 1 

0'1 > 0'2 - 2ccoseJ(2a3 + 2C) - 2ccose](2a3 + 2C) O't > 0'2 

C = 0.5-0'3 if Eq. (3.3) holds, 
p=l, C=c, e=O, 0'3=0.5(ax+0'2) 

if Eq. (4.16) holds 

G(a1 , a2 , a3 ; p., v) is restricted to the value given in Table 1. Using (1.2) and (3.3), we 
obtain: 

(3.4) 
d1 = .1.(1-v+,uv)(1-sine), 

d2 = J.(v,u-,u-v)(1+sine), 

d3 = .1.(1-,u)(2v-1)[1-(2v-1)sine]. 

The yield condition of the materials under consideration will be assumed in the form which 
corresponds to that given in [8]: 

(3.5) (1- sine)(1-v+ ,uv)a1 + (1 + sine)(,uv- ,u-v)a2 + (1 + ,u)(2v-1- sine)aJ 

-2ccose = 0, 

where the parameters ,u, v have the same meaning as before. 
In what follows, we shall assume that a 1 ~ a3 ~ a2 • Introducting the function 'YJ = 

= (a3-a2)j(a2-a1), we have: 

(3.6) 

For the time being, 'YJ is an unknown function. 
In Sect. 4 we shall prove that in certain special cases Eqs. (3.3), (3.4) and (3.5) hold 

also for materials in which the plastic potential has the well known form G = (a1 -a2)2 + 
+(a2-a3)

2 +(a3 -a1)
2 -6c2

, and in which the yield condition is given by G = 0. 
Now we shall list the basic relations of an approach used in this paper. The problem 

under consideration will be governed by the following relations which have to be satis­
fied in V: 

1. The yield condition (3.5). 
2. The flow law (3.4). 
3. The restrictions (3.2), (1.3) imposed on kinematical fields. 
4. The restrictions (3.1), (1.4) imposed on the kinetic fields. 
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5. The principle of the virtual work (1.5). 
6. The principle of the complementary virtual work (1.6). 
7. The dissipation conditions ( 1. 7) in V and the dissipation conditions on l:v. 

However, the part of the body which is situated outside V is assumed to be rigid. The 
basic unknown fields- namely, the velocity of plastic flow va(z1, z2 , z3), the strain rate 
~ap(z 1 , z2 , z3 ) and the stress Taf1 (z\ z2, z3) - must be sufficiently smooth, and satisfy all 
the relations listed above. Due to the hypothesis assumed a priori (3.1), (3.2), the solutions 
of special problems must be verified. This will be done by means of certain criteria, which 
will be formulated in Sect. 5. 

4. Field equations 

By the field equations we shall mean here the system of equations which can be deduced 
from the two integral principles (1.5), (1.6). To obtain these equations, we shall transform 

• the integral relation (1.5), using the divergence theorem. Taking into account that ~afJ = 
= ~<alfJ>' Tap = TPa, [Taf1]np = 0 on l:T, we obtain from (1.5) the following relation (5

): 

J Taf11Jca i.B>dV = J TaPIJajpdV = J (Taf1va)ipdV- J Taf1iplJadV 
V V V V 

= f TafJ~anpdS- J Taf1(v(X]npdl:- J rr~.PiplJ(XdV . 
S Eu V 

Combining the Eq. (1.5) and the relation given above, we arrive at: 

{4.1) J (f(X+T~PIP)/;(XdV+ f (p!X-T!XfJnp)IJ(XdS = 0. 
V S 

The foregoing relation must hold for any virtual increments v(X of the velocity field v(X. 

According to Eq. (3.2) and the Eqs. (1.3), we have /; 3 = 0 in V and vK = 0 on SK·· Thus, 
the relation ( 4.1) reduces to the form: 

(4.2) J (fK+TKPjp}VKdV+ f (pK-TKf1np)vKdS = 0 
V S 

and must be satisfied for any continuous vector field vK· In particular Eq. (4.2) must be 

satisfied for the vector field vK such that ~Kis = 0. It follows that Eq. (4.2) is satisfied if 
and only if the relation 

(4.3) f (JK+ rKP!fJ)vKdv = o, 
V 

(
5

) The divergence theorem is used here in the form: 

