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On equations of net shells of revolution subjected to rotationally-
symmetric loads

Z. MAZURKIEWICZ and R. NAGORSKI (WARSZAWA)

THE EQUILIBRIUM equations for the net shells of revolution in a rotationally-symmetric state
of loading are derived in a new unknown form (comp. [1]). The procedure is the same as in
deriving the Reissner’s or Meissner’s equations for full-walled shells of revolution.

W pracy wyprowadzono rownania rownowagi obrotowych powlok siatkowych w obrotowo-
symetrycznym stanie obciazenia—w innej od dotychczas znanej postaci (por. [1]). Postepowano
przy tym tak samo jak przy wyprowadzaniu réwnafi H. Reissnera lub E. Meissnera dla pelno-
$ciennych powlok obrotowych.

B pabore BhIBe[eHBI YPABHEHUA PABHOBECHA CETYATLIX 000JIOYEK BpallleHus B BPallaTe1bHO-
CHMMETDHYHOM HArpy)KeHHOM COCTOAHMM, HO B JPYrOM, YeM HM3BECTHBIH [0 CHX MOp, BHJE
(cp. [1]). Ilpu atom mocTymaercA Takum cambIM 00pa3oM, KaK HpH BLIBOJIe YPaBHEHHi
I'. PeficcHepa mmm 2. MeiiccHepa [IA MOJHOCTEHHBIX 0GOJIOUEK BpalleHHA.

Introduction

IN A THEORY of net shells of revolution which are in a rotationally-symmetric state we
have three differential equilibrium equations containing six unknown static quantities
(comp. [1]). In this paper, following Reissner’s or Meissner’s procedure of deriving equa-
tions for full-walled shells of revolution, we shall obtain a different form of equilibrium
conditions for three unknown variables.

1. Basic equations and relations of the net shell theory

We shall deal with a surface system built of rigidly-joined rods in hinges and per-
forated shell. A detailed explanation of the assumptions as well as the equations, rela-
tions and symbols used in this section may be found in a monograph [1].

Let = be a surface segment covered by a net shell parametrized by means of the co-
ordinate system x*, x2. We shall restrict our considerations to the surface on which two
discrete families of curves (4) (4 = I, II) are given. We shall assume these curves to be,
according to the assumptions of the theory, the axes of elements from which the shell
is constructed. The points of intersection of both family curves form the nodes of the
system. Let ax;, bxr, ex. denote the components of the first and second quadratic forms
of the surface and components of the Ricci’s bivector, respectively, while §;,, ;(’ﬁ, are
the components of the versors tangent and normal to the family curves (4), (4 = L II;
K,L=1,2) (comp. Fig. 1), correspondingly.
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The system of equilibrium equations has the form
P xk—=bkp*+b" = 0,
m®|g+exy p*E+bgm*E+h = 0,
PNl +bgrp* +b =0,
m | g—bxm*+e"g p*+h" = 0,

(1.1)

where b", b are the tangent and normal components of the vector forces, respectively,
while A" denotes the A-components of the vector of moments of external load.
The “internal forces” pXV, pX, mX¥, mX are determined by means of the formulae

EN _ KN K (4N N B oyJ-1
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2 a
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p = ZPM) = me)mecalp
a y
K K K ar j-1
m = thdz = meMm"wv
a a

where /4, denotes a distance between the family curves (4). The quantities P4, P 15(4,
and M, My, M, appearing in the formulae (1.2), are real components of the force

(1.2)



ON EQUATIONS OF NET SHELLS OF REVOLUTION 245

and moment vectors, respectively, existing in a cross-section situated at a half-length of
the net shell element (Fig. 2).
The geometrical relations have the form
Yks = Us|lk—bsgt+eskv, %gs = Uslg—bsx?,

(1.3)

— L L
Yk = u|lx+bxuL+eg 0", xx = vlg+bgoy,

where u*, u are the components of the linear displacement vector and ©*, v denote the
components of the vector of infinitesimal rotations in the nodes of the net system. In
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agreement with the theory all quantities are continuous and sufficiently regular functions
of the variables x!, x? and have physical interpretation in the corresponding points of
the net of the family curves (4).

