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Strong discontinuity wave in initially strained elastic medium 

Z. WESOLOWSKI (WARSZAWA) 

AT THE SURFACE of discontinuity the strain gradient and the velocity are discontinuous. The 
equations of conservation of momentum and moment of momentum, the compatibility condi­
tions and the stress-strain law constitute a system of equations governing the wave propagation 
problem. Assuming the adiabatic wave to be propagated into an initially strained medium, 
the jump of entropy and the propagation condition are determined. The propagation speed 
and the direction of amplitude are represented by power series of the amplitude. The resulting 
infinite set of algebraic equations ts used to derive consecutive approximations of the propaga­
tion velocity and the direction of amplitude. The propagation speed is shown to increase 
with increasing absolute values of the amplitude, and for infinitesimal amplitudes it becomes 
equal to the velocity of sound. The strong discontinuity wave is supersonic for the region in 
front of the wave and subsonic for the region behind it. The condition of existence of the strong 
discontinuity wave is the mutual approach of two acceleration wave fronts (or two sound 
waves) propagating in initially strained material. 

Na powierzchni nieci(lglo5ci gradient odksztalcenia i pr~dko5ci S'l nieci(lgle. R6wnania zacho­
wania ~u i energii, warunki zgodnosci i zwi(lzek napr~i:enie-odksztalcenie tworZCl uklad 
r6wnan rZCldZClCY propagacj(l fali. Rozwai:a si~ propagacj~ fali adiabatycznej. Po rozlozeniu 
pr~ko5ci propagacji i amplitudy na szeregi pot~gowe otrzymano rozwi(lzanie. Pokazano, i:e 
pr~dkosc propagacji rosnie o ile rosnie amplituda fali. Pokazano tez, ze fala jest fal(l nad­
dzwi~kow(l w osrodku znajduj(!cym si~ przed frontem i fal(l poddiwi~kow(l w osrodku znajdu­
jClcym si~ za frontem. 

Ha noaepXHOCTH pa3pbiBa rpa.zmeHT ,~:te<l>opM~HH H CKopocrH HMeiOT pa3pbiB. YpaaHeHIUI 
COXpaHeHHH HMIIym,ca H :meprHH, yCJIOBHH COBMeCTHOCTH H COOTHOWeHHe HanpH>KeHHe-,~:te­
$opMaiXHH o6pa3yiDT CHCTeMy ypaBHeHHH OllHCbiBaiO~YIO pacnpocrpaueHHe BOJIHbl. PaccMaT­
pHBaeTCH pacnpocrpaueHHe a,~:tHa6aTHtteci<oii aoJIHbi. llocne pa3JIO>KeHHH CI<opOCTH pacnpo­
crpaHeHIDI H aMUJIHTyJ:tbi a creneHHbie pH,ltbi nonyqeHo peweHHe. I1oi<a3aHo, q!'O cKopocrL 
pacnpocrpaHeHHH pacreT, ecJIH pacreT aMUJIHTy,~:ta BOJIHbi. Tome noi<a3aHO, q!'O BOJIHa HBJIH­
ercR CBepX3BY£<0BOH BOJIHOH B cpe,~:te HaXO,ltHLQeHCH nepe~ <i>POHTOM H ,lt03BYKOBOH BOJIHOH 
B cpe,~:te HaXO,ltH~eHCH 3a <i>poHTOM. 

THE PROBLEM of propagation of weak discontinuity waves in non-linear elastic materials 
was recently considered in numerous papers. Many results in that area are given 
e.g. in the monograph [1]. The problem of strong discontinuity waves was considered 
in a limited scope, mainly as regards the one-dimensional phenomena [2]. It should be 
stressed .that the problem of propagation of strong discontinuity waves in gaseous media 
has been discussed in detail; . the same applies to the general theory of solution of dif­
ferential equations, cf. e.g . . [3]. 

