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On equations of net shells of revolution subjected to rotationally­
symmetricloads 

Z. MAZURKIEWICZ and R. NAGORSKI (WARSZAWA) 

THE EQUILIBRIUM equations for the net shells of revolution in a rotationally-symmetric state 
of loading are derived in a new unknown form (comp. [1]). The procedure is the same as in 
deriving the Reissner's or Meissner's equations for full-walled shells of revolution. 

W pracy wyprowadzono r6wnania rownowagi obrotowych powlok siatkowych w obrotowq­
symetrycznym stame obcil:!i:enia-w innej od dotychczas znanej postaci (por. [1]). Post~powano 
przy tym tak samo jak przy wyprowadzaniu rownan H. Reissnera lub E. Meissnera dla pelno­
sciennych powlok obrotowych. 

B pa60Te BbiBe~eHhi ypaBHeHHH paBHoBeciDI ceTtiaTbiX o6onotiei< apallleHIDI B apalllaTeJI&Ho­
CHMMeTJ>INHOM HarpymeHHOM COCTOIDIHH, HO B ~pyroM, tieM H3BeCTHbiH ~0 CHX nop, B~e 
(cp. [l]). TipH 3TOM nocrynaeTCH Ta1<HM caMbiM o6pa30M, KaK npH BbiBO~e ypaBHeHHH 
r. PeiicCHepa HJIH 3. MeiicCHepa MH noJIHoCTeHHbiX OOOJIOlleK BpallleHIDI. 

Introduction 

IN A THEORY of net shells of revolution which are in a rotationally-symmetric state we 
have three differential equilibrium equations containing six unknown static quantities 
(comp. [1]). In this paper, following Reissner's or Meissner's procedure of deriving equa­
tions for full-walled shells of revolution, we shall obtain a different form of equilibrium 
conditions for three unknown variables. 

1. Basic equations and relations of the net shell theory 

We shall deal with a surface system built of rigidly-joined rods in hinges and per­
forated shell. A detailed explanation of the assumptions as well as the equations, rela­
tions and symbols used in this section may be found in a monograph [1]. 

Let n be a surface segment covered by a net shell parametrized by means of the co­
ordinate system x1 , x 2 • We shall restrict our considerations to the surface on which two 
discrete families of curves (L1) (L1 = I, 11) are given. We shall assume these curves to be, 
according to the assumptions of the theory, the axes of elements from which the shell 
is constructed. The points of intersection of both family curves form the nodes of the 
system. Let aKL, bKL, eKL denote the components of the first and second quadratic forms 
of the surface and components of the Ricci's bivector, respectively, while t~>' tfj> are 
the components of the versors tangent and normal to the family curves (L1), (L1 = I, 11; 
K, L = 1, 2) (comp. Fig. 1), correspondingly. 

2* 
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244 Z. MAZURKIEWICZ AND R. NAGORSKI 

FIG. 1. 

The system of equilibrium equations has the form 

p"NIK-b~p"+bN = 0, 

(1.1) 
m"IK+eKLPKL+bKLmKL+h = 0, 

p"jK+bKLPKL+b = 0, 

m"NIK-b~m"+eNxp"+hN = 0, 

where bN, b are the tangent and normal components of the vector forces, respectively, 
while hN denotes the h-components of the vector of moments of external load. 

The "internal forces" p"N, p", m"N, m" are determined by means of the formulae 

KN ~ KN ~ K ( N p -N p- ) ~--1 
P = L.J P<LJ> = L.J t< 11> t<11> (.1> + t<11> <LJ> <.1>, 

"' ,1 

(1.2) 
K _ ~ K _ ~ K p" ~--1 

p - L.J P<L1> - ~ t<LJ> <11> <11>' 

"' "' 
K - ~ K - ~ K M" ~--1 m - L.J m<11> - L.J t< 11> <LJ> <.1>, 

"' "' 
where i<LJ> denotes a distance between the family curves (L1). The quantities P<LJ>, P<LJ>, P<LJ> 

and M<LJ>, M<LJ>, M<.d>, appearing in the formulae (1.2), are real components of the force 
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ON EQUATIONS OF NET SHELLS OF REVOLUTION 24S 

and moment vectors, respectively, existing in a cross-section situated at a half-length of 
the net shell element (Fig. 2). 