J WXjadV = ~ Wl-na.dS- J [Wl-]na.dL', 
V S E 

where V is a regular region in R 3 with a boundary S, L' is a smooth oriented surface across which will suffers 

discontinuity, and wcxe C1(V-L'). 
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holds for any continuous functions ~x in V, equal to zero on Sand ET. Because ~x e C1(V),. 

t,Kis = 0 and JK + TKPip e C(V), from the du Bois-Reymonde Lemma(6) we obtain: 

(4.4) 

By virtue of Eqs. (0.4h and (2.4), assuming that / 1 = / 3 = 0, / 2 = y, where y is the 
known volume density of external loads, we rewrite the Eq. (4.4) in the form: 

(4.5) 

Because of ~3 = 0, it does not follow from Eq. (4.1) that T 3 f1Jp + / 3 is equal to zero in V. 

Denoting f 3 = - T 3f1Jp in V, and because of T 3f1ip = T 33
, 3 (see Eqs. (0.4) and (2.4)) we 

shall write: 

(4.6) 

The vector with components (0, 0, j 3
) will be referred to as a density of internal body 

forces. The existence of this new force is strictly connected with the condition ~3 = 0,. 
which follows from the assumption (3.2) and the definition of virtual increments given 
in Sect. 1. 

On the part SK of the boundary S are prescribed the kinematical boundary conditions. 

(1.3). Since in the Eq. (4.1) the first integral is equal to zero, and since vK = 0 on SK and 

SK = S-SK, we have: 
2 

}; f (pK- yKPnp)vxdS = 0, 
K=lsK 

for any continuous vK. Thus the relation given above must also hold for any ~K being 
equal to zero in sx- S', where S' can be treated as a region on the plane. It follows that 

(4.7) J (pK- TKPnp)~KdS = 0, 
S' 

for any lJK vanishing on the boundary of the regionS'. Applying the du Bois-Reymond 
Lemma to Eq. (4.7) and bearing in mind that S' may be choosen arbitrarily, we obtain 
finally: 

(4.8) 

From Eq. (3.2), by virtue of the continuity of the function v 3 in V, we obtain 1J 3 = 0 
on S. Thus, from Eq. (4.1) it does not follow that T 3flnp-p 3 is equal to zero on S. 

(
6

) Let (/! e C(Q), where fJ is a regular region in Rn. If J qnpd!J = 0 holds for any tp e C1 (D) such 
{} 

that tpla.a = 0 and 7!'cxia.o = 0, then (/! = 0 in fJ, where oD is a boundary of !J and ti = !J vo!J. 
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Denoting p3 = T 3Pnp-p 3
, and assuming that the boundary loads are acting exclus­

ively in the parametic planes z3 = const. - i.e. that p 3 = 0 -we obtain: 

(4.9) 

At the same time, we shall write: 

(4.10) 

assuming that pK = 0 on SK. The functions pa. defined on Sa. are unknown boundary 
reaction forces connected with the conditions (1.3) in which v3 = 0, by virtue of (3.2). 

• * • • 
Let us transform Eqs. (1.6), using pa. = Ta.fJ np and fa. = - Ta.fJ lp to obtain: 

(4.11) f fa.Pnpva.dS- f fa.plpva.dV = f fa.p~a.pdV+ f fa.tJnp[va.]dE. 
S V V Iv 

We assume that Ev consists of the surface Ev inside the region V and a surface S K on the 
boundary of the plastic zone. Let on SK the jump of the flow velocity vector be equal to 
vK-vK, where vK is a boundary value and vK is the known function which is assumed to be 

.~ 

given on SK. Taking into account the divergence theorem, by virtue of [Ta.ll]np = 0 on 
LT, we arrive at: 

(4.12) 

• • The relation given above must be satisfied by any virtual increment field ra.P = TfJa.. 

