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The mathematical yield and /or fracture conditions of elastoplastic

solids

M. GOTOH (KAGAMIGAHARA)

A RATE-TYPE elastoplastic constitutive equation which may be thought to be a kind of extension
of the hypoelastic one is represented by the terms of the invariants and the basic products of
the tensor variables involved in it, i.e. stress o, plastic strain €, strain-rate D and the density
tensor of internal defects p. Then the conditions of constitutive instability are examined in
detail to lead to some equations which are, according to the reference situation, interpreted to
be initial or subsequent yield conditions and,l’or fracture conditions. Specifically, when co-
axiality between the tensor variables holds, the conditions are decomposed into two parts,
i.e. normal and shear types, and involve some simple forms such as Yoshimura’s yield function
and an extended Tresca function. The general form of the subsequent yield condition established
here would offer us a powerful clue to determine the concrete forms of such condition. The
fracture condition is expressed by the terms of o, € and the direction of the stress- or strain-
rate vector. The last term is a new proposition on the so-called fracture criterion and implies
that an abrupt change of the loading (or straining) condition would induce fracture of the
material which could otherwise continue to deform stably or could prolong the life of the
material which would otherwise cease to deform stably.

Rownanie konstytutywne dla ciala spr¢zysto-plastycznego typu prqdkoicmwego, stanowigce
np. uogolnienie réwnania hyposprezystosci, przedstawlono w postaci wigzace] niezmienniki
i podstawowe iloczyny zmiennych tesnorowych, tzn. naprezenia 6, odksztalcenia plastycznego
€, predkosci odksztalcenia D i tensora gestoéci defektow wewnqtrmych p. Nastepnie zbadano
smgélowo warunk: niestateczno$ci materiatlu, by wyprowadzi¢ réwnania, ktére w zaleznosci
od konfiguracji odniesienia moga by¢ interpretowane jako poczatkowy lub kolejne warunki
plastycznosci i/lub warunki zniszczenia. W szczegélnosci, gdy zachodzi wspélosiowos$¢ zmien-
nych tensorowych, warunki te rozpadaja si¢ na dwie cze$ci, tzn. warunki typu naprezenia nor-
malnego i §cinania, przyjmujac proste formy np. warunku plastycznoéci Yoshimury i uogbl-
nionego warunku Treski. Ogolna posta¢ wyprowadzonego tu warunku na kolejne powierzch-
nie plyniecia stwarza nam ogromng mozliwoé¢ wyznaczenia konkretnych postaci takiego wa-
runku. Warunek zniszczenia wyrazony jest przez o, € i kierunek wektora naprezenia lub pred-
koéci odksztalcenia. Predkosé odksztalcenia jest nowa propozycja w tak zwanym kryterium
zniszczenia i implikuje wniosek, Zze raptowna zmiana warunkéw obcigzenia (lub odksztalcenia)
moglaby spowodowaé Zniszczenie materialu, ktéry w innych warunkach mégiby dalej od-
ksztalcac si¢ w sposob stateczny, lub tez moglaby przediuzy¢ istnienie materiatu, ktory w innych
warunkach przestalby si¢ deformowaé statecznie.

Onpepensiouiee ypaBHeHne OJIA YOPYro-IUIacTHYECKOTO Tella CKOPOCTHOTO THIIA, COCTAaBIs-
Ioulee, HanpuMep, 0000IIeHHe YpaBHeHHs THIOYNPYTOCTH, NPEACTABJICHO B BHE CBA3bLIBA-
IOLEM MHBAPHAHTH! M OCHOBHBIE NMPOH3BE/ICHHA TCHIOPHBIX MEPEMEHHLIX T. 3H. HANDSKEHHAS
G, I1acTHyeckoli feopmanmu €, ckopocTH Aedopmarpu D 1 TeH30pa IUIOTHOCTH BHYTPEHHHX
nedexTor p. 3arem MconenoBaHBI MOXPOOHO YCIOBHA HEYCTONUMBOCTH MaTepmana, uToGbl
BBIBECTH YDARBHEHMA, KOTOPbIE B 3ABHCHMOCTH OT KOH(HIypaumM OTCHYeTa MOryT GbITh HH-
TEPNPETHPOBAHL! KAK HAYAIBLHOE WM HOCIENOBATENBHBIE YCNOBHA IUIACTHYHOCTH H/HIH
YCNOBHsA paspylleHHA. B YacTHOCTH, KOTJla MMEET MECTO COOCHOCTh TEH3ODHBIX ITePEMEHHBIX,
3TH YCIOBHA PacTafaloTCA HA ABE YaCTH T. HA3. YCIOBHA THIIA HOPMAJIBHOTO HANPSIKEHHA
H CIBHTa, IPHHMMAA NPOCThbIe (DOPMBI, HAMPHMED ycnoBusA mnactuurocte Hoummypa ® 0606-
mennoro ycnosuA Tpecka, O6mmit BHA BLIBENEHHOTO 34€Ch YCJIOBHA JUIA MOCIE0BATEEHEIX
MOBEPXHOCTeH TedeHHMA CO3JacT HAM OTPOMHYIO BOSMOM(HOCTE ONpEfe/iCHHA KOHKPETHOIO
BHJA TaKOT'O YCJIOBHA. Y CJOBHE PaspylIcHHS BEIPRKAETCH WEpe3 O, € H HANPABICHHE BEK-
TOpPa HAaNpsDKEHWA WM CKOpocTH Aedopmanpm. CropocTs AehopMams ABIAETCA HMOBBIM
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Ope[UIOKEHHEM B TaK HAa3bIBaEMOM KDHTEDHM pDaspyLIeHMA H BbI3bIBAaeT BBHIBOJ,

qTo

BHE3AHOE H3MEHeHWe YyCnoBmit HarpykeHma (wm fedopmaun) moryo 6bl  BEI3BATh
paspyllleHre MaTepHaia, KOTODBI B JODYTHX YCIOBMAX MOT Obl gambiue AedopMupoBaThCA
ycroiumBemM o6pasomM, WiH ke Mor ObI NPOMINTH CYLIECTBOBAHHE MATEPHANA, HKOTOpPBIH
B ApYTEX YCIOBHAX mepectas Obl AedopMHPOBaThCA YCTOMUMBLIM oGpasom.
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Euler stress tensor,

