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On nonlocal diffusion of gases 

H. DEMIRA Y (ISTANBUL) and A. C. ERINGEN (PRINCETON) 

A NONLOCAL continuum approach to nonreacting binary gas mixtures is given in this paper. 
The balance laws, jump conditions, and the constitutive equation are obtained generalizing the 
classical inviscid fluids to include the nonlocal effects. Thermodynamic restrictions are used to 
obtain the specific forms of the constitutive relations and the nonlocal field residuals for the 
binary mixtures. As one of the consequences of nonlocal effects, it is observed that, by contrast 
with the classical case, the hydrostatic pressure of the constituents is a space variable quantity. 
Finally, the diffusion equation for small disturbance is obtained. 

W pracy zaproponowane jest nowe przedstawienie nielokalnej kontynualnej teorii mieszaniny 
dw6ch niereaguj~cych re sob~ gaz6w. Podane s~ r6wnania zachowania, warunki dla skok6w 
odpowiednich wielkoSci oraz r6wnania konstytutywne, stanowi~ce uog6lnienie klasycznej teorii 
nielepkich cieczy na przypadek nielokalnych efekt6w. W celu wyspecyfikowania formy r6wnan 
konstytutywnych oraz nielokalnych rezidu6w dla dwuskladnikowych mieszanin wykorzystano 
ogranicrenia termodynamiczne. Zaobserwowano, i:e w przeciwienstwie do klasycznej teorii 
wyst~powanie nielokalnych efekt6w powoduje, i:e cisnienie hydrostatyczne staje si~ · wielkosci~ 
zmieniaj~~ si~ w prrestrreni. Wyprowadzone jest r6wniei: r6wnanie dyfuzji dla malych za­
burzen. 

B pa6oTe npe,lVIo>I<eH HOBbm no,wco~ K HeJIOKaJibHOH KOHTHHYaJibHOH TeopHH CMemeHIDI ~Byx 
HepearnpyeMbiX c co6oif ra3oB. TipuBe~eHbi ypaBHeHIDI coxpaHeHIDI, ycnoBHH ~JIH cKaBqKoB 
COOTBeTCTBYJOmHX BeJIHqHH, a TaK>I<e onpe~eJUIIOIIUie ypaaHeHIDI, COCTaBJUIIOII\He 06061l.\eHHe 
KJiacc~eCKOH TeOpHH HeBH3KHX >KH~OCTeH Ha cnyqaH HeJIOKa.JILHbiX 3<P<PeKTOB. C QeJiblO 
cneQH<PHQHpOBaHIDI <PopMbi onpe~eJUIIOmHX ypaBHemrli: H HeJIOKa.JILHbiX BblqeTOB ~JIH ~ayx­
KOMDOHeHTHbiX CMeCeH HCDOJib30BaHbi TepMO~aM~eCKHe OrpaHHqeHIDI. Ha6mo~aeTCH, 
~0 B npOTHBOBeC KJiac~eCKOH TeOpHH BbiCTynaHHe HeJIOKa.JILHbiX 3<P<PeKTOB Bbl3biBaeT 
q>aKT, ~0 rH~OCTaTiflleCKOe ~aBJieHHe CTaHOBHTCH BeJIH~OH MeHHIOil.\eHCH B npocrpaH­
CTBe. BbiBe~eHO TO>I<e ypaBHeHHe ~<P<PY3HH ~JIH MaJibiX B03Myll.\eHHH. 

1. Introduction 

THE IMPORTANCE of nonlocal interatomic forces in the frequency spectra of solids has long 
been recognized (c. f. [8-9] and references there given). However, the incorpotation of these 
effects into continuum is only of recent origin. In this context, we may mention the works 
of KUNIN [4], KRONER [10] and the recent works of ERINGEN [1] on solids, and of DEMIRAY 

[2] on elastic dielectrics. 
The nonlocal effects in fluid mechanics have been explored by ERINGEN [11, 12]. In these 

works, Eringen showed that the nonlocal theory includes the surface tension in the consti­
tutive equations. 

