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Strong discontinuity wave in initially strained elastic medium

Z. WESOLOWSKI (WARSZAWA)

AT THE SURFACE of discontinuity the strain gradient and the velocity are discontinuous. The
equations of conservation of momentum and moment of momentum, the compatibility condi-
tions and the stress-strain law constitute a system of equations governing the wave propagation
problem. Assuming the adiabatic wave to be propagated into an initially strained medium,
the jump of entropy and the propagation condition are determined. The propagation speed
and the direction of amplitude are represented by power series of the amplitude. The resulting
infinite set of algebraic equations 1s used to derive consecutive approximations of the propaga-
tion velocity and the direction of amplitude. The propagation speed is shown to increase
with increasing absolute values of the amplitude, and for infinitesimal amplitudes it becomes
equal to the velocity of sound. The strong discontinuity wave is supersonic for the region in
front of the wave and subsonic for the region behind it. The condition of existence of the strong
discontinuity wave is the mutual approach of two acceleration wave fronts (or two sound
waves) propagating in initially strained material.

Na powierzchni nieciaglosci gradient odksztaicenia i predkosci sa nieciagle. Rownania zacho-
wania pedu i energii, warunki zgodnodci i zwiazek naprezenie-odksztalcenie tworza uklad
réwnan rzadzacy propagacja fali. Rozwaza si¢ propagacj¢ fali adiabatycznej. Po rozlozeniu
predkosci propaga.cu i amplitudy na szeregi potggowe otrzymano rozwigzanie. Pokazano, ze
predkos¢ propagacji roénie o ile rosnie amplituda fali. Pokazano tez, ze fala jest fala nad-
diwigkowa w osrodku znajdujacym si¢ przed frontem i fala poddiwigkowa w oérodku znajdu-
jacym si¢ za frontem.

Ha mosepxHoCTH paspbiBa IpagueHT AedopMalMH ¥ CKOPOCTH HMMEIOT PasphbiB, YpaBHeHMA
COXpaHeHWA HMITYyJIbCA W OHEpPrHH, YCJIOBHA COBMECTHOCTH M COOTHOIIIEHHE HANpsKeHHe-Je-
dopmauuna obpasyioT CHCTEMY YpaBHEHHMIl ONMHCHIBAIOLIYIO PACHpOCTpaHeHue BoaHbI. Paccmar-
PpHBaeTCs paclpocTpaHenue anuabaTHyeckoit BonHbl. Ilocne pasnoKeHHA CKOPOCTH pacmpo-
CTpaHeHusT ¥ aMIUIKTYALI B CTENEHHbIE PANbLI mojydeHo pemlenne. IlokasaHo, 4TO CKOPOCTE
PACpPOCTPaHEHHA PACTeT, €ClIi PacTeT aMIUIHTY/Ia BOJTHbI. ToXke IOKa3aHO, YTO BOJIHA ABJA-
eTCA CBepX3BYKOBOI BOJIHOH B cpele Haxopslieiica nepen (GpoHTOM M J0O3BYKOBOH BOJHOM
B cpefe Haxomsuleiica 3a ¢poHTOM.

THE PROBLEM of propagation of weak discontinuity waves in non-linear elastic materials

was recently considered in numerous papers. Many results in that area are given

e.g. in the monograph [1]. The problem of strong discontinuity waves was considered

in a limited scope, mainly as regards the one-dimensional phenomena [2]. It should be

stressed -that the problem of propagation of strong discontinuity waves in gaseous media

has been discussed in detail; the same applies to the general theory of solution of dif-
ferential equations, cf. e.g. [3].

In this paper we shall discuss the propagation of the strong discontinuity wave in an

initially strained elastic material. The results derived are then compared with those con-
cerning the acceleration wave. Similar solution for incompressible material is given in [4].



310 Z. WESOLOWSKI

1. Discontinuity surface

Let us denote by & the surface dividing the reference configuration By into two
parts. The equation of surface & being

(1.1) t = ¥(X),
the unit normal N, and velocity U (in the direction of N,) are given by the formulae
" N T

U= 1

l 'I!c@ yJ’-Q .