components of a,

principal components of o,

vectorial expression of o,

stretching tensor or Euler strain-rate tensor,

components of D,

principal components of D,

vectorial expression of D,

elastoplastic coefficient tensor of the fourth rank,

(6 x 6)-matrix expression of C’,

co-rotational (or Jaumann) rate of *,

material time derivatives of *,

total plastic strain,

symmetric part of density tensor of internal defect g*,

arbitrary orthogonal tensor,

trace of tensor *, i.e. = (*),

two indices, product of tensors, e.g. [C:D] = C*'Dy,

unit tensor of rank 2,

linear decomposition of the function of &. S, does not contain any terms of
P whereas S, does as well as o and e,

fourth-rank tensors in the relation S; = C,:D and S, = C.:D, respectively,
(6 x 6)-matrix expressions of C,; and C,, respectively,

linear decomposition of C,-Cy, does not have any terms of p whereas Cis
does as well as p,

coefficients in a decomposition of C,,,

metric tensor,

Kronecker delta,

(3 x 3)-matrices occupying the upper and lower diagonal places in C, or C;
for the case when co-axiality between variables holds,

proper numbers of the characteristic equations of Huy,

= Hy+HY and HZ+HS, respectively,

determinant of *,

principal deviatoric stress,

material constants or scalar functions of the invariants of variables involved,
fourth-rank tensor in the relation S; = C%:p,

(6 x 6)-matrix expression of C%,

coefficients in C% and E%,

=E’:é =D, T, does not contain any terms of p whereas T, does,
fourth-rank tensor in T, = E3:p,

(6 x 6)-matrix expression of EJ.
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1. Introduction

THE YIELD conditions or the fracture conditions of elastoplastic materials have been given
intuitively, experimentally, a priori or from the‘view point of energy balance. The classical
Tresca and Mises yield conditions and the recent PRAGER’S kinematical yield condition [1]
and the like are such examples altogether. REINER’s yield condition for viscoelastic ma-
terials [2] and the like are based on energy considerations. And there are also many
works on the yield condition from the crystallographic view points, such as the well-
known BisHoP and HiLL’s work [3]. Studies based on the dislocation theory have also
been developed (e.g. KRONER [4]).

On the other hand, the fracture conditions have been established almost individually
according to fracture type. For example, in brittle fracture the classical Griffith’s theory
[5] which derives a fracture criterion from kinetic and energy balance considerations on
elastic materials with pre-existing cracks and the recent fracture mechanics (see e.g. SiH
and KAassier [6]) which seems to be based on the idea like Griffith’s are often referred
to by the workers in the field of structural mechanics. The conditions of fatigue fracture
are also derived from a similar point of view. As for the ductile fracture condition,
there exist many theories based on the plasticity theory and plastic kinematical
instability conditions like the bifurcation phenomenon with regard to the materials
with pre-existing voids or cavities (e.g. McCrintock [7] and RiCcE and TRACEY [8]).
In atomic scale, interactions between dislocations and cracks, voids or inclusions
are discussed to derive the fundamental fracture conditions (e.g. GoToH [9] and
Yokosor [10]).

As for the yield condition, recently TokUOKA [11] has given a condition derived mathe-
matically from a consideration on the constitutive instability of hypoelastic materials
which includes the Tresca and Mises yield functions as special cases.

In this paper we deduce various conditions of the constitutive instability of rate-type
elastoplastic materials whose constitutive equation is introduced by the author. This
seems to be an extension of the idea of hypoelasticity established by TRUESDELL [12],
making use of the representation theorems for isotropic functions as Tokuoka did. They
may be understood to be subsequent yield conditions or fracture ones according to the
reference situation. The results contain a general form of the subsequent yield condition
which nowadays attracts a great deal of attention of workers in the field of the plasticity
theory (see e.g. [13]). It is expected that this condition will give us a powerful clue to
establish rationally the concrete form of such a condition which should be explored ac-
cording to the circumferences encountered by workers. The results also contain a new
proposition on the so-called fracture criterion which involves the terms of the stress- or
strain-rate vector and implies that an abrupt change of the external condition may induce
fracture of the material which could otherwise continue to deform stably or prolong the
life of the material which would otherwise cease to deform by fracture. The motivation
of this idea on the fracture criterion stems from the author’s experiences with sheet metal
formablity in press working in which various types of fracture phenomenon of sheet
metals play an important role [14], [15].
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Here we should understand the word “fracture” to be that in a macroscopic scale
or a state where crack-formation (i.e. a loss of material continuity) originates in a micro-
scopic scale. The representation theorems for isotropic functions proposed by SPENCER
and RIVLIN [16] and WANG [17] are adopted.

2. Fundamental statements

2.1. The elastoplastic constitutive equation of rate-type

The elastoplastic constitutive equation adopted in this paper has the following form

of rate-type [18]:

(1.1) §=C"D or &=CD,

where o is Euler stress tensor, D is the stretching tensor or Euler strain-rate tensor, °
denotes the co-rotational (Jaumann) rate [19], i.e. ¢ = & —wo+ow, where w is the spin
tensor and - denotes material time derivatives, & is a {column) vectorial expression of
G, i.e. @ = [0y, 023, 033, 023, 031, 01,]7, where T means the transpose and a;; (or ¢*)
are the components of &, similarly f) = [D:y, D32, D;33,2D,5,2D5,,2D,,]T and 6"’ is
a (6 x 6)-positive definite matrix obtained by rearrangement of the elements of the coef-
ficient tensor CP which is of rank 4. Here we consider only isothermal deformations. We
call Eq. (1.1); the constitutive equation of tensorial expression and denote it by CET
and Eq. (1.1), that of vectorial expression denoted by CEV.