We shall still use the constitutive equations
w P& = AGM yun,  miGs = CEGM xmn,

K __ 4EKL | KL
Py = AV, mesy = Ceayxe,

where ATEMN, CESMN, ALS, C&s denote the tensors of rigidity of the net shell elements of
the family (4). For shells composed of rods we assume them in the form

KLMN _ (K M (L 4N L N T
AMY = tin 1t tin Ry +1intinRa),
KLMN K N ‘L TN C
(L5 Ca™MY = 18y 1%t 1 Sy + 1 10 Say)»

A% = it Ry Cly = tintin S,
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where
W -~
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(1.6) ;
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S =+ Sy =——> Sy = —F—2.
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Here J 4, and Ji, are the basic central moments of inertia of the cross-section of the
shell element with respect to the axes tangent and normal to the surface z; 44, is a cross-
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section area; E4 — the Young modulus and ¢, is the rigidity of torsion of the cross-
section for the family rods (4) (4 = I, II).
In the case of the perforated shell (comp. Fig. 3) the formulae (1.5) will take the form

ELMN _ 4K L M (N E (L ;M 7N B
Ay =t Z teay Ly Ry + e Lyt tay Ry
p

KLMN _ +K L M N K 4L M N ¢
(1.7 Cay = tata Z Ly Ly Scayay Ty Lyt Ly Sy
a

Bk gy B KL _ K 4L @
Ay = ttanRays  Cay = tytiay Sy,

where _
d Eyn vaEg o
[R.. = l ~ ~ , S =—R ,
(4)(4)] 1=vayvan |Yan Eany Ean " 2
- 0a2, E . 83E,
1.8 R (4) (AI_ ; R, = (4)
(1.9 @D by +2(1+v)ak, @ hEy

52 oy
3 ks 0°Eay < _ 0aisyEuylay

Sy = 20+ @ =12y
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with
(1.9) Eg=E2D, yp=v2%  (4=1,1I),
leay Ly
E denotes the Young modulus, » — the Poisson ratio, & is the constant thickness of the
shell and k4, is a numerical coefficient dependent on the ratio g4, 6= (comp. for example

[2D.

2. Equations of the net shells of revolution in a rotationally-symmetric state

Let x! = &, x2 = ¢, R, and R, the radii of curvatures in parallel and meridian direc-
tions (Fig. 4). The following relations hold:

1
a, =R}, ap=R} ay=a;=a%?=ae"=0, a" =T-6»s
33 1 i 1 1 3 1
a*t =—, byy = Rysin*p, by, =R, bi=——, bi=—0),
2 R, R,
(VR))
1 1 R
bz =0,=0, e,=—€;=RoR;, e:=—e =E-,

bi=bi=0, e?=-—e=22,

FiG. 4.

In the assumed system of coordinates ¥, @ we evaluate the Christoffel symbols of the
second kind

2 { 1 }_ R,cosg 2 }‘__ Rocosg { 2 }__l_ dR,
) 211 R, 11 R, > 122 R, dp
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The remaining Christoffel symbols equal zero. Besides, we use the relations

K 1 d K } dR,
(2-3) ‘K 2} = _RTR:?Q_) (RORZ)) {K 1 = 0, _d_é; = R;(:OSQJ.
The formula (2.3); has been derived from the Codazzi-Mainardi equations. Assume that
a shell is in a rotationally-symmetric state, i.e. all quantities are functions of the angle
@ only (d/dd(...) = 0). Apart from that we restrict our considerations to the case in
which (comp. page 244)
(2.4) b=h=hr=0,
Inserting Eq. (2.4) into Egs. (1.1) and assuming corresponding boundary conditions we
obtain

.5 p=pl=p=m=m?=m?=0.
From Egs. (2.5), (1.2)-(1.4) we find
(2.6) uy=v=9,=0.

After using the relations (2.1)-(2.3) three among the six equilibrium equations (1.1),
which are not idcntities, assume the form

dp*?* 1 e 1 dR; 2z BoCOB@ 4o 1 o o.
dap* 1
(2.7) d(p + R-R (Ro.Rz)p +R1p“81n20p+R3p“+b 0,
02
dm?*! 1 d 21 R3 2 chosq? 12 21 1 1
e 2350 SR iy e 0,
dQ + RORZ dg} (RoRz)m + Rop + Ru (m +m ) .RI m +

Introducing the physical quantities

N, =R3p", N,=Rip*>, Q=Rp’ 4q;=Rb?
@9 g=b, M,=—RoRym'?, M,;=RoR;m*, M =Rem', m= R,k
to the s&stem of equations (2.7), we have

d
Td;(RONZ)_RICOS¢NI_ROQ+RDR242 = 0,
29) 4 (RoQ) + Ry sin gy + RoNy+ RoReg = 0,
% (RoMz)'"ch(}SQ)MI—stintpM'l'.RoRgQ'l'Rg.R;m =0.