In this paper we shall discuss the propagation of the strong discontinuity wave in an 
initially strained elastic material. The results derived are then compared with those con­
cerning the acceleration wave. Similar solution for.incompressible material is given in [4). 
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310 Z; · WESOLOWSKI 

1. Discontinuity surface 

Let us denote by f/ the surface dividing the referen«e configuration BR into two 
parts. The equation of surface f/ being 

(1.1) 

the unit normal N a. and velocity U (in the direction of N J are given by the formulae 

(1.2) 
Na.= 

Y'.rr. 
yqi,eqf.f! ' 

U= 
1 

yqi "fJI C1 .e , 

The physical fields may suffer jumps at f/. The value of a field Hat the surface f/ 
measured at the front side of Na. is denoted by HF, and at the opposite side- by H8

• 

The jump · of the field value H at f/ is denoted by 

(1.3) 

If a certain magnitude H is continuous at f/ and its first and higher derivatives are dis­
continuous, then the compatibility conditions hold true: 

(1.4) 
[H,a.] = AN4 , 

[H,t] = -AU, 

where A is a parameter characterizing the jump magnitude. A detailed derivation of the 
relations may be found, for example, in [4]. Index t following a comma denotes differentia­
tion with ·respect to time t. 

Motion of the medium is described by the function 

(1.5) x' = e'(r' t). 

The derivatives (1.5) with respect to xrr. and tare the strain gradient x! and the velocity 
x'' respectively. 

Let us consider the surface !/, at which the function (1.5) is continuous, and dis­
continuous are its derivatives: 

(1.6) . ae' x•-rr.- ar, ae' v' = x' =­at ' 
that is, the strain gradient and velocity of the medium. All the phenomena occurring at 
such a surface constitute the wave of strong discontinuity. The velocity of propagation 
of weak discontinuity waves is traditionally denoted by U. To stress the distinction 
between the two magnitudes, the propagation speed of the strong discontinuity wave 
will be denoted by u., index v symbolizing the discontinuity of the velocity v'. The strong 
discontinuity wave itself will be called the velocity wave. 
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In compliance with the compatibility · conditions (1.4), the following expressions .for 
the strain gradient and velocity junips are obtained in the case of strong discontinuity 
waves: 

(1.7) 
[ x1ct] = H 1N", 

[.X'] = -H1U,'" 

The value of H 1 characterizes the magnitudes of jumps of the strain gradients x'm and 
velocity x1; it is called the amplitude of a strong discontinuity wave. 

Let us pass to the momentum and ·the moment of momentum conservation laws. 
Consider two positions of the surface 9', at the instants t1 and t2 and construct a curvi-

FIG. 1. 

linear cylinder based on 9', (Fig. 1). In the time interval t 1 < t < t2 the front surfaces 
of the cylinder are acted on by the force 

(T.R,"YN«L1S+(TRi«)8 (-N")JS, 

TR1« being the Piola-Kirchhoff stress tensor. The forces acting on the lateral surface are, 
for small t2 -t1 , small values of a higher order of magnitude. The impulse of that force 
is equal to the momentum increment. Since the mass of the cylinder equals f!R U,(t2 - t1)JS 

the following relation holds true: 

Passing to the limit with Ll S --+ 0, t 2 --+ t 1 , we obtain the momentum conservation law 
in the form 

(1.9) 

According to the energy conservation requirements, the following equation must be 
satisfied: 

(1.10) 
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312 Z.· WESOWWSKI 

Here i}K denotes the increment of kinetic energy, ~E- the increment of potential energy 
L·.....,.. work, Q ~heat. All the magnitudes are referred to the cylinder under consideration 
and to the time interval t 1 < t < t 2 • 

In considering the cylinder shown in Fig. I we obtain the following expressions for 
~K, ~E, ~L and ~Q; 

~K = ~eR u,(t2-tl)L1S[(x,)8 (x')8 -(x,)P(xill = ~eR u,[xixi]LJS(t2-tl), 

~E = (!R U,(t2 -t1)L1S(iJB-;t?) = (!R U,[u]L1S(tz~tt), 

(l.fl) ~L = (TRi<~YN<~L1S(x1l(tz- tJ + (TRt<~)8( -NIX)L1S(xi)6(t2- t1) 

= - [TRtiXxi]N<~L1S(t2-tt), 

~Q = -Q/N<~L1S(t2 -t1)-Q/( -N~)L1S(t2 -t1 ) = [Q<X]N(IL1S(t2-t1). 