The main purpose of the present study is to establish a nonlocal theory of nonreacting 
binary mixtures extending the range of classical inviscid fluids to inciude nonlocal effects. 
The balance laws and associated jump conditions of nonlocal mixtures are given in Sect. 2, 
and the second law of thermodynamics in Sect. 3. In Sect. 4, we develop a set of nonlinear 
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66 H. DEMIRAY AND A. C. ERINGEN 

and linear constitutive equations for nonlocal mixtures of in viscid fluids. Invariance require­
ments and appropriate thermodynamical restrictions are studied. Finally, as some appli­
cations of the theory, the hydrostatics of mixtures and the problem of nonlocal diffusion 
are discussed. It is observed that, by contrast with the classical case, the hydrostatic pressure 
of the constituents is a· space variable quantity rather than a constant. It is quite probable 
that this fact is the result of surface tension which may exist in the gases. 

2. Motion, kinematics and balance equations 

We consider a collection of continua called the body B, consisting of n elements capable 
of reaction in a region V+ S of Euclidean E3 space. A material point X< a> of (Xth continuum 
((X = I , 2, ... , n) at time t is carried to a spatial position x through its appropriate motion: 

(2.I) X= X(a)(X(IX)' t), (X= I, 2, ... , n. 

Throughout this work, Greek indices enclosed within brackets mark the species. These 
indices are freely placed either in subscript or superscript positions, to avoid crowding 
with tensorial indices. The summation convention is applied only on the repeated Iatin 
indices (not on the Greek indices). 

The inverse motion of the constituents occupying the spatial point x is given by 

(2.2) 

Existence of such an inverse motion implies that 

J<a> = det(8x"/8Xi11>) =f:. 0, (X= I, 2, ... , n, 

except at some singular points, lines and surfaces. 
The velocity v~a> of a material point X< a>, occupying the space point x at time t, is 

definedy by : 

(2.3) 
k - axk I 

v<a> = -a-1 . 
t x<a> 

The acceleration a<a> of the (Xth component at (x, t) is defined by: 

(2.4) 'k - k - av~IX) I D(IX) k 
V(a) = O(a) = -0- = -D V(a) • 

t 1x<a> t 

The material time derivative of any tensor function "P<a>, following the motion of the (Xth 
component, is given by: 

(2.5) '(IX) - D<a> - O'ljJ(a) I k 
"P = ----n/ "P<a> = ~ x +v(a) "P<a);k. 

Assuming the existence of a partial mass density !?<a>(x, t) of the th continuum, the density 
of the whole mixture is given by: 

(2.6) 
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ON NONLOCAL DIFFUSION OF GASES 67 

The average value tp of thi tensor field 'Pea.> is defined by 

(2.7) (!tp = ..}; eca.>'P<a.>. 
a. 

By means of (2. 7), various average fields associated with the whole mixture can be calcula­
ted. For example, if we take 'P<a.> = v<oc>, we obtain the barycentric velocity v: 

(2.8) 

The integral balance laws of multicomponent media may be expressed in the general 
form: 

(2.9) J r~"'dai"'- J g,.,dv,.,] = 0, 
S(OC)-a(OC) V(a.)-a(a.) 

where 4><oc> is a field of ct:th continuum over the body Bat timet, having material volume Vca.> 
excluding the discontinuity surface cr<oc>, which may be sweeping the body at velocity Uca.>; 
Kca.> is the source of cPca.>; and r~oc> is its influx through the surface Scoc> of v<a.>, excluding 
those points of l1ccx> which intersect Scoc>. 