Since from (3.1) we i ave TK3 = 0, then 

(4.13) J (~KL -vKIL) TKLdV + J (~33 -v313)'r33dV = 0. 
V V . - . ~ 

The Eq. (4.13) must hold for any TKL E C1 (V), T 33 E C1 (V). Since the integrands in (4.13) 
are continuous in V-Ev, therefore from du Bois-Reymonde Lemma we obtain: 

~KL = V<K,L)' ~33 = V313 

at all points of the region, V- Ev. Making use of (0.4) and (2.4), we shall rewrite the fore­
going equations in the form: 

(4.14) 
~33 = - u(l-z1u)v1 • 

• Since TK 3 = 0, form (4.12) it does not follow that ~K3 -v<Kl 3> is equal to zero. Defin-

ing ~3 = ~K3 -v<Ki 3h and using Eqs. (0.4), (2.4), we shall write: 

(4.15) 
1 -

~23 = 2v2,3+~23· 

The functions ~13 , l 23 are unknown. Their existence results from the hypothesis (3.1) 
imposed on the state of stress. 
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To conclude this section, we shall prove that if " = 0 then Eqs. (3.3), (3.4), (3.5), 

after substituting 'YJ = 0.5, ft = 1' e = e = 0, hold for materials with plastic potential 

(4.16) G = (O't-0'2)2+(a2-0'3)2+(a3-0'1)2-6c2. 

Because of (4.14)z, for" = 0, we have ~33 = 0- i.e., d3 = 0. Writing Eq. (1.2) in the 

form di = 'ioGfoab we arrive at di = X[ai-0.5(a1 +a2 +a3 )]. Bearing in mind that 
d 3 = 0, it follows that 0'3 = 0.5 (a1 +a2) and Eq. (3.6) holds for 'YJ = 0.5. Thus, the 
Huber-Mises yield condition leads to 0' 1 -a 2 - 2c = 0, a 1 > a 2 which is equivalent to 
(3.5), when p, = 1, e = 0. The flow law associated with the Huber-Mises yield condition 

gives d1 = 0.5 I (a1 -a2} = Xc, d2 = 0.5i(a2-a1} = -le, d3 = 0, which is equivalent 

to Eq. (3.4) for 11- = 1, e = 0, .?. = Xc which completes the proof. It follows that all further • investigations are valid not only for the media with plastic potential (3.3) but also for 

plastic potential (4.16}; the latter holds only if" = 0 and 'YJ = 0.5, ft = 1' e = e = 0. 
The values of the potential G are listed in Table 1, in which both cases are included. 

5. Formulation of the boundary value problems and their physical meaning 

It can easily be observed that in the equilibrium equations (4.5), in the kinematical 
equation (4.14) and in the boundary conditions (1.3), (1.4), the independent variable z3 

plays the role of the parameter- i.e., we do not deal with the derivatives with respect 
to z3

• Since the Eqs. (3.4), (3.5) are algebraic equations, then for any fixed z3 we can for­
mulate the two-dimensional boundary value problem- i.e., the boundary problem in the 
independent variables z1 , z2 only. Thus we conclude that the approach proposed in the 
paper, based on the hypothesis (3.1), (3.2) reduces the general three-dimensional boundary 
value problems of the theory of plastic flow, to a system of two-dimensional boundary 
value problems for z3 = const. independently. 

The approach developped in the paper, can be modified by introducing a new hypothe­
sis in place of these given by the Eqs. (3.1), (3.2). In particular, we can assume that in each 
plane normal to an arbitrary spatial curve there exists the same state of stress. In this way, 
we shall arrive at the another class of spatial problems, which were analysed in [5] p. 28. 

Taking into account the equations obtained in the preceding section of the paper, 
we shall formulate now all basic relations of Sect. 4 in the orthonormallocal coordinate 
systems. Let us define the functions: 

(5.1) . 

Symbol w represents a curvature of the cylindrical surface z1 = const. for a fixed z3
• 

The equilibrium equations (4.5) with the denotation (5.1) have the form: 

(5.2) 

Analogous, from Eq. 

(5.3) 

O'u, 1 +at2,2 _w0'1l+wa33 = 0, 

0'21,1 +a22,2-wa12+y = 0. 
(4.6) we obtain: 

( 
0'33 ) -

(l-z1")2 •3 +/3 = 0. 
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In view of aK
3 = 0, the boundary conditions (4.8) can now be written in the form: 

(5.4) 

The Eqs. (5.2) must be satisfied almost everywhere in V, and the conditions (5.4) must 
hold on the smooth parts of the surfaces sx. On the surfaces SK, where the kinematic 
boundary conditions vx = vK are known, we obtain: 

(5.5) 

Let us transform Eqs. (5.2) by means of the following formulas, which constitute the 
modified version of the known Levy formulas: 

(5.6) 

a 11 = a+ (asine+c)cos2<p+h, 

a2 2 = a- (asine+c)cos2<p+h, 

a12 = (asine+c)sin2cp; 

the functions h, c are here defined by: 

e > 0: h = -cctge, c = 0; 

e = 0: h = -yz2
, c =c. 