Here u denotes the potential energy of a unit mass. In elastic materials u = u(xi(l, 'YJ), 'YJ 
being the entropy. Q(l is the heat flux referred to the configuration BR. 

Substitution of Egs. (I.ll) into Eq. (1.10) and passing to the limit with L1S-+ 0, 
t 2 -+ t 1 yields the equation of energy conservation 

(1.12) 

It will be shown later that if x' suffers a jump, then the entropy 'YJ must also suffer a jump. 
According to the second law of thermodynamics, the following relation holds true 
(T denotes the absolute temperature): 

[ 
(~)B (Q«l] 

(!R C/,L1S(t2 -t1)'Y}8 -(!R U,L1S(t2-t1)'Y}F ~ ---;pr---;p- N<~L1S(tz-tt)· 

Passing to the limit L1 S -+ 0, t 2 -+ t 1 , we obtain 

(1.13) 

If the process is adiabatic, then Q« = 0 and the inequality (1.13) is reduced to an in­
equality concerning the entropy jump 

(1.14) 

The equations derived should be complemented by the appriopriate constitutive 
relations. In the case of a non-linear elastic material such relations have the form 
(cf. e.g. [1]) 

(1.15) u = u(xiiX, 'Y}), 

(1.16) T 
(I au 

Ri = (!R -a · ' x' IX 

acf 
T=-. 

a'YJ 

The above enables us to express [TRi<~]' is terms· of· [xi«] and ['YJ]. 
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2. Adiabatic wave 

Let us confine our considerations to adiabatic waves. Since in such cases there is no 
heat flow, Eqs. (1.7), (1.9), {1.12), (1.15) and (1.16) are reduced to the following equations: 

(2.1) [TR;ot]Ncx = -eR Uv[x;], 

(2.2) 

(2.3) 

{2.4) 

(2.5) 

(2.6) 

(2.7) 

eR Uv[O']+ ~eR Uv[x;x1
] = - [TRicxx1]Not, 

[x1cx] = H 1N(7., 

[x1
] = -H1Uv, 

T 
et 00' 

Ri = eR-8 1 , 
xot 

[?J] ~ 0. 

Equations (2.1)-(2.6) form a system of 26 equations with 27 unknowns [TR1cx], [xiot], 
[.X1

], [0'], [?J], Hi and U11 • Thus the solution will depend on a single parameter; the 
parameter, which will be introduced later, will be shown to have a simple physical inter­
pretation. From all the solutions we should select those which satisfy the inequality (2.7). 

Let us consider a wave which is propagated into an initially strained material. The 
following relations hold 

[xix1
] = [.Xi][x1]+2(x1l[x;], 

(2.8) 
[TR;r7xi] = [TRicx][xi] + (x1l[TRtot] + (TRiot)F[xi]. 

Equation (2.2) is then reduced to 

(2.9) eR Uv[O'] + ~ eR[xi][x1
] = - [TR;cx][x1

] Ncx- (TRtcx)F[:(1
] Ncx. 

Multiplication of Eq. (2.l)by [.Xi] yields 

(2.10) [TRtcx][x1
] Ncx = -eR Uv[xi][x1

]. 

On substituting the result into Eq. (2.9) we obtain two equivalent equations 

(2.11) 

(2.12) 

eRUv[O'] = ~ eRUv[x;][x1]-(TRiacl[x1]Ncx, 

2eR Uv[O']+ [TRtcx][x1]Ncx = -2{TRicxl[.X']Ncx. 