By means of the generalized Green-Gauss theorem, (2.9) may be converted into 
(c. f. ERINGEN [3]): 

(2.10) ~ { J [icf> <a.> + ( ...h(OC) v<oc>) - r<a.> - g<a.>] dv .L.J ot 't' k .k k.k <a.> 
oc V(oc)-a(OC) 

+ J I.P ,.,( v~., - u~.,)- r~., I n~•> da'"'} = 0, 
a(a.) 

where the square bracket 1 ) denotes the jump across cr<a.>(t). 
In classical mixtures, it is posited that (2.10) is valid for every part of the body and, 

therefore, the integrands of (2.10) are set equal to zero. As a result, we obtain the local 
laws of mixture. In nonlocal continuum physics, we do not impose this severe restriction. 
Localization may still be accomplished by writing (2.10) in equivalent forms: 

(2.11) ol/J(oc) + (...h . V(oc)) -g - T(X) - g"(a.) at 't'<a.> k .k <a.> k.k -

(2.12) I"' ·· ( k k ) k ] coc> _ G" 
't'(oc) V(cx)- U(a.) - T(cx) nk - (ex) 

such that 

(2.13) ..}; [ J g<oc>dv<oc>+ J Gccx>da<oc>] = 0. 
(X V(oc) -a(oc) a(OC) 

The new fields icoc> and Gcoc> introduced are called the "localization residuals" or "nonlocal 
interactions". Determination of the nonlocal interactions is, of course, an integral part 
of nonlocal continuum physics. 
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68 H, DEMIRAY AND A. C. ERINGEN 

The Eqs. (2.11 )-(2.13) are the master balance laws of nonlocal mixtures. We new employ 
these equations to obtain special balance equations for mass, momentum, moment of 
momentum, and energy. 

i) Conservation of mass 
If we take <P<rz> = t!<cz>; T~cz> = K<cz> = 0, where ecrz> is the partial mass density of ath con­

tinuum in the mixture, then (2.11 )-(2.13) give: 

O(!(cz) { k ) A • ---at+ {!(cz)V(cz) ,k = C(cz) m V(cz)- O'(cz), 

(2.14) 

.2: [ J C<cz>dV<cz> + J Cccz>da<cz>l = 0, 
cz V(cz)-a(«; a(cz) 

where Cccz> and Cccz> are--the rate of mass production of cxth constituent in V<cz>- a<«> and 
on a<«>, respectively. These quantities may have local characters as well as their nonlocal 
natures. 

ii) Balance of momentum 
By setting <P(cz) = {!(cz) V(cz)' T~a) = t~CZ)' g(cz) = (!(cz) {(<X) in (2.11 )-(2.13), we obtain the 

non local balance law for momentum: 

in 

(2.15) 

.2: [ J r (cz)dv(CZ) + R(cz) da(cz)] = 0' 
cz V(cz)-a(cz) 

where rccz> and :R<cz> are the rates of linear momentum transfer, or production, within the ath 
constituent, due to interactions with other species in the mixture, in Vccz>- O'ccz> and on <Tcah 
respectively: Here f<rz> is the body force per unit mass. The above equation may be written 
in component form as: 

(2.16) 
tlf!k + {!(cz)(Jr> -vf«)) = C(cz)v1«)- rf«> m Vccz>- O'(cz)' 

lt!<cz>vf«>(v~«>-ui«>)-tlT>Jn~«> = Ri«> on O'ccz>, 

where tli> is the partial stress tensor of the rxth component of the mixture. 
iii) Moment of momentum 
To obtain the nonlocal balance law for the moment of momentum, in (2.11)-(2.13) 

we set lfo<rz> = X X t!<a> V<cz>, T~cz> = x x t~cz>, K<cz> = x x (!<cz> fccz>, and use the Eqs. (2.14) and 
(2.16) to arrive at: 

(2.17) 

eiJk(xJr~«>_tJ;>) =m~«> in Vccz>-O'<cz>, 

EijlXj[{!(cz)V~cz)(t1cz)-~cz))-tt~>]ni«> = MlCZ) on O'(cz)) 

.2: [ f mi«>dvccz> + j Mf«>daca>] = o. 
cz v(<X)-u(cz) u(cx) 
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ON NONLOCAL DIFFUSION OF GASES 69 