The non-zero components of the state of strain, after using Egs. (2.1)-(2.3) and (2.6)
may be written in the form

. dv
711 = Ro(vcosp—wsing),  y2; = Rz(w —W)»

1 [dw .
2.10) y2 = Ra(x—0), x=Tz(d—¢+v). %, = Osing,

do
%35 = —Ry0cosp, % = R°?¢-’
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where the following notations were introduced:

@.11) weau, gemilR;mal, PagRpmak,
R,

Consider the net of the curves (4) on the rotational surface composed of the family of
parallels (4 = I) and meridians (4 = II). Then the following relations hold (comp. [1],
page 29):

1 -~ - 1
=g =0 1y =0, b =g
0 2
(2.12)
thy =0 12, = — . 12, = 0
[11)] () 115] 1 .
L] Rz L] ( Ru ] (1))

Using Egs. (2.10)-(2.12), (2.8) and (1.2), (1.4)-(1.7) the constitutive equations assume
the form:
for rod shells

R Rap ( dv R
N, = R—‘:’(ﬂctgtp—w). N, = _J;—I:(d_qa -W), 0 = Ran(x-0),

(2.13) . - 2
S Sany db S,
M, = Sw L i M =204,
1 " BCtqu? Mz _Rz d(p ) R’_

and perforated shells

N Oy | ZHEP=N P do
= ol ()

N, = C(m[ 0 (vetgp—w)+ o (i'i = )]

BCtg(P Y do
(2.14) M, =D [_ ALY S
R ) R, dp |’
Y ) Ld_"]
Mz .D(“)[ Rl Bctg?'i' Rz dep ’

v S
Q= Ruy(x=0), M= ;)9
1

where

5 2
(2.15) Coi= l_‘jE_tf'_)__ , D= Cd )
=Ym¥Yan

After solving the given boundary-value problem, i.c. after evaluating the static quanti-
ties Ny, N2, Q, M;, M,, M and the geometrical quantities w, v, 0, the real forces and
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moments appearing in a middle section of the net shell element are determined from the
relations (1.2). Taking into account Eqs. (2.8) and (2.12), we have

Py = Nil), Pay, = Nz, Pay, = Qlay,
Mgy = =My, May= —M,laq, Mgy = Mly,.

It should be noted that the quantities (2.11) and (2.16) have a physical meaning in the
determined points of the surface . Therefore, posing the boundary condition in a manner
which is usually assumed in mechanics is, to some degree, not exact. However, on account
of the dense domain of the net elements one may assume that the above fact has small
influence on the solution.

Let us now transform the first two equilibrium equations (2.9) to a different form
which will be more convenient in further considerations. We eliminate N, from Egs. (2.9),,,
and the resulting equation integrate with respect to

(2.16)

2.17) RoN,sing+RoQcosp = —P*,

where
L

(2.18) P* = —(N,sing+Qcosg) Rolp=5+ fRoR;(qzsina+qcosa)da.
v

From Egs. (2.17) and (2.9), one obtains

*

N, = —Qctgp— m,

1 P*
N1=__d A Q)+Rsmcp

(2.19)
—R,q.

Next we reduce the system of equilibrium equations (2.19), (2.9), and the relations (2.13)
or (2.14) to the system of three differential equations containing the unknown variables
(8, ) of geometrical kind and one unknown of static kind — Q. We assume that the
loads ¢,, ¢, m are arbitrarily distributed along the meridian. We shall consider the rod
shell ‘and the perforated shell.

3. System of differential equations for rod shells

Using the relation (2.13),,, and (2.10), we find

Nsz N1R1

ﬂ - ctg it
- Ray R’

dp

d (N1 Rl) (a‘v )
3.1 — = |—— —vctgy|ctgp—R, ¥,
@D dyp \ Rq, dy i el

d N;R—.-)_I_ N;R;  NiR,

Rili~0) m -2
2(1=9) dp \ Rq, Ray Ry

)ctg:p——R;B.
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On the basis of Eqs. (3.1),,s, after applying Eqgs. (2.19) and (2.13);, we obtain two dif-
ferential equations

dﬂ l Rl dU R“)Rz (R(|]R2 Rl P* ]
— =g cCt = —— = Uct ] e, 7 donde? P P RN Rz ,
dyp o% Ray [R; dp  RapR, Ran R, i R, | sin?p b
d(lRldU) 1 R, dU 1 R,
| ot | + = - otgp— —— 22 Uctg?
dp \Rwy R, dp| = Ray R, dp o Ray R, o
3.2 LR . . 2
c— =2 U~R,0 = ST S WY
Rap Ri : RopR;  RapR,| sin’p 4
d( R, _P* ) d( 1 ) 1
P — ——— | = —|=—Riq]| - =—Riqctgyp,
dQJ(Ru)Rz sin’gp dp \Rq, 19 Ra iqctge
where
(3.3) U=R,Q.