Let us assume O'(Xioc, 17) to be an analytical function of its arguments. In compliance with 
Eq. (2.5) the stress TR1a. is also an analytical function of the same arguments, and hence 
we have 

""= u" + ( !~J [x'.]+ ( ~~ r [rJ]+ ~ LJx~2;x'J [x'.][x'.]+~ ( a:.:~J X 

X [x'.][f}]+ ~ (:~~ r [rJ]'+ ! (Ox'. :;:ax•.J [x'.][x'p][xm,]+ ... , 
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314 Z. WESOWWSKI 

These expressions are now substituted into Eqs. (2.1) and (2.14), taking into account 
the relations (2.3) and (2.4). For the sake of brevity the following notations are introduced: 

( 

:~M )F a. fJ y u (] 

~· = ox' a~ a~ ' M a. fJ y ... 

(2.13) 
( 

j)M+N(J )F 
(Ja. fJ y -
~~ - OX1 j)_xk 0~ 0 N ' M N a. fJ , ... 1J 

[rJ] = s. 
In such a manner we obtain two equations: 

(2.14) { u1"/ H'Np + "•"• S + ~ [ u,"/ •' H' a• NpN, + u1"/.H' Np S + u,''•• S2
] 

+! (ai«/,.Y,/H"H"'H"Na.NpNIJ+aia./,.Y11 H"H"'NpNyS 

+ u1"/..,H'Np S2 + u,• ..,. S'] + ... } N. = u; H1, 

(2.15) 2ea U. { u;• H'N. + "• S + ~ [u1"/ H1 If' N. Np + u, "•H' N. S +."•• S2
] 

+ ! [a,a.l ,.Y H' H" H"' Na. Np Ny + aia.,/11 H'H"Na. Np S + a1a.1111 HNtS S2 + t111'~'~ S3 ] 

+ 2~ [u,•/ .•:H'H'H'"ll"N.NpN,N,+ ... ]}-ea U,H'N.{u1"/H'Np+u1"•S 

+ ~ [ata.tfJ ,.Y H"H"'NpNy+a1a./11 H"NpS+ a/1·'~'~S2] 

+! [u,•l .•:H'H'"ll"NpN,N,+ ... ]} = 2(Ta1"/U,H'N •. 

According to the formula (2.5) 

(2.16) (T,.,"/ = ea( il~~ r = ea u,• . 
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It follows that the first and last terms of Eq. (2.15) are reduced and the expression (TR/"l 
does not appear in Eqs. (2.14) and (2.15). Dividing ·Eq. (2.15) by (!R U, and ordering the 
result according to the powers we obtain 

(2.17) -! Uja./m'~JliHkH"'Na.NpNy-
1
1
2 

Uia.k{Jmyn1lPJPH"'H"Na.NpNyNI 

+S(2a,-! a,•/,H'H*N.Np- I~ a,•/,/,H'H•H"N.NpN,) 

S2 ( 1 a. H'. I a. fJ ; k ) + u""- 6 u;"" Na.- 12u, k ""H HNa.Np 

S3 ( 1 1 a. ni ) 4 ( I ) _ + 3u'~'~'~-Uu' 'l'l'lnJN~~. +S Uu'~'~'~'~ + ... - 0. 

Equations (2.14) and (2.17) constitute a system of four equations for the five unknowns 
H', U" and S. 