At this point, it will be very useful to decompose "the m1ex) as 

(2.18) 

such that 

(2.19) 

Such a decomposition is the result of the consideration that part of the Eq. (2.17) should 
be invariant under the translational motions of the spatial frame of reference. Employing 
(2.18) and (2.19) in the Eq. (2.17) we obtain: 

(2.20) 

subject to 

(2.21) ~ J "'(ex) -1 m1 uV<rx> = 

+ J Eijlxi[!?<ex>V~ex>(V~rx)-~ex>)-tf~>]n~rx>da<rx>]. 
11(ex) 

As is known from the classical theory of mixtures, the partial stress tensor is not symmetric. 
iv) Conservation of energy 
The non local law of energy conservation is obtained if in (2.11 )-(2.13) we set: 

and make use of (2.14) and (2.16). Here, e<ex> is the partial internal energy density per unit 
mass, q~> is the surface energy influx (e.g. the heat vector), and hcex> is the energy source 
per unit mass. Thus, 

(2.22) 1 fkl (ex)+ k + h "'(ex) (ex)+ "(ot) ( 1 '(ex) (OC) 
!?crx> E(ex) = (ex) v,,k q(ex),lr. e(ex) (ex)- r, v, c 2 V • V 

-e,.,) +e,., in v,.,-a,., 

such that 

~ [ f e<rx>dvcrx> + f E:cex>da(ex)] = o, 
a v(rx) -u(ex) u(a) 

where e(ex) and Ecrx) are the rates of energy production in V(a)- <T(ex) and on <T(ex). The Eqs. 
(2.14), (2.16), (2.20), (2.21) and (2.22) are the fundamental balance laws of nonlocal con­
tinuum mixtures. They are valid for all types of bodies (fluids, solids, viscoelastic mate­
rials, etc.) irrespective of their geometry and constitutions. 
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70 H. DEMIRAY AND A. C. ERINGEN 

3. Second law of thermodynamics 

Studies on thermodynamics of mixtures are meager, and have not gone beyond certain 
propositions whose physical bases are yet unknown . . Most authors who are dealing with 
either continuum or statistical approaches use the entropy inequality for the whole system 
(c.f. COHEN [5], MULLER [6]). On the other hand, ERINGEN and INGRAM [7] have proposed 

· the entropy inequalities for each species. Such a formulation provides sufficient restrictions 
on possible thermodynamical states of the body in such a way that each individual species 
in the mixture has a stable equilibrium. In the present work, we also postulate the entropy 
inequalities for each species. We do this by replacing the sign ( =) by (~) and setting 

cp(rx) = (!('%) 1J<rx>' 'l'~rx> = qfrx>/Ocrx>' g<rx> = f!<rx> hcrx>/Ocrx>, 

where 'YJ<rx> and Ocrx> are respectively the entropy density and absolute temperature of (Xth 
species subject to 

f!<rx> 1J~rx) + C(rx) 'YJ<rx>- (q~rx)/Ocrx>) ,k- f!crx> hcrx>f()<rx>- n<~> ~ 0 in V(rx)- O'(rx), 

(3.1) 

}; [ f ;,<rx>dvcrx> + f Ncrx> dacrx>] = o. 
rx V(rx) -a(rx) "(rx) 

Here n(rx) and N(rx) are the volume and surface nonlocal rates of the entropy productions. 
Now, we transform (3.1) into a more convenient form by introducing the Helmholtz 

free energy function: 

(3.2) 1p(rx) = E(rx)-{}(a.)'YJ(~X)' 
and eliminating the hcrx> between (2.22) 1 and (3.1). Thus we have: 

(3 3) (!(IX) (. ' ()' ) 1 . kl (IX) 1 k ()<rx> C(IX) ( 1 2 ) 
• - -{)- '/l(~X) + 'YJC~X) (rx) + -()- t(rx) Vl.k + -()2 q(IX) ,k - -()- "P<rx>- -2 V(cx) 

(IX) (IX) .(rx) (rx) 

"(rx) 

- -o'' v1rx> + (e<a> /Oca>- n(a)) ~ 0 in V(a)- O'(a). 
(a) 

The inequality (3.3) is fundamental for nonlocal thermodynamic processes and it is some­
what of a generalization of Clausius-Duhem inequality. We shall use this inequality 
to obtain certain specific forms for the constitutive equations. 