The constitutive equation (1.1) may be understood as an extension of the hypoelastic
one introduced by TRUESDELL [12] to elastoplasticity and is derived by the author from
the view point of irreversible thermodynamics, see GotoH [18], although we can find
similar expressions in several papers based on the conventional plasticity theory (e.g. His-

BITT et al [20]).
In Eq. (1.1), D can be decomposed into elastic and plastic parts as follows [18]:

(1.2 D = sym(F, F5}) = sym(F,) = D*+D? = &+¢&°,

where F = 0x/0X, x— Euler coordinates, X —the referential coordinates and the suffix
(¢) means that the referential configuration is taken to be that at the current time 7, where
t is a positive parameter (or time) characterizing the deformation process. D® = €° and
DP = &” are the elastic and plastic parts of D, respectively, where we decompose F, as
follows:

Fo = 0%/0Xq) = 00)0X(y = 00¢/0X )+ 000X ) = € +EP

in which the temporary displacement u is decomposed into the elastic and plastic parts
(cf. e.g. [21]). The total plastic strain up to the time ¢, €?, should be such an integration
of ‘? along the whole deformation history as that €? possesses the property of objectivity
[22]. Namely, under an arbitrary observer transformation which is characterized by an
arbitrary orthogonal tensor Q, it is transformed into Q€”Q”. In an actual computation,
€” may be obtained by subtracting the total elastic strain from the total strain. For con-
venience we denote € by e hereafter.
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Now the coefficient tensor C? is generally a function of o and « (and temperature 7,
though it is omitted here), in which « is a general term for the internal variables, € may
be thought to be a macroscopic reflection of the internal structural changes of the material
due to plastic deformation. In this sense we adopt € as an internal variable. Furthermore
we consider the density of any internal defect produced by plastic deformation such as
dislocations which are associated directly with plastic deformation, and for convenience
we express it by a symmetric second-rank tensor p (cf. PERZYNA [23]). When we specifi-
cally consider p at the symmetric part of the dislocation density tensor p*, (i.e. p = (p*7+
+p*)/2), in the recent continuously distributed dislocation theory, we should refer to
the earlier theory by KRONER [4] and others in which p* is defined by the terms of elastic
distortion around the dislocation lines and not to the theory by MURA [24] in which p*
is connected directly to plastic distortion. This is so since we require p to express the in-
ternal state of the material at the current time and not all the dislocations which swept
out the area under consideration in the past and we will treat it as a variable independent
of . We can assume safely that p has objectivity because it is an attribute of the material.
Thus all of the variables in Eq. (1.1); have the property of objectivity and then under
an arbitrary observer transformation Eq. (1.1), is transformed into the following form
(see e.g. [22]):

Q&QT = f(Qu’QT, QEQT’ QPQT, QDQT)’
in which ¢ = f(o, €, p, D); this the right-hand side of Eq. (1.1),, and thus
Qf(o, €, p, D)QT = f(QeQ”, QeQ”, QeQ", QDQ")

which means that f must be an isotropic symmetric tensor function of rank 2 with the
variables o, €, p and D, where D is linearly involved due to the form of Eq. (1.1),. We
should note that no assumption of material isotropy in the engineering sense is imposed
on this statement and that only the objectivity requirement is completely satisfied. As
we will see later, f can express material anisotropy such as the Bauschinger effect, and
topological distortion of the yield surface and so forth through the terms of € and p,
although we initially assume the materials to be isotropic.

2.2, Invariants and basic products

Now, according to the representation theorem for isotropic functions [25], we know
that the right hand side of Eq. (1.1); can be expressed by a function of the invariants
and the basic products of D, o, € and p, where D should be linearly involved. Here we
show these invariants and basic products by the use of the theorem established by SPENCER
and RIVLIN [16].

2.2.1. Invariants

first order: tro, tre, trp, trD,

second order: tra?, tre?, ..., (9 in all),

third order: tra®, tred, tr(ce?), ..., (16 in all),

fourth order: tr(e?e?), tr(ce®D),..., (13 in all),

fifth order: tr(oe?p?), tr(ep?s?), tr(cep?D), ..., (12 in all).
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sixth order: tr(e?€?pD), tr(a?pe?D), ..., (9 in all), where tr means trace, i.e. trA =
= Aj;. We call all the invariants above Eq. (2.1) en bloc. In the above there are in all
35 and 28 invariants with and without D, respectively.

2.2.2. Basic products (except the corresponding transpose forms)

i) without D

0-th order: 1 (= the unit tensor of rank 2),

first order: o, €, p,

second order: o2, €2, p?, o€, €p, po,

third order: o2€, oep, ..., (9 in all),

fourth order: o2e?, a%ep, ..., (12 in all),

fifth order: o2€?p, a?pe?, oepo?, ..., (27 in all).

We call all the above basic products Eq. (2.2) en bloc. In the above there are 58 basic
products in all total.

i) with D

first order: D,

second order: oD, €D, pD,

third order: o2D, €2D, geD, ..., (12 in all),

fourth order: o?eD, o’De, oepD, ..., (25 in all),

fifth order: o2€2D, a?De?, 6?epD, eo?pD, epa?D, ..., (39 in all),

sixth order o2e%pD, €262pD, €2po?D, €?pDoa?, ..., (120 in all).

We call all the above basic products Eq. (2.3) en bloc. In the above there are 200 basic
products in all total.

3. Representation of the constitutive equation by the terms of the invariants and the basic
products

The constitutive equation (1.1),, CET, can be represented by the invariants and the
basic products given above, i.e. in the terms of o, D; €, D and o, €, D and in the other
terms which include p. Namely,

(3.1) 6 =C"D=S,+8S, = [[« trD+ a,tr(eD) + a3 tr(eD) + o, tr(a?D)
+ a5 tr(e?D) + o tr(ceD) + «; tr(ce2D) + ag tr(es?D) + oo tr(o2e2D)]1
+ [tiotrD+ ... Jo+ ... +ag.D+0ag3(6D+ Do)+ ... + oog(Dae? + €262D)]+S,,

where S, consists of the terms without p and S,, the terms with p in which S, = 0 if
p = 0. The coefficients a, to oes are the functions of ten invariants associated with o
and € i.e. [tro, tre, tro?, tre?, tr(ce), tra?, tre?, tr(ae?), tr(a?e), tr(c?e?)]. S, has 2230
invariant coefficients say age to ;3,5. Expressing S, in the component form we have

(3.2) S = [(0t, G+ oty ¥+ 036 + 0 0 ™ + ... +alod"MofETE) GY
F (oG4 ) .. + g8 gy (GFGY+GU M) ... +ttog(0™ETEHGY
+0Imeer ek G+ ... 1Dy = [C{]"¥:[Dlu, (say),
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where G¥ are the contravariant components of the metric tensor G and g’ = (G*G"+
+G"G")/2. In Eq. (3.2) and the following equations we use the summation convention
if we do not mark the indices with under-bars (—) or do not say otherwise.