3. The propagation condition 

Let us pass to the derivation of the propagation condition of the strong discon­
tinuity wave. Equations (2.17) allows, in principle, for the determination of the function 
S = S(H;); however, since the order of that equation is infinite, the closed-form solu­
tion can not be determined. The solution will be sought for in the form of the following 
power series: 

(3.1) 

Let us observe that if H 1 = 0, then also [x'] = 0, [x~] = 0 and, according to Eq. (2.13), 
[u] must be equal to zero and [1J] = S = 0. It follows that C = 0. Inserting Eq. (3.1) 
into Eq. (2.17) and ordering the result according to the products HiHi ... we obtain the 
equation 

(3.2) H'(2C, a,)+ H' n•(2C,. a,+ c, c. a,.,)+ n•n• H" (- ! a,•l .'N. Np N, + 2c, •• a, 

+! c,c.c.a,.,- ! c,a.•,!,N.Np-! c,c.a.",.,N.+2c,c •• a,.,) 

+H'H•H"H"(- I~ a,•.t._.7 /N.NpN,N6 - ! c .. a.•!,N.Np 
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This equation must be satisfied .for each JP; this means that each of the coefficients of 
the consecutive products H1H"Hm .. . equals zero. It follows that 

c, = c," = o, 

(3.3) C - .1 ... ex {J YN. N N./ 
ikm - 30'i k m ex {J y a,, 

and consequently, according to Eqs. (3.1) and (2.7), with the accuracy up to the terms 
(JP)4 we have 

(3.4) 

S = ;
2

utex/m11lPH"lrNexNpN,/a11 + 2~ u,a.,/mY,/'Jl'H"ll"'H"NexNpNyNI/0'11 + ... ~ 0. 

The jump of entropy rJ is then of the order of m3
, m = y H 1H1• Obviously S 2 is of the 

order of m6
, S3 of the order of m9 etc. Observe, moreover, that a11 is equal to the absolute 

temperature and hence utJ > 0. 
Let us now pass to the determination of the propagation condition, the terms of 

orders which exceed m4 being disregarded (all the derivatives are assumed ·to be of the 
same order). According to the above remark the expressions S2

, S3 , .. • are disregarded. 
Inserting the expression (3.4) into Eq. (2.14) we obtain the equation in which the only 
unknowns are the amplitude H 1 and the propagation speed U0 of the strong dis­
continuity wave 

(3.5) a,ex/H"NexNp+ ~ a/\pm.,H"HmN(1;NpNy+! u,ex/m"~/H"HmH"NexNpNyNI 

+ 2~ a,"/ •'•' /H• If"' ... NA + (a,".N.+a,".J'.n•N.N~)(! <Im'.'/H"' H"H'N,N,NA 

+ ~ <Im'.'//H"'H"H•H•N,N,NAN•) /a• = H, Ui. 

This is the propagation condition of the strong discontinuity wave. If the absolute 
value of the jump is prescribed, 

(3.6) m = (H,H')l/2 = ([x'a][x,cx])lf2, 

then Eq. (3.5) constitutes a ' system of three equations with three unknowns: the propaga­
tion speed Uu and two directional coefficients of the amplitude H1• The system may 
be solved by means of, say, the method of consecutive approximations or by numerical 
methods. Once the direction of H1 is determined, we should verify whether S given by 
Eq. (3.4) satisfies the inequality (2.7). IfS~ 0, the wave can be propagated; if, in contrast, 
S < 0, then the solution is of a purely formal character and the strong discontinuity 
wave does not exist. The absolute value m of the jump of H1 is now found to be the para­
meter which was mentioned before in the discussion on the number of equations and 
unknowns. The solution depends on the wave intensity, its measure being m. Another 
problem arises in determining the eqUations of transport which could express m as a func-
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tion of the position of f/ v· This problem will not be dealt with here; it may be mentioned 
solely that the magnitude of m is influenced not only by the initial conditions but also 
by the boundary values. 

Observe that if H1, U" satisfy the condition (3.5) and the inequality (3.4), then also 
H 1

, - Uv must satisfy Eqs. (3.5) and (3.4). The strong discontinuity wave propagating 
in a certain direction may hence also be propagated in the opposite direction. It should 
be stressed that in spite of H' and [x'«] being the same for both waves, the velocity 
jumps [.X'] of those waves differ by the sign; this follows from Eq. (2.4). 