The geometrical relations have the form 

(1.3) 
'}'KS = UslK-bsKU+esKV, 

'}'K = uiK+biuL+egLVL, 

where uK, u are the components of the linear displacement vector and v", v denote the 
components of the vector of infinitesimal rotations in the nodes of the net system. In 

/r-----?.,:- 1...._---+----t -~) 
I I I !lM(A) I 

-K I M(A) I I 
t{tl) 1- 1/2l(tl) .I I~ 1/2l(A) 

FIG. 2. 

agreement with the theory all quantities are continuous and sufficiently regular functions 
of the variables x1 , x 2 and have physical interpretation in the corresponding points of 
the net of the family curves (L1). 

We shall still use the constitutive equations 

(1.4) 

where A~~MN, C~~MN, A~~' C~~ denote the tensors of rigidity of the net shell elements of 
the family (L1). For shells composed of rods we assume them in the form 

AfA~MN = t~>t~>(tfA>t~>R<£i>+fc~>~~>R<£i>), 

(1.5) 
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246 z. MAZURK.IEWICZ AND R. NAo6RSKI 

where 

(1.6) 

S _ c<.d> E<.d> J<Li> " E<.d> J<.d> <.d> - -_-, s<.d> = _ s<.d> = ---...:=_:..........!.:::!._. 

l<.d> l<.d> l<.d> 
Here j<.d> and }<.d> are the basic central moments of inertia of the cross-section of the 
shell element with respect to the axes tangent and normal to the surface n; Ac.d> is a cross-

_j ll 11 L 
--+- ----------!.--~ 

I I 
1- I 
I I 

b(I) = b(rr> 

I 
I 
I 
I 
I 
I 

--- __ _J_ 

lr 
fl=II 

FIG. 3. 

section area; Ec.d> - the Young modulus and cc4> is the rigidity of torsion of the cross­
section for the famiJy rods (L1) (L1 = I, 11). 

In the case of the perforated shell (comp. Fig. 3) the formulae (1.5) will take the form 

AKLMN - K L ~ M N R K -L M -N R-
(.d) - tc4> t<.d> L.J teA> teA> <.d><A> + tc.d> t<.d> t<.d> t<.d> <.d>, 

A 

(1.7) CKLMN _ K -L "\1 M -N S K L M N 8-(.d) - t<.d> t<.d> L.J teA> teA> <.d><A> + t<.d> t<.d> t<.d> t<.d> <.d>, 
A 

CKL _ K tL s" 
(.d) - t (.d) (.d) (.d) ' 

where - -
<5 [Em 'V<n Em] 

[Rf.d><A>] = . . - - ' 1 - Pm Pun Pun Eun Eun 

<52 
s<.d><A> = 12 R<.d><A>, 

(1.8) 
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ON EQUATIONS OF NET SHELLS OF REVOLUTION 247 

with 

"' Q(LJ) Q(LJ) (. A 
(1.9) E<LJ> = E-... -, "<LJ> =, -1- LJ = I, 11), 

/(LJ) (if) 

E denotes the Young modulus, , - the Poisson ratio, ~ is the constant thickness of the 
shell and k<LJ> is a numerical coefficient dependent on the ratio a<LJ> ~- 1 (comp. for example 
[2]). 

2. Equations of the net shells of revolution in a rotationally-symmetric state 

Let x1 = {}, x 2 = qJ, R 1 and R2 the radii of curvatures in parallel and meridian direc­
tions (Fig. 4). The following relations hold: 

(2.1) 

1 
0

22 __ 

- R~ ' 

hi= b! = 0, 

bf = ;1 ' 
1 

0 11 =-
R~ ' 

b22 = _1_ 
R2 ' 

1 · 1 · R:z 
e 2 = -e:z = Ro' 

:z :z Ro 
et = -e • = R2. 

dil' 

FIG. 4. 