4. Constitutive equations of a binary mixture 

The balance laws formulated in Sect. 2 are inadequate for the determination of motions 
of nonlocal mixtures. The nature of the medium must be characterized by means of a set 
of constitutive equations. We need to construct equations for the constitutive dependent 

variables tlr>, qla>, "Pea> and 1Jcrx>· In addition, the nonlocal residuals must be determined. 
We assume that the constitutive dependent variables are functionals of the following inde­
pendent state variables: 

(4.1) 
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ON NONLOCAL DIFFUSION OF GASES 71 

As is seen from the above list of independent variables, we are dealing with nonlocal mix­
tures of two non-heat conducting inviscid fluids. Thus the constitutive functional should 
have the following form 

(4.2) V'<«> = V'<«>(e.ctJ>' ()<fl>' v}f>, xk; e.~fl>' ()~fl>' v~<fl>, xi). 

Similar forms of constitutive functionals are valid for the other dependent variables. 
Now let us construct the time rate of 11'<11.>. Bearing in mind the definition of the Frechet 

derivative of a functional, we have: 

'1';., = 2 { ((/1p, + u!•P>q~f') [ z~: + J ( Z;;:)* av;p,] + (0!J1> + u~•P>O!f')}, 
fJ v<fJ>-a<fl> 

(4.3) [ 
8V'<a.> + J ( &p<a.> )* dv' ] + (v'<P> +u<a.P>v<.B>) [ 8V'<a.> 
o()<P> . ~()~P> <P> l k l,k ov1f> 

v<.B>-a<P> 

+ f ( ~"'(11.) )* dv' ] +v(11.) [}_V'ca.> + r ( ~'fjJ(11.) )* dv' ] 
~v~fl> <.B> k ox1f> .. ~xi <11.> 

v<8>-a<.B> v(11.)-a(11.) 

+ f (f/><a>-f/>t7))dv<«h 

where the quantities u~«P> and f/><«> are defined by: 

(4.4) u~«P> = v~«>-v~>, 
f/> = &p<«> v'<«> + ~ &p<a.> (n + u'<«P>n'<fl>)+ &p<«> (0' <«> ~x' k .L.,; ~n' 'l::.<fJ> k ~:;:.k ~()' <fJ> 

k p f:.(fJ) ({J) 

(4.5) 

+ u'<afl> ()'<P>) + ~V'<«> (v'<fl> + u'<a.fl>v'<fl>). 
k .k ~vi<fl> z k z,k 

Here, the symbol ~/~( )' is used to denote the Frechet (or functional) gradient, and f/>1«> 
is a function obtained by interchanging the primed and unprimed variables. We also note 
that 

(4.6) 
f)(11.)-C1(«) 

For convenience in the subsequent analysis, we introduce the following quantities: 

(4.7) N = ec~~.> [ OVJc~~.> + j"' ( ~'P<«> )* d , ] 
(a.{J) - () o() .i:()' v({J) ' 

<a.> . <fl> u <P> 
'U({J)-CJ({J) 

(4.8) ,... = ec«> e.cfl> [ OVJ<«> + 
""(11.8)- --

()(11.) oe<fl> 

(4.9) T<afl> = ec«> [ o"''<«> f ( ~<«> )* dv ] 
' - () ~v<fl> .i:-·'<fJ> <fJ> ' (11.) u l uv, 

'U(8)-r1({J) 