4. Propagation speed and the amplitude 

The condition of propagation (3.5) is a non-linear system of three algebraic equations 
for four unknowns: the amplitude H 1 and speed Uu. Its solution must then constitute 
a one-parameter family of magnitudes (H1, Uv). Equation (3.5) is an algebraic equation of 
the order of infinity, thus it can not be determined in a closed form. In order to find an 
approximate solution let us observe that H 1 /m is a unit vector the direction of which 
depends on m. The vector and the propagation speed are now assumed to be 
expandable into power series of the parameter m, 

H'(m) o 1 2 
·(4.1) --= H'+mH1+m2H 1+ ... , 

m 

0 1 2 
(4.2) C!v(m) = U+mU+m2 U+ .... 

Let us now substitute the expressions (4.1) and (4.2) into the propagation condition (3.5), 
the parameter m being treated as small. The procedure yields the following system of 
equations: 

(4.3) 

(4.4) 

(4.5) 

0 0 
(a/f~c~N«Nfl- U2g;~c)Hk = 0, 

o 1 o 01 I o o 
(a1«,/Na.Nti-U2gilc)H!-2H1 UU+_a1«,/~rH"ll"'N:x.NpNy = 0, 

2 
0 2 002 101011 01 

(a,«,/N«Np- U2g,~c)Hk-2H1 UU- (2H1 UU + H1 UU)+a{\11 ,/ Hk HmN«NP Ny 

1 ooo I ooo 
+-

6 
a,«kflmY,'JrnmH"N«NfiNyN6+ _ai«'f}N«a/mY/HkHmH"NpNyN6fa'1 = 0. 

12 

These equations should be complemented by the condition H1/H1 = m2
• According to 

Eq. (4.1) we have 

(4.6) 

(4.7) 

(4.8) 

7 Arch. Mech. Stos. nr 3178 

0 0 
H 1H 1 = 1, 

1 0 

H 1H 1 =0, 

2 0 1 1 

2H1H1+H1H1 = 0. 
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0 

Equations (4.3) and (4.6) constitute a system of four equations for four unknowns H 1 

0 
and U". Once the unknowns are found, Eqs. (4.4) and (4.7) are treated as a set of four 

1 1 
equations for the unknowns Hi and U". A similar procedure leads to the determination 

K K 
of all subsequent coefficients Hi, U" of the series (4.1) and (4.2). From Eq. (4.3) it follows 

0 0 
that Hi is the eigenvector, and U2

- the eigenvalue of the tensor aia./Na.Np. 
Let us multiply Eqs. (4.4) by JP. The expression in parenthesis is symmetric in i and 

k and thus, in view of Eq. (4.3), the first term vanishes. Using Eq. (4.6) we obtain 

(4.9) 
01 1 0 0 0 

2UU = 2a/\pm,HiHkHmNa.NpN,. 

For small amplitudes the second term in Eq. (4.3) is neglegibly small when compared 
with the first one, and from Eq. (1.14)2 it follows that a'1 > 0; hence we have 

0 0 0 
(4.10) a/'lm"HiHicnmNa.NpN, ~ 0. 

In view of Eqs. (4.9) and (4.10) the inequality 

(4.11) 
1 1 0 0 0 

U = - 0 a1a./ m"~IPH~HmNa.NpN, ~ 0 
4U 

is always satisfied. The propagation speed of the strong discontinuity wave is then found 
to increase with increasing values of the velocity jump. 

Substitution of the expression (4.9) into Eq. (4.4) yields the non-homogeneous syste,m 
of algebraic equations 

0 1 0 0 0 0 
(4.12) (aia/Na. Np- U2gik)Hk = 2ara.imf1H"Hm(HrH,- {JDNa.NpN,, 

1 0 I 
which uniquely determines this part of Hk which is orthogonal to Hk; the part of Hk 

0 
parallel to Hk must be assumed, in view of Eq. (4.7), to be eq:ual to zero. In turn, on 

0 2 
multiplying the expression (4.5) by H 1 the value of Hk is eliminated, what yields an equa-

2 2 
tion for U, and then we may determine H satisfying Eqs. ( 4.5) and ( 4.8). Such procedure 
makes it possible to determine all the coefficients of the expansions (4.1) and (4.2). 