In the assumed system of coordinates {}, p we evaluate the Christoffel symbols of the 
second kind 

(2.2) h\}=- R0 cosqJ 

R:z { 
2 } 1 dR2 

: 2 2 = R
2 

dqJ • 
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248 Z. MAZURKIEWICZ AND R. NAOOilS.ICI 

The remaining Christoffel symbols equal zero. Besides, we use the relations 

(2.3) {x\} = RoiR2 ~ (RoR2), {xKI} = 0, d::; = R2cosrp. 

The formula (2.3h has been derived from the Codazzi-Mainardi equations. Assume that 
a shell is in a rotationally-symmetric state, i.e. all quantities are functions of the angle 
q; only (dfd{}( ... ) = 0). Apart from that we restrict our considerations to the case in 
which (comp. page 244) 

(2.4) b1 = h = h2 = 0. 

Inserting Eq. (2.4) into Eqs. (1.1) and assuming corresponding boundary conditions we 
obtain 

(2.5) 

From Eqs. (2.5), (1.2)-(1.4) we find 

(2.6) U1 EV E V 2 E 0. 

After using the relations (2.1)-(2.3) three among the six equilibrium equations (1.1), 
which are not identities, assume the form 

dp22 . 1 d (R R ) 22 1 dR2 22 Rocosrp 11 1 2 b2 0 dfi + R
0
R2 drp 0 2 p + R2 dq; p - R2 p - R2 p + = ' 

(2 7) dp
2 

1 d (R R ) 2 R 11 • 2 R 22 b 0 
. dq; + RoR2 dq; o 2 p + lP sm q;+ 2P + = ' 

dm21 _I _ _!!_ (R R) 21 R2 2 R2cosq; ( u 21)- _1_ t ht- 0 
drp + Ro R2 drp 0 2 m + R

0 
p + R

0 
m +m R

1 
m + - · 

Introducing the physical quantities 

N1 = R~p11 , N2 = R~p22, Q = R2p2, q2 = R 2b2, 
(2.8) 

q:::::: b, M 1 = -R0 R2m12, M2 = RoR2m2\ M= R0 m1
, m= R0 h1 

to the system of. equations (2. 7), we have 

d 
drp (RoN2)-R2cosrpNl-RoQ+R0 R2q2 = 0, 

(2.9) ~ (RoQ) +R2 sin q;N1 +RoN2 +RoR2q = 0, 

~ (R0M2)-R2cosrpMt-R2sinq;M+RoR2 Q+R0 R2m = 0. 

The non-zero components of the state of strain, after using Eqs. (2.1)-(2.3) and (2.6) 
may be written in the form 

y11 = R0 (vcosrp-wsinrp), )'22 = R2(: -w), 
(2.10) y2 = R2(x-8), x = ~2 (: +v), "• = 8sinrp, 
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where the following notations were introduced: 

(2.11) w = u, () 1 V1 =vR0 =-. 
Ro 

Consider the net of the curves (LJ) on the rotational surface composed of the family of 
parallels (L1 = I) and meridians (L1 = 11). Then the following relations hold (comp. [1], 
page 29): 

1 1 
tf•> = 0, . ~11) = 0, tfa> t<l> = Ro ' = Rz ' 

(2.12) 

tfll) = 0, 
2 1 - 1 ~1.) = 0. tl -t<Il> = Rz ' <II>- - Ro ' 

Using Eqs. (2.10)-(2.12), (2.8) and (1.2), (1.4)-(1.7) the constitutive equations assume 
the form: 

for rod shells 

(2.13) 

M,= ~:' Octg<p, 

and perforated sheJls 

N _ C [vctg<p-w vm ( dv )] 
1 - <n +- - -w , 

R1 Rz d<p 

Nz = Con ["(In (vctg<p- w) + _!__( dv - w)], 
R1 Rz d<p 

(2.14) M _ D [ ()ctg<p v(l) d() I 
1- (I)---+--' 

R1 Rz d<p 

where 

(2.15) D - c<Lt>~z 
(.1) - 12 

Mter solving the given boundary-value problem, i.e. after evaluating the static quanti­
ties N 1, N 2 , Q, M 1 , M 2 , M and the geometrical quantities w, v, (), the real forces and 
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moments appearing in a middle section of the net shell element are determined from the 
relations (1.2). Taking into account Eqs. (2.8) and (2.12), we have 

Pm = N1 'ic.n, Pun = N2 ~nh P(ll> = Q/~nh 
Mu>= -M1 i;Ih Mun = -M2lon, Mm= Mi;n. 