The physical fields may suffer jumps at %. The value of a field H at the surface &
measured at the front side of N, is denoted by H”, and at the opposite side — by H®.
The jump of the field value H at & is denoted by

(1.3) [H] = H®-H".

If a certain magnitude H is continuous at & and its first and higher derivatives are dis-
continuous, then the compatibility conditions hold true:

EH.a] = AN,,

W [H#.] = -4U,

where A is a parameter characterizing the jump magnitude. A detailed derivation of the
relations may be found, for example, in [4]. Index ¢ following a comma denotes differentia-
tion with respect to time ¢.

Motion of the medium is described by the function

(1.5) x = E(X=, 1).

The derivatives (1.5) with respect to X* and ¢ are the strain gradient x} and the velocity
X', respectively.

Let us consider the surface &, at which the function (1.5) is continuous, and dis-
continuous are its derivatives:

o8, . o

i———— =
(1‘6) xﬂ"‘ axux v Xx 5t’

that is, the strain gradient and velocity of the medium. All the phenomena occurring at
such a surface constitute the wave of strong discontinuity. The velocity of propagation
of weak discontinuity waves is traditionally denoted by U. To stress the distinction
between the two magnitudes, the propagation speed of the strong discontinuity wave
will be denoted by U,, index v symbolizing the discontinuity of the velocity ¢*. The strong
discontinuity wave itself will be called the velocity wave.
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In compliance with the compatibility conditions (1.4), the following expressions for
the strain gradient and velocity jumps are obtained in the case of strong discontinuity
waves:

[x.] = H'N,,
[.i’] - _HlUp-

The value of H* characterizes the magnitudes of jumps of the strain gradients x'; and
velocity x'; it is called the amplitude of a strong discontinuity wave.

Let us pass to the momentum and the moment of momentum conservation laws.
Consider two positions of the surface &, at the instants ¢, and ¢, and construct a curvi-

(.7

Ne
—S

JFNR AS

Fia. 1.

linear cylinder based on &, (Fig. 1). In the time interval t; < ¢ < t, the front surfaces
of the cylinder are acted on by the force

(Tr) N AS+ (Ta®)*(—=N) 45,

Ty being the Piola-Kirchhoff stress tensor. The forces acting on the lateral surface are,
for small 7, —1t,, small values of a higher order of magnitude. The impulse of that force
is equal to the momentum increment. Since the mass of the cylinder equals pg Uy(t,—1,) A4S
the following relation holds true:

(1.8) [(Tri®)" = (Tai)"I Na4S(t2—1,) = or Up(t2— 1) AS[(%:)° — (X))

Passing to the limit with AS — 0, ¢, — t,, we obtain the momentum conservation law
in the form

(1.9) [Te’INa = —r Us[:].

According to the energy conservation requirements, the following equation must be
satisfied:

(1.10) 3K+0Z = OL+0Q.
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Here 8K denotes the increment of kinetic energy, 2" — the increment of potential energy
L — work, O — heat. All the magnitudes are referred to the cylinder under consideration
and to the time interval ¢, < ¢ < t,.

In considering the cylinder shown in Fig. 1 we obtain the following expressions for
4K, X, 6L and 6Q;

3K = - 0a (12— 1) ASIG)*(#)° = (1) (] = 0a UL #14S(ts =11,

0F = gr U(t,—1,)4S5(6® —0) = g U,[0]4S(t2—-1,),
(L.11) 0L = (Tr® N, ASG) (t,—1) + (Tr®)®(—= N) AS(X)°(1,—1,)
= —[Tr ] NoAS(t: 1),
00 = —Q,"N°AS(t,—1,)—0.°(—N3)AS(t,—t,) = [Q*]N.4S(t.—1y).

Here o denotes the potential energy of a unit mass. In elastic materials ¢ = o(x%, ), 7
being the entropy. Q. is the heat flux referred to the configuration Bg.