By virtue of (3.6), and from the well known relations 

(5.7) ::} = ""~"22 ± vt";"'T + ("l2;"'T, "3 = "33· 
we obtain: 

(5.8) 

The right-hand sides of (5. 7) and (5.8) fullfil the yield condition (3.5) for p, = I . From 
Eqs. (5.6), we conclude that a = a(z1, z2, z3), <p = <p(z1 , z3 , z3

) are equal to 

att + a22 
a= -h 

2 ' 

1 2a12 
<p = -2 arctg u 22- . a -a 

Note that the functions a, <p depend not only on zt, z2 (such a situation occurs in plane 
and axially-symmetric problems) but also on z3 , because the three-dimensional problem 
of plastic flow is analysed here. Substituting the right-hand sides of Eqs. (5.6) and (5.8) 
into (5.2), we obtain 

(5.9) 

(1 + sinecos2<p)a,1- 2sin2<p(asine + c)9',1 +sine sin2<pa,2 

+2cos2<p(asine +c)<p,2 +w(asine + c)(2n-l- cos2cp) == 0, 

sine sin2cpa,l + 2cos2cp(asine + c)<p,l + (1- sinecos2cp)a,2 

+2sin2cp(asine+c)9'.2-rosin2<p(asine+c)+h,2 +y == 0. 
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This is a qu~si-linear hyperbolic system of partial differential equations. At the same time, 
the following relations along the characteristic lines hold (cf. [13] p. 186): 

dz2 = tg(<p ± s)dzl, 

(5.9) da±2(atge+c)d<p = (h, 2 +y)(dz2 ±tgedz1) 

+w(atge +c){cosedz1 + (2v-1)[1 + (2v-1)sine]dz2 }. 

Analogously, by substituting (4.8) into (4.3), we arrive at: 

(5.10) ( a+h+(~t~::~;2sine+C) L +7' = 0. 

Let us also substitute the right-hand sides of Eqs. (5.6), (5.8) into Eqs. (5.4), (5.5) and 
into the condition: 

( 5.11) 

Thus we have arrived at the complete system of static boundary conditions related to the 
field equations (5.9) and (5.10). As the unknown functions (for fixed 'YJ) we take the func-

tions a, <p,f3 defined ·in V, the functions pK defined on SK, and p3 defined on S3 (and for 

0 < z3 < I when n3 =1: 0). It can be observed that / 3 , p3 are uniquely determined by 
(5.10), (5.11) and by (5.8) for a fixed 'YJ· The occurrence of the unknown functions pK 
on SK is due to the kinematic boundary conditions (1.3). In what follows, two special 
kinds of problems will be considered. 

1. The plastic zone V is situated along the curved line - i.e., " =1: 0~ In this case, the 
plastic potential will be assumed in the form (3.3) and the yield condition in the form 
(3.5). To obtain a solution of the boundary value problems for the system (5.9), we may 
introduce the condition of complete plasticity, putting 'YJ = 0 or 'YJ = I C), (cf. [6] p. 278). 
After obtaining the functions a, <p (they may depend on z3 , because in the general case w, 

c, (!, y, pK also depend on z3
), we calculate f 3 from (5.10) and p3 from (5.11) and (5.8). 