(2.16) 

It should be noted that the quantities (2.11) and (2.16) have a physical meaning in the 
determined points of the surface n. Therefore, posing the boundary condition in a manner 
which is usually assumed in mechanics is, to some degree, not exact. However, on account 
of the dense domain of the net elements one may assume that the above fact has small 
influence on the solution. 

Let us now transform the first two equilibrium equations (2.9) to a different form 
which will be more convenient in further considerations. We eliminate N 1 from Eqs. (2.9)1 , 2 

and the resulting equation integrate with respect to 

(2.17) R 0 N2sinq;+R0 Qcosq; = -P*, 

where 

tp 

(2.18) P* = -(N2 sinq;+Qcosq;)R0 IIP=9i+ J R 0 R2(q2sina+qcosa)da. 
q; 

From Eqs. (2.17) and (2.9h one obtains 

(2.19) 

P* 
N 2 = -Qctgq;- R . 2 , 

1 sm q; 

1 d P* 
Nt = -- --(Rt Q)+ . 2 R1q. 

R 2 dq; R 2 sm q; 

Next we reduce the system of equilibrium equations (2.19), (2.9h and the relations (2.13) 
or (2.14) to the system of three differential equations containing the unknown variables 
(0, v) of geometrical kind and one unknown of static kind - Q. We assume that the 
loads q2, q, m are arbitrarily distributed along the meridian. We shall consider the rod 
shell ·and the perforated shell. 

3. System of dift'erential equations for rod shells 

Using the relation (2.13)1 , 2 and (2.10)4 we find 

dv N 2 R 2 N1R1 
- -vctgq; = --- --, 
dq; R<II> Rm 

(3.1) 
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On the basis of Eqs. (3.1) 1 , 3 , after applying Eqs. (2.19) and (2.13h, we obt~in two dif­
ferential equations 

dv 1 [ R 1 dU RmRz U ( R(I)R2 R1 ) P* R2 ] - -vctgqJ = -- ----- ctgqJ- +- --+ 1 q 
dqJ Rm R2 dqJ RuuR1 R00R1 R2 sin2qJ ' 

(3.2) 

where 

(3.3) 

Inserting Eqs. (2.13)4 _ 6 into Eq. (2.9h we obtain the third differential equation 

(3.4) d ( - R 1 dO ) ... R 1 dO - R 2 - Son-- +Suo--ctgqJ-Sm-Octg2qJ 
dqJ Rz dqJ R2 dqJ R 1 

"' Rz -Sm R
1 

0+R2 U = -R1 R2 m. 

The system of equations (3.2h, (3.4) may be written in a simpler form 

(3.5) 

L*(-
1
-,-

1
- -, ~; u)-R2 8 = F*, 

Rm Run Ron 

L*(Smh Sm, Sm; O)+Rz U = -R1Rzm, 

where L * is the following ordinary differential operator with variable coefficients 

(3 ) * [ {1 . )] _ d [ -R1 d( ... ) l R1 d( ... ) 
.6 L ex, 'y, (... - dqJ cx Rz ~ +<X Rz ~ctgqJ 

while F* is 

(3.7) 

The system of equations (3.5) and (3.2) 1 constitutes a complete set of differential equa­
tions of the problem under consideration. , After its solution one may, on the basis of 
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Eqs. (3.3), (2.19), (2.13)4 _ 6 , evaluate Q, N 1 , N 2 , M 1 , M 2 and M. The geometrical quanti· 
ty w is determined from Eq. (2.13)1 

(3.8) 

In the following we shall derive the basic differential equations and relations for two 
technologically important cases, namely for the spherical shell and conical shell. Making 
use of a corresponding limit transition we shall obtain the equations and relations for 
a circular grid. 