Inserting Egs. (2.13)s_s into Eq. (2.9); we obtain the third differential equation

d - Rl dﬂ 72 .Rl dﬁ o RZ 2
3.9 " (S‘m'ﬁ: d_qa) + SunR—2 pr ctgg— S(n}TleCtS (]
S RegrR,U= R, Rym.
R,

The system of equations (3.2),, (3.4) may be written in a simpler form

1 1 1
L* » » v " U)—R 6 = F*,
( R(ll R(II} R(II) 2

(3.5) . ig A
L*(San, Swy> Say; )+ R, U= —R, R, m,

where L* is the following ordinary differential operator with variable coefficients

d | R, d(... L d(...
68 Lol By () = a2 |+t e g

R, R,
—ﬁE(---)ctgzw—r-ﬁ(-.-),

while F* is

d 1 Rl. P* RI RZ ) P*
' L 2
(.7 B dp (R(n R, sinzﬂv) ¥ (RmR; ¥ Rap R, | sin*p e

d( 1 ) 1
~ 2 - Riq) - —— Riqctgg.
dp \ Ry, #1 Ry EER

The system of equations (3.5) and (3.2), constitutes a complete set of differential equa-
tions of the problem under consideration. After its solution one may, on the basis of
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Egs. (3.3), (2.19), (2.13),_¢, evaluate Q, N, , N,, M,, M, and M. The geometrical quanti-
ty w is determined from Eq. (2.13),

R
3.8 W= vetgg— ——t
(3.8) i

In the following we shall derive the basic differential equations and relations for two
technologically important cases, namely for the spherical shell and conical shell. Making
use of a corresponding limit transition we shall obtain the equations and relations for
a circular grid.

Spherical shell

In this case we have R; = R, = R = const. We write the system of equations (3.2);,
(3.5) in the form

dv dQ Ry, ( Rm) P} ]
—— =—oct, ctgo+ |1+ —)— +Rq|,
dp fe= R dp ~ Rap Qctgy Rqy | sinp 1

1 1 1
19 L( ,—~.»1;Q)—e=r,
&) : Rey Rwy Rap ;

L, (§(ll): 57([), §¢1); 0)+ R*Q = —R*m,

where
GO X G0
Lyfo, B, y:(..)1 = i e 5 ctgp—p(...)ctg?p—y(...),
(3.10)
i1 P 1 1\ Pt d| q R
F‘=——( .‘)+( + —5—Ct —Rd—) ——qgotge,
17 dp \ Ry, sin’p Rgy  Rqp/ sin*e & dp \ Rqa) Rq) e
with
P* ¢
(3.11) P} = o —(stinzg:+Qsincpoosq>)|,=3+R! (g, sin®o+ gsinotcos o) da.
¥

The form of the relations (2.19), (2.13),_s, (3.8) essentially does not simplify.

Conical shell

The conical shell constitutes a degenerated case since ¢ = const, and R, = . Let
us introduce a new independent variable y which denotes a distance of an arbitrary point
lying on the cone generator from the apex of the cone. Then the following relations hold:

(3.12) R,dp = dy, R, = yctgp.
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Taking into account Eq. (3.12) we transform the equations and relations (2.9), (2.13),
(2.17), (2.19), (3.2), and (3.5) to the form

d
E(J’Nz)—Nl +yq, =0,
d
(3.13) P (yQ)+N tgp+yq = 0,

d
;v)_,()’Mz)—Ml —Mtgp+yQ+ym = 0;