2. The plastic zone V is situated along the straight line- i.e., " = 0. In this case, the 
plastic potential will be assumed in the form (4.16), in which 'YJ = 0.5, fl = 1, (! = e* = 0 
(taking the plastic potential in the form (3.3) we shall obtain the undetermined value of 
a 33

, cf. [10] p. 50) .The functions a, <pare obtained now as solutions of the boundary value 
problem for the system of Eqs. (5.9). The foregoing function depend on z3

, when the 
boundary conditions and -the weight by volume o( the subsoil depend on z3 • From the 

Eq. (5.10), we obtain [ 3 and from Eqs. (5.11), (5.8), we can calculate the function p3
• 

Now we pass to kinematical analysis of the problem under consideration. To this end, 
we shall rewrite Eqs. (1.2) into the following form: 

(5.12) 

C) The condition of complete plasticity 'YJ = 0, or 'YJ = 1 cannot be applied if the plastic potential 
has the form (4.16), because the components of the plastic flow v 1 , v 2 , v2 = 0 cannot be determined from 
kinematic equations (we are dealing with two functions v1 , v 2 in three equations, cf. [4] p. 320). The Eqs. 
(4.16) will be used only when x = 0. 
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Making use of (5.8) and denoting A= (a11 -a22)+(a12 +a21)2, we transform Eq. (5.12) 
to the slightly changed form: 

d1 + d2 dl- d2 0'11- 0'22 
du = 2 + 2 t ' d13 = 0, 

J! L1 

(5.13) 

dl -d2 0'12+0'21 
d12 = --2- VL1 ' d33 = 0. 

Let CfJd be the angle between the first of the proper vectors of the matrix [dKd and the plane 
z2 = const. Making use of (5.13), we obtain: 

2d12 20'12 
(5.14) · tg2cpd = d d = - 1-1 - 22 = tg2<p. 

11- 22 0' - 0' 

The foregoing equation represents the coaxiality of the proper vectors of matrixes [dap] 
and [ crzP] in isotropic plastic materials. The Eq. ( 5.14) for cp = C{Jd yields: 

(5.15) 

This is the first kinematic equation. The second equation will be obtained from (3.4) 

by multiplying Eqs. (3.4)1 by (1-sine), Eq. (3.4h by (l+sine), Eq. (3.4)3 by [1+(2v-1)] 

sine. After summing up termwise the relations obtained, we observe that the sum of 
their right-hand sides is equal to zero, and we arrive at: 

(5.16) 

At the same time, we have d1 +d2 +d3. = d11 +d22 +d33 , and from Eqs. (5.13), (5.14) 
it fo1lows that 

0'11- 0'22 d d 
du- d22 = (d1- d2) - 1

-
2 = (d1- d2)cos2cp. v <all_ a22)2 + < a12 + a21 )2 - v 1 _ tg22<p 

Thus we can write the Eq. (5.16) in the form: 

(5.17) (du +d22 +d33)cos2cp+ (du- d22)sine + (2v-1)d33 sinecos2cp = 0. 

The final form of the kinematical equations can be obtained by substituting into Eqs. 
(5.15), (5.17) the following relations: 

(5.18 

which result from Eqs. (4.14). Thus the system of kinematical equations will be repre­
sented by: 

(v1 , 1 -v2,2)sin2cp- (v1 ,2 +v2, 1 )cos2cp = 0, 

(5.19) (v1,1 +v2, 2-wv1)cos2cp+sin(>(v1 , 1 -V2,2)-w(2v-1)sinecos2qm1 = 0. 
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The foregoing system is hyperbolic. Along the characteristics, we have the relations (cf. [10] 
p. 196): 

(5.20) 
1 + (2v-1)sine 2 dv1 +tg(q>±e)dv2 -wv1 • 2( + ) dz = 0. sm qJ_E 

Bearing in mind that d13 = d23 = 0 (cf. (5.13)) and using Eq. (4.15), we conclude that 
in spatial problems we have also to deal with the further two kinematical equations: 

(5.21) 

From the equations given above, we can calculate the values of d;_ 3 and d23 , provided 
that the flow velocity field va is known. The boundary conditions for Eqs. (5.19) have 
the form: 

(5.22) 

Now let us determined the value of the function A. We use Eq. (3.4) 

d1 +d2 +d3 = -2Asine, 

and then from Eq. (5.16) we obtain: 

(5.23) 

If the kinematical fields va, d1 , d2 and the function .A. ate known, we have to calculate 
the values of the dissipation function. Taking into account Eqs. (1. 7), (3.4), we obtain: 

D = u«fldap =}; Clidi = A[C11(1-sine)(1-v+,uv) 
i 

By virtue of the yield condition (3.5) we arrive at: 

(5.24) D = A [C11 (sine- sine)(l-v+ ,uv)+ C12(sine-sine)(,uv-,u-v) 

+ C13(1- ,u)(sine- sine)+ 2ccose]. 