(4.10) _R<a> = e [ OVJca> + 
l - (11.) ox, 
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Employing these definitions in (4.3), the material derivative of "P<a> may be expressed as: 

(4.11) ip = 2 [ n(a{J)()(a) (e(/1) + ula{J)e~f>) + N(af])()(a) (o<P> + ulaf1>()~:>)] 
f1 l!<a> l!<P > (!<P> 

Introducing (4.11) into (3.3), and assuming that there is no mass transfer (locally and 
nonlocally) among the species, we obtain: 

- (~<a> fl<a> + N<aa>) O(a) + [ ~ir> + n<aa> l5kl] v)1 + 2 ( "<•P> d.,- T!.,.lz4•P> )vl~{ 
(:t) (a) {3-#a. 

(4.12) 

J (t/>(a)-!/J(a))dY(a) > 0. 

v(«)-a(a) 

If we integrate the inequality (4.12) over the volume of the body, the last term in the expres­

sion disappears (see Eq. (4.6)). The inequality is linear in Ocp), vlf1>, vi~l, e~~> and O~f>. 
In order that this inequality may be valid for all independent variations of these variables, 
the coefficients of these quantities must vanish. Thus. the following relations are obtained: 

(4.13) ()(a) 
(tX = 1' 2), fJ<«) = - -- N(aa) 

(!(a) 

(4.14) tli> = -()(a) n(a«) l5kl (tX = 1' 2), 

(4.15) n<afJ> = N<aP> = 0 (IX i:- {3)' 

(4.16) Tf«P> = eqfa> = 0 (IX , {3 = 1 , 2). 

The remaining parts of the inequality take the following form: 

(4.17) 

The constitutive equations are further restricted by the principle of objectivity. This prin­
ciples requires that the free energy functional should have the following form: 

(4.18) 

where 

(4.19) 

and V'<a> is an isotropic functional (spatially) in its vectorial variables. 
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The Eqs. (4.15) and (4.16) plac~ certain restrictions on the free energy functions. These 
stipulations lead us to some integro-differential equations whose solutions are extremely 
difficult. From (4.15) and (4.16), some of these restrictions are given bellow: 

a'P<a:> + f ( bVJ~a:) )* dv' = 0 (IX =/= p), 
ae<tJ> 6e<fJ> 

v(a:)-a 

(4.20) 

f ( 6VJ(a:) )* J. ' 0 
6u~<a:fJ> uv = (IX =/= p). 

V(a)-a 

From the Eqs. (4. I 8) and (4.20), it is seen that, by contrast with the results of local 
(classical) mixture theories, in nonlocal theories, the free energy function of a particular 
constituent of the mixture depends on the densities, temperatures and the diffusion veloc­
ities of the other species as well as its own. However, this dependence is not arbitrary, 
but rather restricted by the Eqs. (4.20). One of the particular solutions of these nonlinear 
integro-differential equations is obtained by selecting the free energy densities of the form: 

(4.21) 

This form of free energy function automatically satisfies the Eqs. (4.20). For our future 
purposes, this form of free energy will be used in the remaining part of the work. 

Since 'IJJ<a> is independent of the diffusion velocity, and has the form of (4.21), it may be 
convenient to express the rate of momentum transfer vector as: 

(4.22) [ [(~)* _ (~)] dv' + r<a:> 
. 6r{ 6r~ <a> 0 1 

' 
v(a)-a(a) 

where ori«> is the diffusive part of the momentum transfer vector subject to 

(4.23) 

Introducing ( 4.22) into ( 4.17), the entropy inequality becomes: 

(4.24) 

The principle of objectivity further requires that the free energy should have the fol ow­
ing form: 

(4.25) 

with 
r' = ix'-xl. 