~Ro - R 20 - (ﬁ
N, = Y (v—wtgy), Nz—Rundys 0 = Ray s

(3.14) " " o
Sa ~ db Say
M,=—40, M, = Sqp—, M= —"0tgyp;
L y 2 an dy y £:41
d
N, = =, VQctgp—yqctgy,
Ly
(3.15) -
7, L — __._..._..__._.-2 -
Ny==Qugy ysingcosgp’

y
(3.16) > = —Y(N;sing cosp+Qcos?g)|,_; + f t(g,sinpcosp+qcosZe)dt;
¥

LR (Q+ F: )ct
dy Rayy ycos?p 89>
1 1 1
@.17) Lz[ s ;(yQ)]-Btg’gv - B,
Ray Ray Ray :
szs'(m, »Sin, 5{11; 01+yQ = —ym,

where

Ly[o, 8,3 (- )1-—[ (. )] La-Liws,
F;ﬁ—‘_—_—(

Ran y cos?p

(3.18)

Ry]®

A certain limit case may be of great interest. Tending in the equations and expressions
(3.13)~(3.17) with ¢ to zero, we obtain in the limit the corresponding equations and

relations for a circular grid. Equations (3.13),, (3.15), (3.17),,, lead to the equilibrium
condition

d
3.19 — =
(.19 ay 0Q+ya=0.
Equation (3.17), takes the form

d [~ do\ S
3.20 £ Y. B -
(3.20) i (S(m dy) > 0+yQ
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This equation describes the plate state of the grid. The shield state equations may be
found by substituting the expressions (3.14);,, to (3.13);:
d ( d‘U) R(]}

7}; ‘“’d—y ¥ — U= —)q,.

(3.21)

4. Differential equations for perforated shells

From the formulae (2.14),,, we calculate

vetgp—w = i(—iy_‘- . 1""’Nz) )
0 \Eqy, Ean
o _ R N2 "‘1_"NL)

4.1 dp ) Eun Egy |’
LR YE M SRV .
dp 6 \Emy, ~ Eq 0 \En Ea

R N.
(?—f;ctgtp) ctgp—R, x = _i(%!;&)_ i(_i_';(&_i)
P dp \ 0Eq, dp \ OEqg,

On the basis of Egs. (4. 1)3 4 and (2.19), (2.14)5 we obtain the differential equations

& vetgp = — | 290 Ll LUER an ( + % )) Uct
— - —— ———|— +ww) Uc
dg 5 Ep dp  Eqw R, dp  Eqp\R i
1 [R P* 1 R R
— =2+ >) i &+?uu) + == (I’un+—1)R1q],
Eqp \ R, sin?p  Eq sinp  Eq R,
_.._.1__ d ( Ym U tg?).i___(m_ﬂ gq;.‘._.:!___}a_]‘..di'rctgq;
@2) d‘P R, Eu) dp dp \ Eqp Eq dp Ep R, dp
' 8 d{R, 1 P*
(5 ) v paoe S(R L P
Eun -Rl Rap dp\R, Eq sin’p
¥ 1 R, P*
+ _d‘(—;u')" "P—) ¥ [ 1 ('& +V(1)) Frim = +1'(1|))] ctgp
dp \ Eqp sin’g Eam \R m sin’gp
d 1
1g) — = (Ryvan+ Ry R, qctge,
dfP ( Eq ) Ey
whiere
(4.3 U=R,0.

After substituting Egs. (2.14);_¢ to the equilibrium equation (2.9); we may find the
third differential equation

d R, de)

@ (o @

d R, db
5 (Dapvanfctgp)+ Day TL Eph ctgp+ Dapranbetg’e

de R,
—Dypyvay—— g ctgy— Dm Bctg 93—-—R———SmB+R;U- —R,Rym.
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The system of equations (4.2),, (4.4) may be written in a compact form

L* __I_, _ fm ’_‘Em 1 0 ) —R, 080 = F*,
@.5) Eqgp Ew Eo Ea kun
L*(Dap, Davvan, —Dwvw, Dw, Smie)‘f'Rz = —R,R,m,
where
R, d
4O LEF7 5,5 (I = e | R %]y () flags
2 4y

( )"( )ctgsv—*a( Jete ¢—(ﬁ+s—)( )

denotes an ordinary differential operator with variable coefficients and where F* is

* *
@47 F* ._.i R 1 P )+ d (o P ) _fd,[_(_ﬂl R%q)
dp \R; Eg, sin’p]  dp \ E,, sin*e| dp\ E,

1 (R I (R P R, (R )
— =+ + — 2L + . Sy b .
* [ Eqn ( R, i )) Ew ( R, “")] sin®p ctgg— Eo \ R an | R, getge

After solving the system of equations (4.5), (4.2); we find U, 6, v. Then, applying
Egs. (4.3), (2.19), (2.14);_¢ we evaluate Q, N;, N,, M,, M,, M. The magnitude of w is
determined from Eq. (4.1),

(4.8) W= vetgp——- (-—&—-—- y(.'.)Nz )
Eqy  Eap

It should be stressed out that under proper choice of @, E ¥, 0, € and the remaining coef-
ficients characterizing rigidity of structure the equations and relations derived above are
valid for certain full-walled orthotropic shells of revolution.