Now we adopt the rectangular Cartesian coordinates which coincide with the principal
axes of o at the current time. Then, putting GY = §;;, o¥ = ¢; and o = 0 for i #j,
(i,j=1,2,3), C, in Eq. (3.2) is decomposed into the following form:

(3.3) C; = Ci,+Cy,
(3.4 [Cioliju = Ak ;) 6+ Bijgiu,
Gijia = (O O+ 8udpn)/2,
(3.5) A% = o)+ 0u+ 008 + 0ty 0 Oy + &y 0104+ 0y 305 0F + 025 07 + 029 07 O + o34 0702,
Bf; = dgy+dg3(0i+0;)+ags(c?+0f) (not summed over i,j, k,I);
(3.6 [Cidiju = {38+ XsEmEm +0.506 (01 + 01)exs + 0.5 (011mEmk + Ok ExmEmt)
+0.5ag(0f + 0f)ex + 0.509 (0F EimEmk + OF ExmEmi) } 05+ {01 260+ ... 01845
+ {00 O+ 020 Ok O+ 0z Exr + 022 0F Ot + X 3EimEmk+ - JE1j+ oo + Agq(Eir it
+ €51 8rit) +0.5056(0; Oixerj+ 0 O e + 01 Oenj + 05 0ju8xi) +0.5¢g (Six rerj + 8 ven
+ 0Okt + 01 0xeri) + .. +0.5098 {(Oiktmj+ Ojxmi) 07 €tm+ (Ou1&mj+ O 16mi) O €km} s
not summed over i,j, k, /.
C,, involves only & and C,, consists of & and e. Tokuoka is concerned only with C,,.

As for CEV [Eq. (1.1),], correspondingly to Eq. (3.3) we have
3.7 Cr = C,+C, = (C,o+C0)+C,.

From Egs. (3.4) and (3.5) we have

& Hf 0
Cl =
)

(41,1 +B1,) A7, 13
(3.8) HY = 1 (45.+B3,) A3 ¢,
%1 32 (455 + B33)
B3 0 0
H =] 0 B3 Of,
0 0B,

where [0] = a (3 x 3) — null matrix.

éu is not reduced to the form of Eq. (3.8), except when the principal axes of e coin-
cide with those of o, i.e. co-axiality between o and e holds. For this special case we can
put &;=¢ and &; =0 for i #j (i,j= 1,2, 3), and obtain the following equation:

(3.9  [Ciaijim = [ex(ats +atsex+ ol Ok + g OxEx + g OF + g 0F8L) + Oigp (g2 + <)+ -
+ el of (073 + 074 0% + 0758k + U76 OF + Q7767 + ... + gy 0FEF)] 8i; O+ [aqlei+ £5)
+ g6 (018 + 08) + (g7 + 2ss) (0181 + 0j€5) + Ago(6F + €7) + (oo + 0to2) (07 s + 0 )
+ 0o (07 + 07 e) + (dtos+ os) (0:6 + 0j6]) + ctos(0ie] + 0;67) + (Aos + o) (07 &7
+0€}) + agy (0165 + 0j67)1guii; = Al 0ij O+ B gijia,  (say), on = 20,
not summed over i,j, k, .
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Consequently, we obtain correspondingly to Eq. (3.8) the following equations:

A v 0
(3.10) Ci. == 0 H's}’
%, Hg = those given by the replacement of the superscript o by ¢ in Egs. (3.8), and
(3.8),, respectively.

Next, let us concern ourselves with S;. Here we take only the first order of p into
consideration, for the formulation becomes too complicated if the higher orders of p are
contained. Then S, has the following expression:

(3.11) [S,]Y = C/™ 0y Dy = [C21"™ :[D]pn,
(3.12) S, = [A, tr(pD)+ B, tr(epD)+ B3 tr(cpD) + f, tr(c2pD)
+ﬁ5tr(ezpD)+Estr(cepD)+ﬁ7tr(euzpD)+ oo 4+ B13tr(c?e?pD)]I
+ [Biatr(eD)+ ...J6+ ... +[Ba70trD+fsy, tr(aD)
+Banatr(e€D)+ ... +firstr(c?e?D)](ece?p + peae)
+B379(PD+Dp)+ f350(€pD+ Dpe) + f35, (€Dp + pDe)
+f152(Dep+ peD) + f155(apD+Dpo) + ... +fsg6(cepD + Dpea)
+ ... +fi02(c%€pD +Dpec?)+ ... +f,,(0?€2pD + Dpea?)
+Bio1 (Deae?p + pe?aeD),
where the coefficients f§, to B,s, are the functions of the ten invariants composed of
o, € mentioned earlier.