Spberical shell 

In this case we have R1 = R2 = R = const. We write the system of equations (3.2)1 , 

(3.5) in the form 

dv R [ dQ R(J) ( Ren ) P! ] 
dqJ -vctgrp = Rm drp - Rem Qctgrp + 1 + Rem sin29' + Rq ' 

(3.9) Lt --,--,-.... -;Q -O=F!, ( 1 1 1 ) 
Ru> Rul) Reil) 

wliere 

fJ . d [ d( ... ) ] d( ... ) {J( ) 2 ( ) Lt[ct, , y,( ... )] = d9' «T +a.-aq;-ctg9'- ... ctg 9'-Y ... , 

(3.10) 

d(I P!) (I 1)P! d(q) R F!=- --- + -+-- --ctgq;-R-- --qctgq;, 
dq; Rm sin2q; Rm Run sin2 rp dq; Rm Ru> 

with 

(3.11) ~ = ~ = -(N2 sin29'+Qsin'l'cos9')1.-o+R j (q2 sin2 oc+qsinoccosoc)da. 
tp 

The form of the relations (2.19), (2,.13)4 _ 6 , (3.8) essentially does not simplify. 

Coakal shell 

The conical shell constitutes a degenerated case since rp = const, and R 2 = oo. Let 
us introduce a new independent variable y which denotes a distance of an arbitrary point 
lying on the cone generator from the apex of the cone. Then the following relations hold: 

(3.12) 
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Taking into account Eq. (3.12) we transform the equations and relations (2.9), (2.13), 
(2.17), (2.19), (3.2)1 and (3.5) to the form 

(3.13) 

(3.14) 

(3.15) 

(3.1·6) 

(3.17) 

where 

(3.18) 

d 
dy (yN2)-N1 +yq2 = 0, 

d 
dy (yQ)+N1 tgq>+ yq = 0, 

Rm N1 = -(v-wtgq>), 
y 

M
1 

= Sen (J 
y ' 

d 
N1 = - dy (yQ)ctgq>-yqctgq>, 

Pi N2 = -Qctgq>- -.--­
ysmq>cosq> 

y 

Pi = - y(N2 sing> cosq>+Qcos2q>)l,=ii + [ t(q2 sinq;cosq>+qcos2q;)dt; 
y 

dv = __ 1_(Q+ _!1_) ctgq>, 
dy R(ln ycos2q> 

L2[-1-, --1-, ~; (yQ)] -Otg2 q> = f'!, 
Ren Rem Run 

L2 r.S\11)' ~I)' Sm; 0] + yQ = - ym' 

L2[a, fl, y; ( ... )] = ~ [ay d~/]- : (. .. )- ; ( ... )tg2tp, 

Fi = _1 _ _!_ Pi - _!!__( y2q) 
Rem y cos2q> dy Ren · 

A certain limit case may be of great interest. Tending in the equations and expressions 
(3.13)-(3.17) with q> to zero, we obtain in the limit the corresponding equations and 
relations for a circular grid. Equations (3.13h, (3.15), (3.17)1 , 2 lead to the equilibrium 
condition 

(3.19) d 
-(yQ)+yq = 0. 
dy 

Equation (3.17)3 takes the form 

(3.20) d (- dO) Sm - Snn- - -O+yQ = -ym. 
dy dy y 
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This equation describes the plate state of the grid. The shield state equations may be 
found by substituting the expressions (3.14)1.2 to (3.13)1: 

(3.21) 

4. Differential equations for perforated shells 

From the formulae (2.14)1 •2 we calculate 

vctgq;-w =- --------R1 ( N1 vmN2) 
c5 Em Eon ' 

dv -w = R2 ( 1'!2- _ 'V<J~Nl)' 
dq; c5 E(ll) E(l) 