Substitution of Egs. (1.11) into Eq. (1.10) and passing to the limit with A4S — 0,
t, — t, yields the equation of energy conservation

(1) 2 Ui E]+0a Uulo] = ~ [Te N+ [T,

It will be shown later that if x* suffers a jump, then the entropy # must also suffer a jump.
According to the second law of thermodynamics, the following relation holds true
(T denotes the absolute temperature):

B F
or U, 48(t,—1)n°—0r U, AS(t, = 1) 1" 2 [(g«? = (%-? ]NHAS(rZ-‘l)°

Passing to the limit 4S — 0, ¢, - t,, we obtain

(1.13) orUn[n] > [9;-” N..

If the process is adiabatic, then Q* = 0 and the inequality (1.13) is reduced to an in-
equality concerning the entropy jump

(1.14) [7] > o.

The equations derived should be complemented by the appriopriate constitutive
relations. In the case of a non-linear elastic material such relations have the form

(cf. e.g. [1])

(1.15) o = o(x', ),
= oo oo
(1.16) Tr* = gkm-’ T:a_n_

The above enables us to express [Tx*] is terms of [x%] and [#].
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2. Adiabatic wave

Let us confine our considerations to adiabatic waves. Since in such cases there is no
heat flow, Egs. (1.7), (1.9), (1.12), (1.15) and (1.16) are reduced to the following equations:

(2-1) [Tma:uNu = —‘QRUv]I-i'i:na

(22) exUulol+ yen U] = ~ [Tu 1N,
(2.3) [x%.] = H'N,,

24) [¥] = -H'U,,

@9 Tuft = ox -

(2.6) o = o(xy, 1),

(2.7 [n]=0

Equations (2.1)-(2.6) form a system of 26 equations with 27 unknowns [Tx:], [x% ],
[x'], [e], [#], H' and U,. Thus the solution will depend on a single parameter; the
parameter, which will be introduced later, will be shown to have a simple physical inter-
pretation. From all the solutions we should select those which satisfy the inequality (2.7).

Let us consider a wave which is propagated into an initially strained material. The
following relations hold

[%:x'] = [ J[*]+ 269" [x:],
[Tex'] = [TrI[X']+ G [Tr ]+ (TrF[X'].
Equation (2.2) is then reduced to

(2.8)

29) exUulol+ gealiid[¥] = ~ [TafUET V- (TuY [ N
Multiplication of Eq. (2.1) by [x'] yields

(2.10) [T %I Ne = —or Up[X:J1X]-

On substituting the result into Eq. (2.9) we obtain two equivalent equations
@.11) e Ul] = 5 e U [1I#] - (T [¥1 N,

(2.12) 20r Up[o]+ [T JIX I Na = = 2(TrSF[X'] Na-

Let us assume o(x%, 1) to be an analytical function of its arguments. In compliance with
Eq. (2.5) the stress Tx;* is also an analytical function of the same arguments, and hence
we have

o® = a*‘+(—«—) [x .,]]+( )[[]} (ax P )[[xa][[xalh (6;3‘?:31;):

D L e L0131 s
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(Ta)® = (Tw" F+Ql(ﬁ;g:) [[A]He::(%) ]

o | 8 [ ) RO CoeLa U RRTE)
1

b ( ot o ) '+ ‘-"‘(ax* ey axw,) L) [ [ R

These expressions are now substituted into Eqgs. (2.1) and (2.14), taking into account
the relations (2.3) and (2.4). For the sake of brevity the following notations are introduced:

DA .
- :‘ 0x*, 0x% ax™, .

@.13) b M+Nq )
UL Al ol
] =s.

In such a manner we obtain two equations:
(2.19) {o‘,"ﬁH"Ng +0%S+ %[a;“.",,."H*H "N Ny + %8, HNy S+ 0%, §?]
+ -é—{a,“*",,,","H"H"H"N Np Ny+ 08Pl HH™N; N, S
+ 0P H Np S + 0%y S3) + . } N, = U2H,,
(2.15)  20r U, {m“H‘N +0,S+ = [a.“k"H ‘H*N, Ng+ 0%, H'N, S+ 0,, 5%
- %[a;“.,”.,."ﬂ“H*H“Na Np Ny+ 0%, HH*Ny Ny S+ 0y HN. S* + 0,0, S°]
+ 2i4 (0w H'H*H"H"N, N3y N, N5+ .. .]} —or U, H'N, ‘a'.-“,.")&"b'v,3 +a2%,S
+ %[o,“k’..?H*H'“N, Ny+ 08, H*Ng S+ 0%, 5]

1
+— 6 [Giagﬁm?.aHiHMHHNgN?Nj'l- ]} = 2(Tkim)FUpH1Ng.