In the vectorial expression of Eq. (3.11) which corresponds to Eq. (1.1),, C 2 is reduced
to such a concise form as Eq. (3.8) or Eq: (3.10) only when co-axiality between o, € and
p holds at the same time. For this special case we can put g; = g; and g;; = 0 for i # J,
(i,j=1,2,3), and obtain
(3.13)  [Coliju = [(Br0x+ Bzorex+ B30k 0k + a0k 0% + Psoxch

+Bo oxerox+ Broxexoi + Bs outr ok + Poor 0k eld) + 0i(Bror + )
+e(Broout )+ ... +0fef(Brson+ ...)+0i(Baa+Pas i+ Poate+ Pas o + Pusti
+ Bs7 0w+ Pas ok ex+ Boo 0kek + Poo ohed) +0i 0y (Bor + ...)
+oiei(Broo+ )+ ... +0ief0f(Brsat --)10ij0u+ [Bresloi+e))
+B16a(0i 01 +0;0;) + Pr65(0i 05+ 0 01) + Bres(0iei+05€;) + Prer(0ie; +0j€1)
+B1es(0i0iei+0;08)) + Proo(0i 058+ 05 0:8)) + B170(0i 0585+ 0 9i81)
+Bin(ioies+05058)+ ... +Piss(eiofe] +oj07ed)]gijm = A% bijou
+Bfjgiju, (say), not summed over i,j, k, 1,
where B, to fys; are also the functions of the invariants of @, €. §, to fs coincide with
B: to fe in Eq. (3.12), respectively. Finally we have
a H{ 0
e
HY, H = those given by the replacement of the superscript o by ¢ in Eq. (3.8);, and
(3.8),, respectively.

(3.14
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4. The conditions of constitutive instability and their interpretation

4.1. The case of e = p =0

This is the case that Tokuoka was concerned with. CP = é,, and thus
(CR)) det|C,q] = 0

is the condition of constitutive instability which means that D becomes indefinite for
a finite value of & and thus the constitutive equation (1.1) loses its meaning. This situation
may be thought to express mathematically a catastrophic phase change of the physical
state of the material. Then the introduction (or appearance) of € and/or p would recover
the material constitution and hence Eq. (4.1) may be considered to be an initial yield
condition which is Tokuoka’s postulate. We should note that the supposition p = 0
does not mean that the material has no internal defects in the initial state but means that
the defects keep their state unchanged until Eq. (4.1) holds and thus p needs not be thought
as a variable. From Egs. (3.8) and (4.1) we obtain two kinds of the initial yield condition:

4.2 normal type: det|H}| =0,
4.3) shear type: det|H§| = 0,

and the associated flow rules are easily recognized to be the non-trivial solutions of the
equations

(4.4) ¢eD=0 and HID=0

respectively. As Tokuoka shows, Egs. (4.2) and (4.4), include the so-called Mises yield
condition and the flow rule associated with it; (4.3) and (4.4), include the so-called Tresca
yield condition and also the flow rule associated with it.

As we will see later, such a decomposition of a condition as above always holds only
for the initial yield condition.

4.2. The case of p =0 and € # 0

Now we consider the situations where plastic deformation takes place at least once.
For this case

(4.5) det|C,| = det|Cyo+Cpl = 0

is the condition of constitutive instability. If we assume that the subsequent yield condi-
tion, i.e. the yield condition after any plastic deformation, is not influenced by any inter-
mediate unloading, then it may be thought to be the same both for the continuous load-
ing and intermediate unloading-reloading process (see Fig. 1). Namely, the subsequent
yield condition may be thought to be just the re-yielding condition. Thus, considering
the meaning of the supposition p = 0 in the same manner as in Sect. 4.1, we can inter-
pret Eq. (4.5) as subsequent yield condition after arbitrary plastic-straining. In this case
the stability of the material constitution may be recovered by € and p which are newly
introduced by re-yielding. This is the reason why we do not think that the condition (4.5)
is a fracture condition which means an origination of loss of material continuity. The
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condition (4.5) cannot be necessarily decomposed into two parts like Egs. (4.2) and (4.3)
because Eq. (3.10); has no generality. We should understand it as a single condition,
referring to Eqgs. (3.6) and (3.8), . Specifically, however, when co-axiality between o and
€ holds, such a decomposition is again available, and then from Egs. (3.8),, (3.10), and

b

G3 G3

Gy Gy

FIG. 1. A subsequent yield surface: a) a proportional loading, b) an unloading-reloading process. (Schematic
illustrations in a two-dimensional stress space).

(4.5) we obtain the subsequent yield condition of normal type and the associated flow
rule

(4.6) det[HZ +HS| = det|HZ| = 0

and the non-trivial solution of the equation

@7 HYD =0,

and the subsequent yield condition of shear type and the associated flow rule
4.8) det[Hi+H§| = det|HF| = 0

and the non-trivial solution of the equation

4.9) HZD = 0.

From Egs. (3.8)3,3, (3.10),,3, (4.6) and (4.8) it is easily found that Egs. (4.6) and (4.8)
involve the Mises and Tresca yield conditions for the isotropic work-hardening materials
for the case when the effect of € is expressed only by scalars (e.g. tre?) as the usual assump-
tion made in the classical plasticity theory.

4.3. Examples of the subsequent yield condition in the case when co-axiality between o and € holds
4.3.1. Normal type (i)
In Egs. (3.4) and (3.9) let us put the following:

1
A+ A5 = Aa-l-ﬂx-?isk—“z—' Aq(ei s+ &xss),
(4.10) ij+-8i8; = F‘,
.= g;—p, p=tra/3,
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where 4o, --., 4, and pu are the material constants and s; is the principal deviatoric stress.
Then the proper numbers Hy® of Eq. (4.6) are obtained as follows:

Hy®D = p+ (A sese— Aaa5i),
Hy? = 3%0+pu, Hy® =p.
Putting Hy = 0, we obtain the following subsequent yield condition which shows a shift
of the center of the yield surface:
SiSk— Ager s = W,

A= fdy, p = —ulh.

@.11)

(4.12)

4.3.2. Normal type (ii)

In Eq. (4.11) we regard u as a function of the invariants and put
(4.13) B = po+ (A28 +Ased)st,
then, correspondingly to Eq. (4.11), we obtain
Hy® = po+ {(Ay + A28+ A38) 5§ — Ag8x S}
(4.14) Hy® = 320+ pto+ (Aex+ Asek) sk,
Hy® = po+ (A8 + A367) 5%,
where & and s are understood to have a single index k and not to be equal to & & and
Sk Sk, respectively. Putting Hy* = 0, we obtain another subsequent yield condition of
normal type as follows:
(4.15) (Ay+ Arer+ Ax€2) S8 — A& sy = — o

It is just worthy to note that Eq. (4.15) is a special form of the so-called Yoshimura’s
yield condition [26] which can express both a shape change of the yield surface and a shift
of its center due to plastic deformation.