We shall still derive the basic differential equations for two technologically important
cases, i.e. for spherical and conical shells. Making use of the proper limit transition we
shall obtain the equations and expressions for a circular perforated plate.

Spherical shell

In this case we have R, = R, = R = const. We write the differential equations (4.2),,
(4.5) in the form

L2 —vctgy = R [1+van 4O 1+"<1)Q ctge
do K Eq dp  Eay
- (lj'"(n N 1‘1“'(!1}) ‘PE 1+»an qu]
(4 9) E(IU E(I) smee E(I)
s Tl__, T ’ l-l-vtm ’ ..l , Yé _tw ;Q)-éﬁ:Ff,
Ey, Em En Eay Ray Emp

L; (Dans Danvans Dan—rayPays Pays Sy + Danran; )+ R*Q = —R’m,
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where
- = d|_d
AR AR PR L] AT o
7| - i
+r%ag¢—6(...)ctg=¢—s(...),
(4.10)
F} =i[(.—l + f“’) .P’: ]+(lf?"’ + lf”‘"’) P’: ctgg
dpl\Eqy Eqan/ sin’p Ean Eq ] sin®e

d ( 1 R
R — “-—‘Q')—T-—(H"’an)qﬂg%
dp \Eg, M

and where P{ is determined by Eq. (3.11).
The form of the relations (2.19), (2.14);,4,¢, (4.8) essentially does not simplify.

Conical shell

In this case we have ¢ = const, R, = co. Let us introduce a new variable y as the
distance of an arbitrary point lying on the generator of the cone from its apex. Then
the following relations hold:

4.11) dy = R,dp, R, = yctge.

Taking into account Eq. (4.11) we transform the equations and relations (2.14), (4.2),,
(4.5) to the form

v—wtgq: v—wtg dv
N, = Cm( = Yo g ) N, = Cun("uu —"'-;'—‘P )

dy
6 db Y, db
(412) Ml = D“) (;"- +l’([) -a"}‘), Mg = D[II)( "nﬁ dy
- '§(|) B
M"‘T tgp, 0= R(m -0);
dv _ L[ vap d0Q) Q@ P} Yan yq] ctge
dy 0 LEy dy Eqyy yEm,cosztp Em
1 v Y 1
(4.13) L ( e e L ,yQ) o0tg*p = F3,
\Ew Eawy Egx Emy Ray
Ly(Danys Danyvans —Dayans PDays Sm;ﬂ)"'.}’Q = —ym,
where
_ _ d(..) il 8( )
i ] 42 et B A,
[ 8.7, 0,8 () rl [ﬂ( b pre ( ¢
(4.14) - =_d_( v P} )+ 1 P} H_d_(__l_.yz )_ Yan .
dy \ Eqy cos’p| Eqg, ycos’e dy\ Eq m

P37 is determined by means of the formula (3.16).
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Similarly as in Sect. 3 of this paper we perform in the equations and relations (4.12)-
(4.14) and (3.13), (3.15) the limit transition tending with ¢ to zero. In this way we shall
obtain the corresponding equations and relations for a perforated circular plate. The
relations (3.13),, (3.15), (4.13),,, lead to the equilibrium condition

1
@15) 0= - [ raav.
On the basis of Eq. (4.13); we obtain the equation describing a plate state

d D
(4.16) F (Dun)’ dy) —— (Danrant) - Dm"ma; - "ﬂ9+yQ = —ym.
According to Eq. (4.12)s M = 0. Using Eq. (4.12); we evaluate the quantity w

0
(4.17) w= f 2 dy.

Ran

Substituting Eq. (4.12),,, to the equilibrium equation (3.13); we find the equation
describing the shield state problem

dv C
(4.18) (C(II)J-' dy) (C{m?’(mv) Co’m 3— = Tmﬂ = =)q;.

The practical significance of the equations and relations derived will be demonstrated
in the next papers in which the solution of some static boundary-value problems for
rotationally-symmetric net shells will be presented.
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