According to the formula (2.5)

do \*
(2.16) (Tr™ = 9&( e ) = pr 0.
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It follows that the first and last terms of Eq. (2.15) are reduced and the expression (Tx;*)"
does not appear in Egs. (2.14) and (2.15). Dividing Eq. (2.15) by or U, and ordering the
result according to the powers we obtain

1
(217) —%Uia.ﬂm?FHkaNgNgNy—Edi K m ,‘H-‘H*H-H"N NgN N;

+S(2a,,—-‘1§or, 2 H'H'N, ﬂ-l—lzo, P oty HUHYH™N, N,N)

1
+S=(0',m—%0'; WH"NR 20’; *'FI 'HN Ng)

1 1 1
ly e af 1
+S (30,,,,,, 50 mH‘N,)+S (120”""")+
Equations (2.14) and (2.17) constitute a system of four equations for the five unknowns
H', U, and S.

3. The propagation condition

Let us pass to the derivation of the propagation condition of the strong discon-
tinuity wave. Equations (2.17) allows, in principle, for the determination of the function
S = S(H'); however, since the order of that equation is infinite, the closed-form solu-
tion can not be determined. The solution will be sought for in the form of the following
power series:

(3.1) S = C+C1H1+CUHiHJ+CUgH'iHij+ P

Let us observe that if H' = 0, then also [x'] = 0, [x.] = 0 and, according to Eq. (2.13),
[¢] must be equal to zero and [] = S = 0. It follows that C = 0. Inserting Eq. (3.1)
into Eq. (2.17) and ordering the result according to the products H'H’... we obtain the
equation

(32) H'2Ci0,)+ H'H*2Cy0,+CiCy0,,) + H'H*H™ ( - %a’i“.",.."Na Nj Ny+2Cigmo,

+ %q CiCudi— %c.- 020, No Nj — %ci Ci 0’y Nu+2CiCin a,,,)

+H‘H‘H“Hn(—-—0', kym ,,N NgN Na"""é‘CikomayN Nﬁ

i T2" Ci dem‘nﬂw Na Nﬂ — _;_Ci Ckmala)nNa. * ZC{ Ckm G,W-l- Cil Cmudsn
_-l_z_A jArAm or,. o Na+ 112 C;C,‘C..C.a,,,,,,,,+2Cmo,,)+ e =0,
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This equation must be satisfied for each H'; this means that each of the coefficients of
the consecutive products H'H*H™... equals zero. It follows that

Ci= Cik=0§

1
(3.3 Cim = ‘i‘alukﬂm?Nﬂ Np Ny[oy,

1
Cikmn = ﬁ '7lakpmyndNa Nﬁ N‘P Nd/o'n s

and consequently, according to Eqs. (3.1) and (2.7), with the accuracy up to the terms
(H*)* we have
349

S = —l%a,",f,..”H’H*H"'Na, N,N,,/o,,ﬁ»ilz 0Pt H'H*H"H"N, N3 N, N3 [o,+ ... > 0.
The jump of entropy 7 is then of the order of m*®, m = y H'H;. Obviously S? is of the
order of m®, S of the order of m°® etc. Observe, moreover, that ¢, is equal to the absolute
temperature and hence g, > 0.

Let us now pass to the determination of the propagation condition, the terms of
orders which exceed m* being disregarded (all the derivatives are assumed to be of the
same order). According to the above remark the expressions S2, S3, ... are disregarded.
Inserting the expression (3.4) into Eq. (2.14) we obtain the equation in which the only
unknowns are the amplitude H' and the propagation speed U, of the strong dis-
continuity wave

(3.5)  ofPHN, N+ % o H*H™N, N3 N, + %a;‘,‘”,,",’H*H"'H"Ng N; N, Ny

+ 2—]4 0wy HEH™ ... Ny+ (0% No+ 05 HEN,, Np) (—% Ou’n’s* H"H"HN, N3 N;