From this genera] formulation, we can obtain nonlinear constitutive equations of va­
rious orders for nonlocal mixtures. In what follows, we shall give the constitutive relations 
which are linear in the diffusion velocities. 
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Constitutive equations linear in diffusion velocities 
In this special case, the form of the rate of linear momentum transfer should read: 

(4.26) "(a:) '\.' ( (a:{J) J , '(a:{J) ..J ') or1 = L 'V<a:fJ>u1 + 'V<a:fJ>u1 uv , 
{J tl(a) 

where 'V<czfJ>(!?<Y>) and 'V<«fJ>(r') are respectively the local and nonlocal collision frequencies 
of a. and {J species. 

Moreover, the partial stresses have the following form: 

( 4.27) tlr> = - n<:x> bk, (a. = I , 2) 

with 

( , ') _ 2 [ O'fP<a:> f ( ~<a:> )* ..J '] n(«) !?<«>' e(a:)• r = f2<«> -(}-- + -b-'- uv • 
!?<ex> e<a:> 

tl(a:) 

(4.28) 

Introducing the Eqs. (4.22), (4.26), (4.27) and (4.28) into (2.16), the following field equa­
tions are obtained: 

(4.29) 

(4.30) (};~~> +f2<cx>(fl«>_vl<«>)+Erf«>+ .2 ('V(a:{J)uf«P> + f 'V(czfJ>ut<:rfJ>dy')= 0 

{J "(a:) 

where, in the interests of brevity, we have defined 

(4.31) 7<«> = - n J [( ~<a:> )* + ~<«> ] _i dv' 
E 1 - ~::<«> · br' br' r' 

tl(«) 

(a. = I, 2). 

By means of these field equations and properly posed boundary conditions, one can, 
above all, solve certain problems which may be of some practical and physical interest 
to workers in this domain. As a very special case, let us assume that the body forces are 
zero and the body is at rest i.e. v~a:> = v;<a:> = 0. Thus, the field equations take the follo­
wing simple forms: 

( 4.32) Oon<a:> +no f [( ~<a:> )' * + b'P<a:> ] . rl d , = 0 ox, ~::<«> br' br' r' v ' 
tl(«) 

where 0 n<a:> is the hydrostatic pressure and e?«> is the initial mass density of the a.th compo­
nent. 

As is seen from the Eq. (4.32), by contrast with classical theories of mixtures, the hydro­
static pressure for nonlocal mixtures is not a constant; it must rather be determined from 
the solution of the Eq. (4.32).1fthe initial mass distribution throughout the body is uniform, 
then, one of the solutions of the Eq. (4.32) is given by 

(4.33) on<«>= 2e?a:>'P?a:>(r'), 

where "P?«>(r') = "P<a:>(!?<«>; e~a:>• r')\P<a:>=P~a:>' which is not necessarily a constant, but is 

rather a functional in r'. 
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Diffusion of non/oca/ gas mixtures 
As another application of the theory, here we formulate the nonlocal diffusion problem 

(or generalized Fick's law). To this end, we assume that: 
i) the body and inertia forces of the body are negligible; 
ii) the total mass density of the mixture is constant- i.e., e = f!<o+e<2> = eo = 

=constant. 
Under these assumptions, the field equations for each species become: 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

where we have defined 'V and y' as 

(4.38) 'V(12) E -'V(21) E 'V, P~12) E -P~21) E P~r') • 

Let e<a> be the deviation of mass density of the species from its initial value -i.e., 
e(a) = (.>(a)- (!~cz); then, in the accoustical approximation the above equations become: 

(4.39) 
oA 
l!o> +no v<D - 0 at 1:;'(1) k.k - ' 

(4.40) -K _f<_!l_- __ O_> n' dv' +Pu02>+ 'VU02>dv' = 0, a j. oK' J 
(1) ox, . ox, 1:;'(1) l l 

V V 

(4.41) 
oA 

fl<2> +no v<2> - 0 at- 1:;'(2) k.k - ' 

(4.42) K oe<2> f oK(2> ~' dv' ··u'<t2> f··'u'02>cJv'- 0 - {2)--- --1:;'(2) -r l - Y l - • 
ox, ox, 