4.3.3. Shear type

In Egs. (3.8); and (3.10); we put
(4.16) 5+ Bij = pot (i1 + pagj+ pseit pae] + psel + pyqeie))si
(U + pati+ 58+ € + pug€] + 117€:87) S+ (Ua + po s+ fyofi+ Py €] + ph1 28T
+ p188i8) ST+ (o + foi+ 1€+ Py 1 EF + 1 28] + 1 8€i8)) ST+ {13+ pra(Eit€))
+.“'is(ssz+512)+#193331}5i51+ﬂs(5i+3j)+l"6(£i2+512)
+u68i€; = By;, (say), not summed over i and j.
With regard to a combination of the fixed i and j, B;; = 0 gives a subsequent yield condi-
tion of shear type associated with D;; when o is the intermediate principal stress, where
i#j#k#i (see Eqgs. (4.8) and (4.9)). Specifically, when we put
By = 2 = flo = 1o = P13 = flya = 17 =0, plg = —pq, fis = —la,
Py = piz = —05p18, 1o = ~2uys = =215, P15 = —2U11, fHrs = 26>
B3 = Bapa[2011,  pe = #%Mﬁu, us = #o—(.ui:!‘q'ﬂu) and B;; =0,
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Eq. (4.16) reduces to
4.17)  lea—esl " [(s2—53)— {pa+ po(e2+€3)}/ {2011 (22— 23)}| = V:;‘_E)'T'm,
which is for the case when o, i§ the intermediate stress. Or, when we put
Py = 3 = g = fig = fig = fhyo = f1y = P12 = 33 = 0,
Pas = =23, faa = s = o =0, 6= —2us, pe = pi[4ps, B3 =0,
Eq. (4.16) reduces to
4.18) I(s2=s3) = (62— £3) (s /22)| =V = peolpiz-

It seems natural to call the conditions (4.17) and (4.18) the extended Tresca yield condi-
tions.

5. Representations by C.-C. Wang’s theorem and their interpretation

Here we examine the condition of constitutive instability by means of Wang’s repre-
sentation theorem for isotropic functions [16]. Specifically, we concern ourselves with
some fracture conditions. First, rewritting Eq. (3.12), we have

(.1 S; = [yitr(pD) +y, tr(epD) +y3tr(opD)]1+ [y, tr(pD)
+ ..Jo+ [yatr(pD)+ ...]e+ [psotr(pD)+ ...]62+ [y, str(pD)+ ...] €2
+[y16tr(pD) + ...](o€+€0)+ [y, otr(pD) + ...](6%€ +€0%) + [y1, tr(pD) + ...]
x (€’°0+0€?)+ [y,s5tr(pD) + ...](0%€? + €°0%) + [y 5 trD +y,5 tr(oD) + 3, tr(eD)
+¥3,tr(@?D) + y3, tr(€2D) ;3 tr(ceD)] p+ [ya trD+ ...] (ep+ p€)+ [ysotrD
+ ...J(ep+p0) + [yastrD+ ...](a%p+ pa?) + [ys, trD
+ ...]J(€’p+p€?) +y55(pD+Dp),
where y, to ysg are the functions of the ten invariants of o, € already mentioned earlier.

5.1, Fracture condition expressed by the terms of o,€ and D

Equation (5.1) can be written by the following component form:
(5.2)  [S.)7 = [CJ™™:[Dlpn:[pls = [CH/:[p)s = [{y:8™"

+?2(8mkGuI+ EmlGnk_i_ EnkaI+sn!Gmk) +y3(rf“"G"‘+rf"‘G"“+o"*G”“+¢f”'G"'*)}G‘j
+ {78 3o (g™ ) (10} TGt (s .} G
+{V16 - J(0"E7 +70™) Gpr+ {¥10 ... }(6" 058 + €70, 50Y) + {922 ... J (€5 0 +
+ 06, 8) 4 {V25 ... H0T 008 Eppp+ 7615 0% 0100) G + [ 25 G™ + V29 ™ + Y 308™
+731 0™ Gur + V326" " G+ Y33 ™€ G ) g + [y 34 .. ] (€4CT + G
+£jkGﬂ+8leIk)+ [Ys0 “_}(dikGﬂ_i_ G* 4 A* G+ g1 G) + [Vas ---] {(Gikon
+G"*) 0 + (G 0" + G *) 03} + [y52 ... 1 {(G™*&" + G"e*)ei + (GT*&'*
+Gjlsk3)£;j}+yss(gikm6jl+gilmij _+_gjtmGil+gﬂmﬂGik)]Dm9“-
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In the vectorial form, Eq. (5.2) is rewritten into
(5.3) S, = C2p,
where p = [011, 022, 0335 2023, 2031, 20,2)" and C? = a (6 x 6)-matrix.

In the special case when co-axiallity between o and € holds, C§ in Eq. (5.2) is simplified
into the following form with respect to the rectangular Cartesian coordinates which
coincide with their principal axes:

(54 [Ciliju= [{{?1+?z(5n+€u)+?3(0'n+“n}{74+ ot {r+ e
+{yio+ ——-}Uiz+{?13+ o yei+ {viet --:}Ui51+{7’19+ .. yoie
+ {¥22+ ... Yol + {yas+ ...} o7l ] Guaki 615+ [{¥28+ V29 Om+ V308m
+931 05 +Y326m+V330mEm} + {Vaat . e+ e)+ (Yot ... (o1 +0))
+ {yss+ .- }(oF+0})+ {ysa+ ... }(el + €)1 Omagijur+ ¥ 58(8ijmt Okn+ Gijni Okm
+ &ijmk Otn+ &1jnk Otm)] D = Aujo 815+ Bij g5+ 9358 Cioj
= {A?:j‘lv 5-:*+B?fm'8w'j'+?sscﬂ}w}-ow = IC;]E',{'&
where no sum is taken except over m and m’, and the rule on the index replacement is
as follows: ij—=i’, kl=j, mmom';i'=ifori=j i'=4fori=2,j=3 and i=3,
j=2,i"'=5fori=3,j=landi=1,j=3andi'=6fori=1,j=2and i =2,