+-‘1Tor,,”,‘,‘q“H"'H‘H’H‘N,, N3N, N,,)/o',, = H U2

This is the propagation condition of the strong discontinuity wave. If the absolute
value of the jump is prescribed,

(3.6) m = (HH)'? = ([xa][x*D',

then Eq. (3.5) constitutes a system of three equations with three unknowns: the propaga-
tion speed U, and two directional coefficients of the amplitude H;. The system may
be solved by means of, say, the method of consecutive approximations or by numerical
methods. Once the direction of H; is determined, we should verify whether S given by
Eq. (3.4) satisfies the inequality (2.7). If S > 0, the wave can be propagated; if, in contrast,
S < 0, then the solution is of a purely formal character and the strong discontinuity
wave does not exist. The absolute value m of the jump of H' is now found to be the para-
meter which was mentioned before in the discussion on the number of equations and
unknowns. The solution depends on the wave intensity, its measure being m. Another
problem arises in determining the equations of transport which could express m as a func-



STRONG DISCONTINUITY WAVE IN INITIALLY STRAINED ELASTIC MEDIUM 317

tion of the position of &,. This problem will not be dealt with here; it may be mentioned
solely that the magnitude of m is influenced not only by the initial conditions but also
by the boundary values.

Observe that if H', U, satisfy the condition (3.5) and the inequality (3.4), then also
H', — U, must satisfy Egs. (3.5) and (3.4). The strong discontinuity wave propagating
in a certain direction may hence also be propagated in the opposite direction. It should
be stressed that in spite of H' and [x%] being the same for both waves, the velocity
jumps [x'] of those waves differ by the sign; this follows from Eq. (2.4).

4. Propagation speed and the amplitude

The condition of propagation (3.5) is a non-linear system of three algebraic equations
for four unknowns: the amplitude H' and speed U,. Its solution must then constitute
a one-parameter family of magnitudes (H’, U,). Equation (3.5) is an algebraic equation of
the order of infinity, thus it can not be determined in a closed form. In order to find an
approximate solution let us observe that H'/m is a unit vector the direction of which
depends on m. The vector and the propagation speed are now assumed to be
expandable into power series of the parameter m,

i 0 1 2
‘4.1) @ = H'+mH' +m*H' + ...,
0 1 2
4.2 U,m) = U+mU+m?*U+ ....

Let us now substitute the expressions (4.1) and (4.2) into the propagation condition (3.5),
the parameter m being treated as small. The procedure yields the following system of
equations:

0 0
4.3) (058N N3— Ug) H* = 0,
0 1 0 01 4 00
44 (05 Na Na— U?gy) HE—2H, UU + Eo,ﬂ,ﬂ,m*mw, N3N, =0,

0 2 0 02 1 01 0 11 0o 1
(4.5) (04N, Ny—U?gy) H*—2H, UU— 2H, UU+ H, UU) + 0, H*H™N, N; N,

0O 0 o0 0o 0 0
+%U|¢tﬂm?naﬂth"N¢ NgN,.N,;-l— .IIE.O';““Nogo'kpm?n‘HleH"NgN},Nafﬂ'ﬂ = ().

These equations should be complemented by the condition H'/H; = m?. According to
Eq. (4.1) we have

00
10

(47) H-‘Hi = 0,
20 11

(4.8) 2H'H;+ H'H; = 0.

7 Arch. Mech. Stos. nr 3/78
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Equations (4.3) and (4.6) constitute a system of four equations for four unknowns FI :
and g’,,. Once the unknowns are found, Egs. (4.4) and (4.7) are treated as a set of four
equations for the unknowns }l:" and ljf.,. A similar procedure leads to the determination
of all subsequent coefficients II;‘, LJF., of the series (4.1) and (4.2). From Eq. (4.3) it follows

0 0
that H' is the eigenvector, and U? — the eigenvalue of the tensor ¢;%’N,Nj;.
Let us multiply Eqs. (4.4) by H'. The expression in parenthesis is symmetric in i and
k and thus, in view of Eq. (4.3), the first term vanishes. Using Eq. (4.6) we obtain

oL § ., 0.8 4
4.9 2UU = - O m H HH "Ny Ng N, .