(4.1) 

dv -vctgq; = R2 ( 1'!2 _ vu~N~ ) _ ~( "!_1 _ 11~>N2)' 
dq; c5 Eun Em c5 Em Eun 

( 
dv - vctgq;) ctgq;- R2 X = __!!___ (R1_N1) - __!!__( Rtv~nN2). 
dtp dq; c5E(I) dq; ~Eun 

On the basis of Eqs. (4.1)3.4 and (2.19), (2.14)5 we obtain the differential equations 

(4.2) 

where 

(4.3) 

dv 1 [ v<m dU 1 R1 dU 1 ( R 2 ) --vctgq;=- ----+---------- -+vm Uctgq; 
dtp c5 Em dq; Em R 2 dtp Eun R 1 

1 ( R 2 ) P* I ( R1 ) P* R2 ( R1) ] ---- - +vw -. -2----- - +vm> -. -2- + --- V<m+- Rtq ' 
Enn R 1 sm tp E(l) R 2 sm tp Em R 2 

- ----- -- -_-Uctgq; +-----ctgq;+-------ctgq; d ( R 1 I dU) d ( vm ) v0 n dU 1 R 1 dU 
dtp Rz Em dtp dtp Enn Em dtp Em R2 dtp 

---- -+vn> Uctg q;---"-U-R2c50=- ------1 ( R2 ) 2 R 2 ~ d ( Rt 1 P* ) 
E(In R1 R1 Ron dtp R 2 Em sin2q; 

d ( vm P* ) [ I ( R 2 ) 1 ( R1 
)] P* +- --;;; ·· .. -· -. -

2
- + --- - +vo> + --- - +von -. -

2
- ctgq; 

dq; Em> sm tp Em> R1 Em R 2 sm q; 

- _!!_(~Rrq)- ~(R2vnn+R1)R1qctgq;, 
dq; Em Em 

After substituting Eqs. (2.14)3 _ 6 to the equilibrium equation (2.9)3 we may find the 
third differential equation 

d ( R1 dO ) d Rt. dO () 2 (4.4) dq; Dnn Rz dq; + dq; (Donv0 1)fJctgq;)+Don R
2 

dq; ctgq;+D(IJ)Vm> ctg tp 

d() R 2 2 R2 v () 
-D<nvm-ctgq;-Dw - - Octg q;--S(I) +R2 U= -R1R2m. 

dq; R1 R1 
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The system of equations ( 4.2h, ( 4.4) may be written in a compact fonn 

L* (___;_, - ~m , _v~m , ___;_, _j_; U)-R2 ~() = F*, 
E(l) Em> Em Eun Run 

L*(Dun, Donvnn, -Dwvm, Doh Sw; fJ)+R2 U = -R1 R2 m, 
(4.5) 

where 

(4.6) L*[- p- - i -. ( )] _ d [- R1 d( ... )] d [( ){J-] ex, , y, u, e, ... - dcp ex R
2 

dcp + dcp ... ctgcp 

(
- R1 -) d( ... ) Rz "i( ) 2 (p· - R2)( ) + ex R

2 
+y ~ ctgcp-R;u ... ctg cp- +e~ ... 

denotes an ordinary differential operator with variable coefficients and where F* is 

(4.7) 

[ 
1 ( Rz ) 1 ( R )] P* R 2 

( R1 ) + --- y+vcn +--- - 1 +v<m -. -2-ctgcp---- y+v(Jn R 1 qctgcp. 
Enn 1 Em R2 Sill P Em 2 

After solving the system of equations (4.5), (4.2)1 we find U, (), v. Then, applying 
Eqs. (4.3), (2.19), (2.14)J_ 6 we evaluate Q, N 1 , N 2 , M1 , M 2 , M. The magnitude of w is 
determined from Eq. (4.1) 1 

(4.8) w = vctgcp-- -------- . R1 ( N1 vmN2) 
~ E<n Eun 

It should be stressed out that under proper choice of a, p, y, b, e and the remaining coef­
ficients characterizing rigidity of structure the equations and relations derived above are 
valid for certain full-walled orthotropic shells of revolution. 

We shall still derive the basic differential equations for two technologically important 
cases, i.e. for spherical and conical shells. Making use of the proper limit transition we 
shall obtain the equations and expressions for a circular perforated plate. 