J =1 and so forth. In detail we have

(A11+B1y) Ay, Az Ayg Ags Ass
A2 (422+ B,,) Azs  Ayy Ays Aje
A A3y Az (Ass+Bs3) Asg Ass Ase
G CG= 0 0 0 B0 0
0 0 0 0 B, 0
0 0 0 0 0 B,
4D,, O 0 0 2D, 2D,,
4D,, 0 2D,, 0 2D,,
4D, 2D,, 2D;, 0
T (D22+Ds3) Dy, Dj, ’
(D3s+Dyy)  Das
(symmetric) (Dy1+D35)

(5.6) Ay = [{yi+yaeatea)+ys(at+a)}+ {vat - Yot {m+ .. Ja
+{Viot ol {yia+ e+ {Yist o doet {viet ..}ote
+ {ya2+ ... }oue + {yas+ ... }o?ef]D;, for i=1,2,3,
Aij=0 for i=4,5,6.
(5.7 By; = [{y236"!+?290m+?305m+?31 0%+ Y3265+ Y33 0mén}
+ {V340m+ - Y(Et )+ (Voo Ont .-} 01+ )+ {Vag n+ ... } (07 +07)
+ {y520m+ ...} (&2 + &) D,

where the rule on the indices is the same as in Eq. (5.4).

5 Arch. Mech. Stos. nr 3/78
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According to Eq. (5.3), the equation
(5.8) det|C¥| = 0

is the condition of constitutive instability for this case in which p becomes indefinite for
definite ¢ and D. However, there would be no way any more to recover the material
stable constitution once Eq. (5.8) holds. In this sense, considering this state to be the
onset of “loss of material continuity”, it seems natural to call Eq. (5.8) a fracture condi-
tion expressed by the terms of o, € and D. Physically, the state at the instant when Eq.
(5.8) is satisfied may correspond to the dislocation avalanche which is accompanied by
a local instable deformation followed by fracture within the material. Of course, the
condition (5.8) is a mathematical abstraction of such a physical phenomenon and thus
includes somewhat its idealization.

For the further special case when o, € and D are co-axial at the same time, we can
put Dy = D; and D;; = 0 for i # j. Then 4;, =0fori=1,2,3 and j=4,5,6 and
i=4,56and j=1,2,..,6. Cp.j, =0 for i’ #j and Cyy =4D; for i’ =1, 2, 3.
Csa= D+ D3, Css = D3+D; and Cgs = D;+D,. Putting D; = psgD;, i =1,2,3,
we obtain the following equations which have the same form as Egs. (3.8),, (3.10), or
(3.14):

A ’l—l; 0
(5'9) c2 = lo H;- ]
(A1 + By +4Dy) Az Ay

(5.10) H} = Az (A22+ By, +4D;) Az 5

A3, Asz (433+ B33+4D3)

(B23+D;+D3) 0 Y
(5.11) Hf = 0 (Bs1+ D3+ D) 0 ;
0 0 (Bi2+Di+D;y)

Consequently, the condition (5.5) is decomposed into two parts as follows:
(5.12) normal type: det|H}| =0,
(5.13) shear type: det|HE| = 0.

And the flow modes of internal defects at the instant of the onset of fracture will be de-
rived in a similar manner as the plastic flow rules associated with the subsequent yielding
with which we shall not deal in detail here.

5.1.1. Examples of the fracture condition of normal type

If we put 4;;. = 0 in Eq. (5.12), we obtain a fracture condition

(5.14) Bi+4D; = 0.
This equation involves the following form for D; # 0:
(5.15) {(21+/‘[z€m+ laeﬁ)dﬁ—hsmdm}ﬂi = o,

DY = Dn/D;, Aq, ...,, Ay = material constants,
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where we add the terms ¢y02 and &0 to Eq. (5.8) and then the coefficients 3, may be
different from those in Eq. (5.8). (If we adopt Spencer and Rivlin’s theorem, these terms
are inevitably involved).

If we put B;; = 0 in Eq. (5.12), we obtain

(5.16) Aii+4D; =0

which is also a kind of fracture condition. This involves the following form:

(5.17) (A + Arem+ A382) 02— AsmOm = Ao

Ao, ..., Ay = material constants, which has the same form as the subsequent yield

condition (4.15).

More generally we have
(5.18) Aii+ Bii+4D; = 0,
which involves the following form:

S(Om; em)* D +8(0i, &) = Ao,
D: = n[-Dls
f, g = some quadratic functions of o; and &, where we assume D, # 0.

A striking aspect of the conditions (5.15) and (5.19) is that the strain rate D may
generally affect the fracture condition by the terms of }he ratios between its individual
elements, that is, the direction of the strain rate vector D in the strain space. (Wti should
recall that any fracture criterion ever proposed does not include such terms as D here).
Of course, if D never changes its direction throughout the deformation history imposed
on the material, the fracture condition reduces to the same form as the subsequent yield
one. Equation (5.17) may be understood to represent such an example.

(5.19)

5.1.2. Examples of the fracture condition of shear type

Adding the terms o;0;, &¢; etc. to Eq. (5.8), the condition (5.13) gives the following
fracture condition of shear type for the case when o, is the intermediate principal stress:

(5200 |(02—09)—pi(e2—e3)l = —potV =758(D3+D3)/{/(Gm; €m) Dm}»

Vsgs Hos 1 = material constants, which is derived from the condition B,3+D,;+ D3 = 0.
The function f has a similar meaning as that in Eq. (5.19). Equation (5.20) gives a fracture
condition of the same type as the subsequent yield condition (4.18) if yss = 0. However,
for pss # 0, it also shows that the effect of the strain rate vector like that in Eq. (5.15)
would exist.