For small amplitudes the second term in Eq. (4.3) is neglegibly small when compared
with the first one, and from Eq. (1.14), it follows that o, > 0; hence we have

0 0 0
(4.10) ol HHH*H"N* Ny N, > 0.
In view of Egs. (4.9) and (4.10) the inequality
1 00 0
@4.11) U= iu- o HH*H"N,Ns N, = 0
U

is always satisfied. The propagation speed of the strong discontinuity wave is then found
to increase with increasing values of the velocity jump.

Substitution of the expression (4.9) into Eq. (4.4) yields the non-homogeneous system
of algebraic equations

0 0 0 0 0
(412) (G‘iugﬁNa Np-‘ U’g.-g)H" = -;-cr,“kﬂ,.."H*H'“(H’H;—5{)N¢N3N,,

1 0 1
which uniquely determines this part of H* which is orthogonal to H*; the part of H*
0
parallel to H* must be assumed, in view of Eq. (4.7), to be equal to zero. In turn, on
0 2
multiplying the expression (4.5) by H' the value of H* is eliminated, what yields an equa-
2 2

tion for U, and then we may determine H satisfying Egs. (4.5) and (4.8). Such procedure
makes it possible to determine all the coefficients of the expansions (4.1) and (4.2).

The function (1.5) maps the surface &, in Bg onto a surface &, in B. This surface

is propagated at a velocity u, different from U,. The normal n; to the surface &, is de-
termined by the formula

@“.13) R A

If H' is parallel to »;, the wave is longitudinal, and if it is perpendicular to n;, the wave
is transverse. From the above considerations it is evident that the direction of H* varies
with variable intensity of the strong discontinuity wave. For instance, if for a certain
mg the wave is longitudinal, then, in general; for m < m, and m > m, the wave ceases
to be longitudinal.
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In the particular case in which all the derivatives of ¢ are of the form
(4.14) 0P, = 01 P AT RHERE..,
in which h;o is an arbitrary tensor and 0;%4?4" is zero provided o # i or B # k or y # m,

then H* H" .. = 0 and the direction of the amplitude is independent of the wave
intensity.

Let us now demonstrate certain connections between the waves of strong and weak
discontinuity. The weak discontinuity wave embraces the totality of phenomena con-
nected with the surface at which &, x!, and x' are continuous, and all second derivatives
of the function &' are discontinuous. Such a wave is usually called an acceleration wave.
The corresponding jumps of the second derivatives are determined by the formulae
(cf. e.g. [1])

[x'ss] = A'NaNp,

@.15) [*¥.] = —4'N. U,
[¥'] = 4'v?,
and the propagation condition has the form
(4.16) (F,fo—w, Np— Uzgu) 4% = 0.
X% Ox*;

The higher order waves for which the n-th derivative of &(X®, ¢) is discontinuous have
the same direction of propagation, Eq. (4.16), and the same propagation speed U. U is
called the sound velocity since the sound wave constitutes a superposition of such waves
for n> 2.

The propagation speed U and the amplitude A4* of an acceleration wave are
independent of the absolute value of that amplitude (4*4;)*/2. Thus the situation is en-
tirely different from that corresponding to the velocity wave.

Let us denote by U* and (4*)F the speed and amplitude of an acceleration wave
propagating in front of the velocity wave &. In view of Eq. (4.16) the condition of
propagation of that wave is

&% B e

xt oty NN# (U)gu |(4HF =0,
or, using the notations of Eq. (2.13),
4.17) [0 N Ns— (UT)?gu] (497 = 0.

Let us observe that Eq. (4.3) is identical with Eq. (4.17). At m — 0 we have U, = U
and hence Eq. (4.3) describes the strong discontinuity wave with an infinitesimal value
of m. This observation yields an important conclusion, namely, that a velocity wave with
infinitesimal intensity propagates in the same manner as the acceleration wave, and the
following conditions are satisfied:

U¥,

(A 1(45"1.

I

(4.18)

hia Co
Il
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In view of Egs. (4.2), (4.3) and (4.18) we have the approximate equality

(4.19) U, = U+mU = UF+ =" o8 YEFHEH"N, Ny N,,

40?

the last term of which is positive.