From the condition A > 0 and from Eq. (3.4), we also have: 

(5.25) 

The foregoing inequalities have to be satisfied together with the condition D ~ 0 at each 
point of the plastic zone V, which is not situated on the singular surfaces .Ev and .ET. 
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The condition which has to be satisfied on the lines of intersections of the surface Iv 
and the parametric planes z3 = const. has the form: 

(5.26) + ( O"t - (1 ~)[v) = (1 sine [v) ~ 0' 

and can be foup.d in [10] p.66. 
The basic equations and the corresponding boundary conditions which have been 

obtained in this section, reduce the spatial problem of the plastic flow to the single para­
meter family of two-dimensional problems given by Eqs. (5.9), (5.4), (5.19), (5.22) (for 
every z3 = const. independently) and to Eqs. (5.10), (5.11) (5.5), (5.21). The Eqs. (5.9) 
and (5.19) have a form analogous to that of the well known equations of plane strain 
and axially-symmetric problems. However, all unknown functions which occur in the 
equations obtained depend in general not only on the independent variables z1

, z2 but 
also on the independent variable z3 , since the functions w, e, c, y, pk, vx can depend also 
onz3

• Thesolutionsoftheproblemsdescribed I, Eqs. (5.9) can be obtained for any z3 E (0, /) 
as solutions of the well known initial value problems. Familiar methods for solving hyper­
bolic systems of equations (cf. [6] pp. 168-176) can be applied here. On this way, we obtain 
first the functions a(z1

, z2 , z3
), <p(z1

, z2
, z3

) and the functionS aKL(z 1
, z2 , z3

) from the 
Eqs. (5.6), and a33 (zt, z2 , z3 ) from Eq. (5.8). Analogously, the boundary value problems 
for Eqs. (5.19), (5.22) can be solved for any z3 E (0, /); thus, we obtain the functions 
-vK (z1

, z2, z3). Making use of the numerical approach, we cannot obtain solutions of the 
boundary value problems under consideration for every z3 = const. belonging to (0, /), 
but only for a finite number of values z3 taken from this interval. The final results in (0, /) 
can be obtained by the interpolation method. Now suppose, that the functions ~P, Va., 

are known; then we can calculate f 3 from (5.10) (putting 'YJ = 0 for x = 0 and 'YJ = 0 

or 1 for x ::F 0), and next obtainp3 from (5.11), (5.8) and d;_ 3 , d;. 3 from (5.21). 
The field of the stress tensor Ta.fJ (z1 , z2 , z3) and the flow velocity vector field va.(z1

, z2
, z3

) 

so obtained (note, that the form of these fields may not be uniquely determined, [6] 

pp. 113-114) satisfy all assumptions in Sect. 3. Moreover, if f 3 = 0, p3 = 0, d~3 = 0, 

d;. 3 = 0, then also the relations TafJ/13 +!1% = 0, ~a.fJ = v<a.ifJ> .in V and rr:~.PnfJ = pa. on sa. 

also hold. In the general case, the fields f 3 , p3 , d13 , d23 are not equal to zero. From the 

foregoing analysis, it follows that the functions f 3 , p3 represent the forces which maintain 

the kinematic restrictions v3 = 0 introduced a priori. Analogously, the fields ~ 3 , d;.3 

are extra rates of deformations which maintain the stress restrictions T13 = 0, T 23 = 0 

introduced a priori. Thus we can also interpret the value ex = ·max(l[31, liP I, 1~31, ld231) 
as the measure of the influence of the restrictions referred to on applications of the approach 

given ~n the paper. This means that if the fields .f3
, p 3

, ~ 3 , d;_ 3 are sufficiently small, 
then the solutions obtained can be treated as a sufficiently good approximation of the 
problem under consideration. The term "sufficiently small" has to be intepreted as "of the 
same order of accuracy as the numerical calculations or grapfical methods or any other 
approximations" and must be analysed in each particular problem under consideration 
(cf. Sect. 7). Moreover, the approach proposed in the paper can be used only in problems 
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where assumptions of the rigid plastic body can be applied. However, it is known that the 
concept of the rigid plastic body introduces an error which is difficult to estimate (cf. 
[6] p. 148]. 
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