V V 

In obtaining these equations, we have made the following assumptions: 

(4.43) (a) (a)+K A fK'A'd' :n; =on (a)!?(cz)+ (a)(!(cz)V, 
V 

where 

K(a> = K(a>(r'), K<rx.> = constant, 

and 0 n:<«> is the solution of 

(4.44) Oon<a> + 0 f [( ~<x> )* + ~'P<a> ] i_ dv' = 0 
ox1 !!<a> llr' llr' r' 

V 
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Noting the relation oK~a>/ ox, = - oK~a>/ oxi, and making use of the Green-Gauss theorems 
in (4.40) and (4.42), we obtain: 

-K oe(o +JK' oeu> dv'+Pu<t 2>+fP'u'<12>dv'-fK' ;,' n'da'-0 
(1) ox (1) ox' l l (1)1::(1) 1 - ' 

l V l V S 

(4.45) 

(4.46) K oe(2) + fx' oe;2) -lv'-~·u(12)_ fp'u'(12)-lv' fx' P.' n'-la'- 0 
- (2) ----ax (2)~ U' r l • l U' - (2)t:(2) tUI - • 

l V l V S 

Here ni is the unit exterior normal to the material surface S, and dai is the infinitesimal 
area of the surface at x'. 

In this work, we are interested in an infinite body, so that the surface effects may be 
disregarded. Keeping these facts in mind, and taking the divergence of the Eqs. (4.45) 
and ( 4.46), we have: 

(4.47) -K0 >V 2ec 0 - f K~0 V'2e~1)dv'+P(vf.\>-va>)- f p'(v;y>-v;~[>)dv' = o, 
V V 

(4.48) - K<2> V2e<2>- f K(2> V' 2e(2>dv' -P(vfY-va>>+ f p'(vl~l>-v;~[>)dv' = o, 
V V 

where V2 is the Laplacian operator in space variables. Making use of (4.39) and (4.41) 
in the Eqs. (4.47) and (4.48), and eliminating vl~l among these equations, we obtain 

(4.49) f D(o(lx' -x)IV'2m(odv' +I x'(lx'- xl) 
0~~1 > dv' = 0, 

V 

(4.50) 

where <5(x'- x) is the Delta function, and we have defined: 

D(a> = [K~cx>+Kccx>~(x'-x)]/(!0, 

(4.51) x' = ~ (~- + -i--)rP~(x' -x)-P'(Ix' -xi)], 
(! (!(1) (!(2) 

m(cx) = eca.>hl (mass concentration deviation), 

and made use of the fact that 

(4.52) 2 m(cx) = 0. 
ex 

If the condition (4.52)- i.e. mcl) = -m<2>- is employed in the Eqs. (4.49) and (4.50), 
we obtain the following relation: 

(4.53) or 

Ku> = K<2> and K(0 = K~2>. 
In fact, such a result is to be expected as a consequence of the incompressibility of the 
mixture. 
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If the contribution of nonlocal diffusion velocity on the rate of momentum transfer 
is disregarded- e.g. v' is negligibly small -the diffusion equations take the following 
form: 

(4.54) f om 
D'(lx'-xi)V'2m'dv'+-

0
! = 0, 

where, in the interests of brevity, we have set: 

D'(lx' -x)! = __!__ [K/0 + K0 > ~(x' -x)] (-i-- + -i--)- 1

, 

Y !!o> !!<2> 
(4.55) 

m(l) =m. 
This integro-differential equation is the generalization of classical Fick's law. 

The Eq. (4.54) and properly posed boundary and initial conditions may be used to 
solve the problem of mass diffusion of a gas in a mixture. Yet, the form of the Kernel 
function D'(lx'-xl) is not known to us. In solving certain practical problems, it might be 
a good approximation to select this function as an exponential in !x'-xl or !x' -x! 2

• 

The former is valid for somewhat strong interactions (c.f. ERINGEN [11]), while the latter 
is for a weaker nonlocal interaction. 
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