Let us then consider the acceleration wave propagating immediately behind the strong
discontinuity wave front. Its propagation speed is denoted by U®. The strain gradient
right behind the strong discontinuity wave is approximately equal to

) = (X)) +mI‘}*N¢,

and so the following approximate equation holds true:

da i s cmibmal
(ax*,ax*,,) (6x‘ ax*ﬁ) (6x’¢3x“ﬂ3x",) HH Ny =+ LTI N

The propagation condition (4.16) of the acceleration wave under consideration takes
now the form

1]
(4'20) [(O’I“kp +md;aiﬂ,.?H'N?) Na N;S T (Uﬂ)zg‘*] (Ak)lB =0.
o - .
Due to the approximate relation (4%)® = (4¥)F = H* we may write another approximate
equation

0 00 00 0
(U')z = (U;‘g"-kmﬂ';‘gﬁu?H”N,)H"HkNaNB = (Ur)z'l'mo.l‘kﬂﬂl?HlH*H“NﬁNﬁN!”
4.21)

?H'H.H,NgNﬂ

The inequality (3.4) proves that the last term in Eq. (4.21) is positive. The relations (4.19)
and (4.21) lead to the conclusion that

(4.22) Ur<U,< UB

The speeds UF and U® are the propagation speeds of the acceleration waves
moving immediately in front of and behind the strong discontinuity wave which itself
is propagated at the speed U,. The sound waves are propagated at the speed equal
to that of the acceleration wave. Thus the inequalities (4.22) yield an important quali-
tative result: the strong discontinuity wave represents a supersonic wave in the medium
in front of the wave, and a subsonic wave in the medium behind it. Thus the velocity
wave catches up with the acceleration waves running in front of it, thereby increasing
(or decreasing) its intensity. On the other hand, it is being caught up by the acceleration
waves running behind it; those increase or decrease its intensity.

Let us finally consider two acceleration waves propagating in the region Bz" at a small

1
distance ¢ from each other. Let us denote by X? a point lying at the instant ¢ at the front
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2
of the first wave. The point X? lying at the front of the second wave is determined by the

equation
2 1
X? = XP—cN?,

Denote by (x%), the strain gradient at the front of the first wave, and by (4"), — its am-
plitude. The strain gradient and velocities of the second wave are approximately equal to

(x%)2 = (¥)1+ (¥ap)1(—cN?),
(2 = ()1 +(X2) (—cNP),
and hence, in view of Egs. (4.15), we have
(x)z2 = (i) —c(4); Na,
Nz = (&) +e(4), U, .

Let us also consider two waves for which (x'), — (%), has the same sign as the jump
[x'] of the velocity wave. If, for instance, the velocity wave is dilatational, then we con-
sider the dilatational acceleration waves. According to Eq. (2.4) we have [x'] = —H'U,
and hence we should assume

0
(4.24) A= —H'.
1 2
Let us denote by (0;%*), the value of %c/dx',0x*%; at the point X”. At the point X?
the function (¢;%”) is then approximately equal to
(0%P)2 = (051 + (05 n") 1 (— ) (A™), N,.

Denoting by U, the speed of the second wave and taking into consideration the fact
that the amplitudes are approximately equal, we obtain the following propagation
conditions of the first and second waves:

(4.23)

0
[(Uiukﬂ)x NaNﬁ"U%gik]("'H*) =0,

(4.25) 0 (]
[(0:*")s Na N+ (0i% w?)s H"Nyyc = U3 giu] (— H*) = 0.

It follows immediately that
0 0
Ui = (W“tﬁhHIHkNaNg:

(4.26) 00 0.0 0
U% = (Ugmgﬂ)j. H"H‘Na Np'f'(,‘(ﬂ'i“gﬁmy)l H‘H*H”'NaNp N,.

In view of the inequality (3.4) we obtain
Uz ; Ul. .

The condition of existence of the velocity wave is the mutual approach of two accelera-
tion waves for which the sign of the difference (x'),— (x'), is the same as the sign of the
jump [x'] of the velocity wave.
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