5.2. Fricture condition expressed by the terms of o,€and &

Equation (1.1); can be rewritten into the following form:
(5.21) D=FEr:e=T,+T,,
where T, involves no terms of p, whereas T, does [cf. Eq. (3.1)]. T, is expressed by the

same form as the right hand side of Eq. (5.1), replacing D by & and y, to yss by 6, to
dsg, (1ay), which are also the functions of the invariants of ¢ and €. Hence

(522) T, = [8,tr(p8)+ O,tr(epd)+ Oy tr(opd)I1+ ... +dse(pd+3p).

5
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Correspondingly to Egs. (5.2) and (5.3), we have

(5.23) [T2)i; = [E. Tt 61 [plu,
(5.24) T, = Ef:p, T, = Efp.
Then the equation

(5.25) det|E$| = 0

makes p indefinite with respect to definite D and &. Thus we may call Eq. (5.25) a fracture
condition expressed by the terms of o, € and & for the case when they are given. This
also shows a striking aspect that the stress rate could affect the fracture condition.

For the special case when co-axiality between o and € holds, we obtain the following
equation corresponding to Eq. (5.4) with respect to the rectangular Cartesian coordinates
which coincide with their principal axes:

(5.26) [Efliju = [[{51 + 05(em+ &0) + 03(0m+ 0n) + ... ] Gunk1 6i5
+[{02s+ ... }+ -1 Omagija+ 58(-. )] Omn = Fiyr O+ Gisiiyr+ 58 Hijr
= [F¥wOut+ Gl gty + 58 Ht e Vome = [ESNis,
where the rule on the indices is the same as that in Eq. (5.4). We can obtain the expressions
for E¥ corresponding to Egs. (5.5) to (5.8) just by the replacement of 4, B, C, D;; and
¥ in them by F, G, H, 0;; and &, respectively.

For the further special case when o, € and & are co-axial at the same time, we put

6;i = 0; and d;; = 0 for i # j. Then again we obtain two kinds of fracture condition

corresponding to Egs. (5.9) to (5.13). Furthermore, correspondingly to Egs. (5.15), (5.17)
and (5.19), we have the following examples of fracture condition of normal type:

(5.27 {7y +7286m+7362) CA—V46mOm } 0% = ¥,
(5.28) (1 +726m+7387) Oa—V4EmOTm = Yo,
(5.29) S(Om;s em)Om+g(oy, &) = vo,

where ¥, to v, are the material constants, 3% = 6./d;, fand g = some quadratic functions
of oy and &, and the assumption of &; # 0 is made.

As an example of a fracture condition of shear type, corresponding to Eq. (5.20),
we obtain

(G 03)—w, (e, —&)| = —wot l/" 553(&3 +33)[f*(Tm, &m) |

where g, is the intermediate principal stress and 85, wo and w, are the material constants.

Equations (5.27) to (5.30) involve the conditions of the same type as those of the
subsequent yield condition specifically when any change of loading path never occurs
throughout the loading history, i.e. for a proportional (or simple) loading. However, we
should recognize that the stress-rate vector & may generally affect the fracture conditions
by the terms of its direction in the stress space, which has again never been pointed out
by any worker on fracture criterion.
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6. A brief discussion on the proposed fracture condition

To clarify the meaning of a new aspect of the fracture condition proposed above we
consider the special case when the loading path is kept proportional and then subjected
to an abrupt change at the nearly critical state of fracture. Then the following three types
of situation are expected to occur as a result of the influence of the terms of stress vector
involved in the fracture conditions. Figure 2 shows them schematically, for convenience,
in the two-dimensional stress space. In a) curve I shows the fracture locus correspond-

a

FiG. 2. Various influences of an abrupt change of the loading path on the subsequent fracture locus
(Schematic illustrations in a two-dimensional stress space).

ing to the continued proportional loading (1) and the curve 2 shows the one correspond-
ing to the other loading increment (2) which lies on the outer side of 7. Thus the effect
of the change of the loading path could prolong the material life.

In b) the curves / and 2 have the same meaning as those in a), but the resulting
phenomenon cannot be the same at least. On the contrary, we should understand that
a catastrophic fracture would occur at the instant of any abrupt change of the loading
path, because the curve 2 lies on the inner side of /. This case seems most dangerous
in our engineering sense.

Figure c) shows the intermediate situation. Namely, some kinds of change of the
direction of the loading path would induce a catastrophic fracture and others would
prolong the material life.

Of course, the occurrence of a) to ¢) depends on the form of the material function
and constants involved in the fracture condition which should be determined by some
appropriately prescribed experiments.

Evidently, similar conclusions would be drawn with respect to an abrupt change of
the straining path by referring to the strain space.

7. Concluding remarks

The conditions of constitutive instability of elastoplastic materials are examined in
detail with the aid of the representation theorems for isotropic functions. A rate-type
elastoplastic constitutive equation which is an extension of the idea of hypoelasticity and
was introduced by the author earlier is adopted as the basic expression of the material
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constitution. These conditions can be interpreted as the initial and subsequent yield
and/or fracture conditions, according to the reference situation. The general form of
the subsequent yield condition established here may give us a powerful clue to find in
a rational manner any concrete form of such a condition. When o (stress) and e (plastic
strain) are co-axial, the subsequent yield condition is decomposed into two types, i.e. normal
and shear ones, and involves Yoshimura’s function as a normal type and an extended
Tresca function as a shear type.

The fracture condition is expressed in two manners, i.e. 1) by the terms of o, € and
D (strain rate) and 2) by the terms of @, € and & (an objective stress rate), where D or
& plays its role through the direction of its vectorial form (D or é) in the corresponding
strain or stress space. When co-axiality between the variables holds, the condition is again
decomposed into two types, i.e. normal and shear ones, and involves some simple forms.
Formally, the same condition as that of subsequent yielding might be a fracture condition
specifically when the direction of I or G is kept unchanged throughout the deformation
history. However, we should note that the fracture condition newly proposed here implies
some important roles of any change of the external straining or loading conditions. For
example, an abrupt change of the loading (or straining) path could induce a catastrophic
fracture of the material which would otherwise continue to deform stably or could prolong
the life of the material which would otherwise cease to deform stably. The author hopes
that this new proposition on the fracture criterion will enable the present theory of fracture
to make a breakthrough in future development.
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