Spherical sheD 

In this case we have R 1 = R 2 = R = const. We write the differential equations (4.2)1 , 

(4.5) in the form 

- -vctgcp =- ----- ---- ctgcp dv R [I+ v0 n dQ 1 +v(l) Q 
dcp f> Em dcp E00 

(4.9) 

_ (1 +vm 1 +vn0 ) ~ 1 +von R ] - +- ·z+- q, 
E(II> Em sill cp E(l) 

L1 (_J__, - ~<n , 1 ~v(ln , ~, _j_- ~<n ; Q)- ~() = Fi, 
E(l) E00 Em E<n> R(ll) E00 

L1 (D0 n, D0 nv00 , D0 u-vmDoh D<Ih S(I)+D<u>v<m; fJ)+R2Q = -R2m, 
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where 

r:; p-- i"- ( )] d [-d( ... )] d [( )p-] L 1 L..,., , y, u,e; ... = dqy rx (J-;p + dqy ... ctgqy 

(4.10) 

- d( .. . ) "i" ) 2 - ) +y dqy ctgqy- u( ... ctg qy-e( ... , 

1 =- ---+--- -- ---+ _ --ctgqy F* d[( 1 '~'(I)) P{ ] +(1+'~'(1) l+'~'cm) Pt 
dqy Ecn Ecm sin2qy Ecm Eo> sin2qy 

-R- -_-q - -_-(l+'~'(ln)qctgqy, d ( 1 ) R 
dqy E(l) £(1) 

and where Pt is determined by Eq. (3.11). 

The form or" the relations (2.19), (2.14)3 ,4 ,6 , (4.8) essentially does not simplify. 

Conical sbell 

In this case we have qy = const, R2 = oo. Let us introduce a new variable y as the 
distance of an arbitrary point lying on the generator of the cone from its apex. Then 
the following relations hold: 

(4.11) 

Taking into account Eq. (4.H) we transform the equations and relations (2.14), (4.2)1 , 

(4.5) to the form 

(
v-wtgqy dv) 

Nt = Cm Y +'~'m dy ' ( 
v-wtgqy dv) 

N2 = c(ll) Vcm y + dy ' 

(4.12) ( () d()) 
M 1 = D(l) y +v(l) dy , (

V(II) d()) 
M 2 = D<n> -0+-, y dy 

M= S;n Otg<p, v (dw ) Q =Rem dy -0 ; 

where 

L [- p- - :i" -. ( )] d [- d( ... )] d -( - d( ... ) "(5 ( ) 8( .. . ) 2 
2 rx, 'y, u, e, ... = dy rxy T + dy [p ... )]+y T-Y- ... -y tg cp, 

(4.14) 

P! is determined by means of the formula (3.16). 
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Similarly as in Sect. 3 of this paper we perform in the equations and relations (4.12)­

(4.14) and (3.13), (3.15) the limit transition tending with q; to zero. In this way we shall 
obtain the corresponding equations and relations for a perforated circular plate. The 
relations (3.13)2 , (3.15), (4.13)h 2 lead to the equilibrium condition 

(4.15) Q =- ~ f yqdy. 

On the basis of Eq. (4.13h we obtain the equation describing a plate state 

d ( d()) d d() Dw 
(4.16) dy D<InY dy + dy (D<mv<n>O)-Dmv(l) dy- YO+yQ = -ym. 

According to Eq. (4.12)5 M := 0. Using Eq. (4.12)6 we evaluate the quantity w 

(4.17) w = f ( "Q +0) dy. 
R<ln 

Substituting Eq. (4.12) 1 • 2 to the equilibrium equation (3.13)1 we find the equation 
describing the shield state problem 

d ( dv) d dv Cm 
(4.18) dy C<mY dy + dy (Cunv<mv)-Cmvm dy- yv = -yq2 • 

The practical significance of the equations and relations derived will be demonstrated 
in the next papers in which the solution of some static boundary-value problems for 
rotationally-symmetric net shells will be presented. 
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