The function (1.5) maps the surface f/" in BR onto a surface !/" in B. This surface 

is propagated at a velocity u" different from U". The normal n1 to the surface !J" is de­
termined by the formula 

Uv 11.T ( -l)a. (4.13) ni = -u:/Ya. X i. 

If H 1 is parallel to ni, the wave is longitudinal, and if it is perpendicular to ni, the wave 
is transverse. From the above considerations it is evident that the direction of H 1 varies 
with variable intensity of the strong discontinuity wave. For instance, if for a certain 
m0 the wave is longitudinal, then, in general; for m < m0 and m > m0 the wave ceases 
to be longitudinal. 
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In the particular case in which all the derivatives of t1 are of the form 

(4.14) 

in which h/ is an arbitrary tensor and rJ't'''/ ;,Y is zero provided rJ. ::f:. i or fJ ::f:. k or y :F m, 
1 2 

then H" = Hk = . . . = 0 and the direction of the amplitude is independent of the wave 
intensity. 

Let us now demonstrate certain connections between the waves of strong and weak 
discontinuity. The weak discontinuity wave embraces the totality of phenomena con­
nected with the surface at which ~i, x 1

1X and x1 are continuous, and all second derivatives 
of the function ~i are discontinuous. Such a wave is usually called an acceleration wave. 
The corresponding jumps of the second derivatives are determined by the formulae 
(cf. e.g. [1]) 

(4.15) 

[ x'IX.p] = A1NIX Np, 

[x1.1X] = -A'NIX U, 

[i1
] = A1U2, 

and the propagation condition has the form 

(4.16) 

The higher order waves for which the n-th derivative of ~1(X«, t) is discontinuous have 
the same direction of propagation, Eq. (4.16}, and the same propagation speed U. U is 
called the sound velocity since the sound wave constitutes a superposition of such waves 
for n ~ 2. 

The propagation speed U and the amplitude A" of an acceleration wave are 
independent of the absolute value of that amplitude (AkA~c) 112 • Thus the situation is en­
tirely different from that corresponding to the velocity wave. 

Let us denote by UF and (Akl the speed and amplitude of an acceleration wave 
propagating in front of the velocity wave !/. In view of Eq. (4.16) the condition of 
propagation of that wave is 

[( axr:x'J N.Np-(U')2g,.](At)F = 0, 

or, using the notations of Eq. (2.13), 

(4.17) [t1i
01lNocNp-(Ul)2g,k](A"l = 0. 

Let us observe that Eq. (4.3) is identical with Eq. (4.17). At m~ 0 we have U, = U 
and hence Eq. (4.3) describes the strong discontinuity wave with an infinitesimal value 
of m. This observation yields an important conclusion, namely, that a velocity wave with 
infinitesimal intensity propagates in the same manner as the acceleration wave, and the 
following conditions are satisfied: 

0 

(4.18) 
u = UF, 

0 

H" = (A"l/I(A~Fj. 

7* 
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In view of Eqs. (4.2), (4.3) and (4.18) we have the approximate equality 

(4.19) 

the last term of which is positive. 
Let us then consider the acceleration wave propagating immediately behind the strong 

discontinuity wave front. Its propagation speed is denoted by U8
• The strain gradient 

right behind the strong discontinuity wave is approximately equal to 

and so the following approximate equation holds true: 

( 
iJ2 )

8 ( 02 )p ( 03 )F o o 
ox'cz:.xkp = ox'cz:x"p + ox'czo.xk:ox"', mlf'Ncz = (Jt«l+(Jt«l,.Ymlf"'N,. 

The propagation condition ( 4.16) of the acceleration wave under consideration takes 
now the form 

0 
(4.20) [((J,czl +m(J'cz"fJ mYH"'N,)NczNp- (U8

)
2Ktt] (A")8 = 0. 

0 

Due to the approximate relation (A")8 = (A"t = H" we may write another approximate 
equation 

0 0 0 0 0 0 

(4.21) 
(U~2 = ((Jtl+m(J,czlmYH"'N,)H1H"NczN8 = (UP)2 +m(J,cz,fl,.,H1H"ll"'NczNpN,, 

The inequality (3.4) proves that the last term in Eq. (4.21) is positive. The relations (4.19) 
and (4.21) lead to the conclusion that 

(4.22) 

The speeds UF and U8 are the propagation speeds of the acceleration waves 
moving immediately in front of and behind the strong discontinuity wave which itself 
is propagated at the speed U,. The sound waves are propagated at the speed equal 
to that of the acceleration wave. Thus the inequalities ( 4.22) yield an important quali­
tative result: the strong discontinuity wave represents a supersonic wave in the medium 
in front of the wave, and a subsonic wave in the medium behind it. Thus the velocity 
wave catches up with the acceleration waves running in front of it, thereby increasing 
(or decreasing) its intensity. On the other hand, it is being caught up by the acceleration 
waves running behind it; those increase or decrease its intensity. 

Let us finally consider two acceleration waves propagating in the region BRP at a small 
1 

distance c from each other. Let us denote by Xfl a point lying at the instant tat the front 
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2 

of the first wave. The point XfJ lying at the front of the second wave is determined by the 
equation 

2 1 
XP = Xf1-cNI1. 

Denote by (xicx)t the strain gradient at the front of the first wave, and by (Ai)t- its am­
plitude. The strain gradient and velocities of the second wave are approximately equal to 

(x1«)2 = (x1cx)t + (x1cx,p)t( -eN~, 

(xi)2 = (xi)l + (.i'.cx)( -cN11), 

and hence, in view of Eqs. (4.15), we have 

(X
1cx)2 = (xicx)t -c(A1)t Ncx, 

(4.23) 
(.i')z = (xi)t + c(Ai)t Ut . 

Let us also consider two waves for which (x1)z- (xi) t has the same sign as the jump 
[ .i'] of the velocity wave. If,, for instance, the velocity wave is dilatational, then we con­
sider the dilatational acceleration waves. According to Eq. (2.4) we have [x1

] = -H1Ufl 
and hence we should assume 

(4.24) 
t 2 

Let us denote by (CJt·,/)1 the value of o2CJ/ox1cxoxkp at the point Xf1. At the point XfJ 
the function (CJ1cx,/) is then approximately equal to 

(CJ,cxkf1)z = (CJ;cx,/)t + (CJ,cx,/ .,")t (- c)(Am)1 N,. 

Denoting by U 2 the speed of the second wave and talcing into consideration the fact 
that the amplitudes are approximately equal, we obtain the following propagation 
conditions of the first and second waves: 

0 

[(CJ,cx.,/)1 NcxNp- U~gik]( -Hk) = 0, 
(4.25) 0 0 

[(CJ;cx.,/)1 NcxNp+ (CJi«-,l .,")t nmN,c- U~g,k]( -Hk) = 0. 

It follows immediately that 
0 0 

U~ = (CJ,cx,/)tH'HkNcxNp, 

(4.26) 0 0 0 0 0 

U~ = (CJ1«,/)1 H'HkNcxNp+c(aicx,/.,")tH'fikH"'NcxNpN,. 

In view of the inequality (3.4) we obtain 

u2 ~ ut. 
The condition of existence of the velocity wave is the mutual approach of two accelera­
tion waves for which the sign of the difference (.ii)2- (x1)1 is the same as the sign of the 
jump [ x'] of the velocity wave. 
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